SWAT Model Adaptability to a Small Mountainous Forested Watershed in Central Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Hydrological Model
2.3. Model Parameterisation
2.4. Model Performance Evaluation Criteria
3. Results
3.1. Sensitivity Analysis
3.2. Model Calibration
3.3. Model Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jabbar, F.K.; Grote, K. Evaluation of the predictive reliability of a new watershed health assessment method using the SWAT model. Environ. Monit. Assess. 2020, 192. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, A.; Singh, R. Physio-climatic controls on vulnerability of watersheds to climate and land use change across the US. Water Resour. Res. 2016, 52, 8775–8793. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contributions of the Working Group II to the Fifth Assessment Report. 2014. [Google Scholar]
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Miller, J.D.; Immerzeel, W.W.; Rees, G. Climate change impacts on glacier hydrology and river discharge in the Hindu Kush-Himalayas. Mt. Res. Dev. 2012, 32, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Park, Y.; Lee, J.; Park, M.; Song, Y. Flood forecasting and warning system structures: Procedure and application to a small urban stream in South Korea. Water 2019, 11, 1571. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Meng, F.; Liu, T.; Huang, Y.; Luo, M.; Xing, W.; De Maeyer, P. Sub-daily simulation of mountain flood processes based on the modified soil water assessment tool (Swat) model. Int. J. Environ. Res. Public Health 2019, 16, 3118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef]
- Cui, T.; Yang, T.; Xu, C.Y.; Shao, Q.; Wang, X.; Li, Z. Assessment of the impact of climate change on flow regime at multiple temporal scales and potential ecological implications in an alpine river. Stoch. Environ. Res. Risk Assess. 2018, 32, 1849–1866. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Liu, S.; Pérez-Sánchez, J.; López-Ballesteros, A.; Jimeno-Sáez, P. Assessing Impacts of Climate Variability and Reforestation Activities on Water Resources in the Headwaters of the Segura River Basin (SE Spain). Sustainability 2018, 10, 3277. [Google Scholar] [CrossRef] [Green Version]
- Grey, O.P.; St G Webber, D.F.; Setegn, S.G.; Melesse, A.M. Application of the Soil and Water Assessment Tool (SWAT Model) on a small tropical island (Great River Watershed, Jamaica) as a tool in Integrated Watershed and Coastal Zone Management. Rev. Biol. Trop. Int. J. Trop. Biol. Conserv. 2014, 62, 293–305. [Google Scholar]
- Orozco, I.; Martínez, A.; Ortega, V. Assessment of the water, environmental, economic and social vulnerability of a watershed to the potential effects of climate change and land use change. Water 2020, 12, 1682. [Google Scholar] [CrossRef]
- Marin, M.; Clinciu, I.; Tudose, N.; Ungurean, C.; Adorjani, A.; Mihalache, A.; Davidescu, A.; Davidescu, Ș.O.; Dinca, L.; Cacovean, H. Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environ. Res. 2020, 184, 109330. [Google Scholar] [CrossRef]
- Berezowski, T.; Chybicki, A. High-resolution discharge forecasting for snowmelt and rainfall mixed events. Water 2018, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Jurik, Ĺ.; Húska, D.; Halászová, K.; Bandlerová, A. Small water reservoirs—Sources of water or problems? J. Ecol. Eng. 2015, 16, 22–28. [Google Scholar] [CrossRef]
- Cai, X.; Wallington, K.; Shafiee-Jood, M.; Marston, L. Understanding and managing the food-energy-water nexus—Opportunities for water resources research. Adv. Water Resour. 2018, 111, 259–273. [Google Scholar] [CrossRef]
- Mengistu, A.G.; van Rensburg, L.D.; Woyessa, Y.E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol. Reg. Stud. 2019, 25, 100621. [Google Scholar] [CrossRef]
- Osei, M.A.; Amekudzi, L.K.; Wemegah, D.D.; Preko, K.; Gyawu, E.S.; Obiri-Danso, K. The impact of climate and land-use changes on the hydrological processes of Owabi catchment from SWAT analysis. J. Hydrol. Reg. Stud. 2019, 25, 100620. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, H.; Wang, J.; Zhao, Y.; Chen, J.; Xu, C. Impacts of Climate Change and Land-Use Change on Hydrological Extremes in the Jinsha River Basin. Water 2019, 11, 1398. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Cai, Y.; Li, C.; Wang, X.; Liu, Q. Hydrological Responses to Climate and Land Use Changes in a Watershed of the Loess Plateau, China. Sustainability 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Phung, Q.A.; Thompson, A.L.; Baffaut, C.; Costello, C.; Sadler, E.J.; Svoma, B.M.; Lupo, A.; Gautam, S. Climate and Land Use Effects on Hydrologic Processes in a Primarily Rain-Fed, Agricultural Watershed. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 1196–1215. [Google Scholar] [CrossRef]
- Esmali, A.; Golshan, M.; Kavian, A. Investigating the performance of SWAT and IHACRES in simulation streamflow under different climatic regions in Iran. Atmósfera 2021, 34, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Change 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Mountain Partnership. Mountains and the Sustainable Development Goals. 2014. Available online: http://www.fao.org/fileadmin/templates/mountain_partnership/doc/POLICY_BRIEFS/Mountains_and_the_Sustainable_Development_Goals_-_NY_-_8Jan.2014.pdf (accessed on 15 March 2021).
- BIO Intelligence Service. Literature Review on the Potential Climate Change Effects on Drinking Water Resources across the EU and the Identification of Priorities among Different Types of Drinking Water Supplies, Final Report—ADWICE Project Prepared for European Commission DG Environment, 20–22 Villa Deshayes, 75014 Paris. 2012. Available online: https://ec.europa.eu/environment/archives/water/adaptation/pdf/ADWICE_FinalReport.pdf (accessed on 15 March 2021).
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; Van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Downing, J.A. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 2010, 29, 9–24. [Google Scholar] [CrossRef]
- Hackenbruch, J.; Kunz-Plapp, T.; Müller, S.; Schipper, J.W. Tailoring climate parameters to information needs for local adaptation to climate change. Climate 2017, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Bayabil, H.K.; Dile, Y.T. Improving hydrologic simulations of a small watershed through soil data integration. Water 2020, 12, 2763. [Google Scholar] [CrossRef]
- Irving, K.; Kuemmerlen, M.; Kiesel, J.; Kakouei, K.; Domisch, S.; Jähnig, S.C. Data descriptor: A high-resolution streamflow and hydrological metrics dataset for ecological modeling using a regression model. Sci. Data 2018, 5, 1–14. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Y.; Wan, D.; Yu, Y.; Lu, Y. Similarity Analysis of Small- and Medium-Sized Watersheds Based on Clustering Ensemble Model. Water 2019, 12, 69. [Google Scholar] [CrossRef] [Green Version]
- Rahman, K.; Maringanti, C.; Beniston, M.; Widmer, F.; Abbaspour, K.; Lehmann, A. Streamflow Modeling in a Highly Managed Mountainous Glacier Watershed Using SWAT: The Upper Rhone River Watershed Case in Switzerland. Water Resour. Manag. 2013, 27, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Arora, M.; Kumar, R.; Kumar, N.; Malhotra, J. Hydrological modeling and streamflow characterization of Gangotri Glacier. In Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment: Challenges, Processes and Strategies, IAMG 2014; Capital Publishing Company: New Delhi, India, 2016. [Google Scholar]
- Jain, S.; Jain, S.; Jain, N.; Xu, C.-Y. Hydrologic modeling of a Himalayan mountain basin by using the SWAT mode. Hydrol. Earth Syst. Sci. Discuss. 2017. [Google Scholar] [CrossRef] [Green Version]
- Mateo-Lázaro, J.; Castillo-Mateo, J.; Sánchez-Navarro, J.Á.; Fuertes-Rodríguez, V.; García-Gil, A.; Edo-Romero, V. Assessment of the role of snowmelt in a flood event in a gauged catchment. Water 2019, 11, 506. [Google Scholar] [CrossRef] [Green Version]
- Romanescu, G.; Jora, I.; Stoleriu, C. The most important high floods in Vaslui river basin -causes and consequences. Carpathian J. Earth Environ. Sci. 2011, 6, 119–132. [Google Scholar]
- Birsan, M.V.; Zaharia, L.; Chendes, V.; Branescu, E. Recent trends in streamflow in Romania (1976-2005). Rom. Reports Phys. 2012, 64, 275–280. [Google Scholar]
- The World Bank. Romania, Climate Change and Low Carbon Green Growth Program, Component B Sector Report, Forest Sector Rapid Assessment. 2014. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/17570/842620WP0P14660Box0382136B00PUBLIC0.pdf?sequence=1&isAllowed=y (accessed on 1 March 2021).
- Yang, L.; Smith, J.A.; Baeck, M.L.; Zhang, Y. Flash flooding in small urban watersheds: Storm event hydrologic response. Water Resour. Res. 2016, 52, 4571–4589. [Google Scholar] [CrossRef] [Green Version]
- Kvočka, D.; Ahmadian, R.; Falconer, R.A. Predicting Flood Hazard Indices in Torrential or Flashy River Basins and Catchments. Water Resour. Manag. 2018, 32, 2335–2352. [Google Scholar] [CrossRef] [Green Version]
- Petroselli, A.; Grimaldi, S. Design hydrograph estimation in small and fully ungauged basins: A preliminary assessment of the EBA4SUB framework. J. Flood Risk Manag. 2018, 11, S197–S210. [Google Scholar] [CrossRef]
- Apollonio, C.; Bruno, M.F.; Iemmolo, G.; Molfetta, M.G.; Pellicani, R. Flood Risk Evaluation in Ungauged Coastal Areas. Water 2020, 5, 1466. [Google Scholar] [CrossRef]
- Ha, L.; Bastiaanssen, W.; van Griensven, A.; van Dijk, A.; Senay, G. SWAT-CUP for Calibration of Spatially Distributed Hydrological Processes and Ecosystem Services in a Vietnamese River Basin Using Remote Sensing. Hydrol. Earth Syst. Sci. Discuss. 2017. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Neitsch Grassland, Soil, Water Research Laboratory; Agricultural Research Service Blackland Research Center; Texas AgriLife Research. Soil & Water Assessment Tool, Theoretical Documentation Version 2009. Texas Water Resources Institute. exas Water Resources Institute Technical Report No. 365 Texas A&M University System College Station, Texas 77843-2118. 2011. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2005; Grassland, Soil and Water Research Laboratory, Agricultural Research Service: Temple, TX, USA, 2005. [Google Scholar]
- Tudose, N.C.; Davidescu, S.O.; Cheval, S.; Chendes, V.; Ungurean, C.; Babata, M. Integrated Model of River Basin, Land Use and Urban Water Supply. Deliverable 3.4. CLISWELN Project. 2018. Available online: https://ms.hereon.de/imperia/md/content/csc/projekte/projekte/clisweln_d3.4_romania_study_case_final-2.pdf (accessed on 9 November 2020).
- Noor, H.; Vafakhah, M.; Taheriyoun, M.; Moghadasi, M. Hydrology modelling in Taleghan mountainous watershed using SWAT. J. Water L. Dev. 2014, 20, 11–18. [Google Scholar] [CrossRef]
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ArcSWAT 2.3.4 Interface for SWAT2005: User’s Guide, Version September 2009. Texas Agricultural Experiment Station and Agricultural Research Service- US Department of Agriculture, Temple. 2009. [Google Scholar]
- Bîrsan, M.-V.; Dumitrescu, A. ROCADA: Romanian daily gridded climatic dataset (1961-2013) V1.0. Nat. Hazards 2014, 78, 1045–1063. [Google Scholar] [CrossRef]
- Dumitrescu, A.; Birsan, M.V. ROCADA: A gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Nat. Hazards 2015, 78, 1045–1063. [Google Scholar] [CrossRef]
- Popa, I.; Badea, O.; Silaghi, D. Influence of climate on tree health evaluated by defoliation in the ICP level I network (Romania). IForest 2017, 10, 554–560. [Google Scholar] [CrossRef]
- Sfîcă, L.; Croitoru, A.E.; Iordache, I.; Ciupertea, A.F. Synoptic conditions generating heatwaves and warm spells in Romania. Atmosphere 2017, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Karim, T.H.; Fattah, M.A. Efficiency of the SPAW model in estimation of saturated hydraulic conductivity in calcareous soils. J. Univ. Duhok 2020, 23, 189–201. [Google Scholar] [CrossRef]
- Post, D.F.; Fimbres, A.; Matthias, A.D.; Sano, E.E.; Accioly, L.; Batchily, A.K.; Ferreira, L.G. Predicting Soil Albedo from Soil Color and Spectral Reflectance Data. Soil Sci. Soc. Am. J. 2000, 64, 1027–1034. [Google Scholar] [CrossRef]
- Williams, J.R. The EPIC Model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Highlands Ranch, CO, USA, 1995; ISBN 0918334918. [Google Scholar]
- Gijsman, A.J.; Thornton, P.K.; Hoogenboom, G. Using the WISE database to parameterize soil inputs for crop simulation models. Comput. Electron. Agric. 2007, 56, 85–100. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Input/Output Documentation. 2012. Available online: https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf (accessed on 20 November 2020).
- Daggupati, P.; Pai, N.; Ale, S.; Douglas-Mankin, K.R.; Zeckoski, R.W.; Jeong, J.; Parajuli, P.B.; Saraswat, D.; Youssef, M.A. A recommended calibration and validation strategy for hydrologic and water quality models. Trans. ASABE 2015, 58, 1705–1719. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C. SWAT-CUP. SWAT Calibration and Uncertainty Programs. 2015, p. 100. Available online: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed on 6 December 2020).
- Harmel, R.D.; Smith, P.K.; Migliaccio, K.W.; Chaubey, I.; Douglas-Mankin, K.R.; Benham, B.; Shukla, S.; Muñoz-Carpena, R.; Robson, B.J. Evaluating, interpreting, and communicating performance of hydrologic/water quality models considering intended use: A review and recommendatrions. Environ. Model. Softw. 2014, 21, 40–51. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- da Silva, M.G.; de Aguiar Netto, A.O.; de Jesus Neves, R.J.; do Vasco, A.N.; Almeida, C.; Faccioli, G.G. Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil. J. Environ. Prot. 2015, 6, 837–850. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I - A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; Th van Genuchten, M. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Thavhana, M.P.; Savage, M.J.; Moeletsi, M.E. SWAT model uncertainty analysis, calibration and validation for runoff simulation in the Luvuvhu River catchment, South Africa. Phys. Chem. Earth 2018, 105, 115–124. [Google Scholar] [CrossRef]
- Qiu, L.J.; Zheng, F.L.; Yin, R.S. SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: Capabilities and challenges. Int. J. Sediment Res. 2012, 27, 226–234. [Google Scholar] [CrossRef]
- Emam, R.A.; Kappas, M.; Hoang Khanh Nguyen, L.; Renchin, T. Hydrological Modeling in an Ungauged Basin of Central Vietnam Using SWAT Model. Hydrol. Earth Syst. Sci. Discuss. 2016, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Wallace, C.W.; Flanagan, D.C.; Engel, B.A. Evaluating the effects ofwatershed size on SWAT calibration. Water 2018, 10, 898. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Gash, J.H.; Holmes, T.R.H.; De Jeu, R.A.M.; Dolman, A.J. Global canopy interception from satellite observations. J. Geophys. Res. Atmos. 2010, 115, 1–8. [Google Scholar] [CrossRef]
- Cui, Y.; Jia, L.; Hu, G.; Zhou, J. Mapping of interception loss of vegetation in the heihe river basin of china using remote sensing observations. IEEE Geosci. Remote Sens. Lett. 2015, 12, 23–27. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:a3c806a6-9ab3-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 13 January 2021).
- Brouziyne, Y.; Abouabdillah, A.; Bouabid, R.; Benaabidate, L. SWAT streamflow modeling for hydrological components’ understanding within an agro-sylvo-pastoral watershed in Morocco. J. Mater. Environ. Sci. 2018, 9, 128–138. [Google Scholar] [CrossRef]
- Aawar, T.; Khare, D. Assessment of climate change impacts on streamflow through hydrological model using SWAT model: A case study of Afghanistan. Model. Earth Syst. Environ. 2020, 6, 1427–1437. [Google Scholar] [CrossRef]
- Leng, M.; Yu, Y.; Wang, S.; Zhang, Z. Simulating the hydrological processes of a meso-scalewatershed on the Loess Plateau, China. Water 2020, 12, 878. [Google Scholar] [CrossRef] [Green Version]
- Amatya, D.M.; Jha, M.K. Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina. Trans. ASABE 2011, 54, 2151–2163. [Google Scholar] [CrossRef] [Green Version]
- Mapes, K.L.; Pricope, N.G. Evaluating SWAT model performance for runoff, percolation, and sediment loss estimation in low-gradientwatersheds of the Atlantic Coastal Plain. Hydrology 2020, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Tolera, M.B.; Chung, I.M.; Chang, S.W. Evaluation of the climate forecast system reanalysis weather data for watershed modeling in Upper Awash Basin, ethiopia. Water 2018, 10, 725. [Google Scholar] [CrossRef] [Green Version]
- Busico, G.; Colombani, N.; Fronzi, D.; Pellegrini, M.; Tazioli, A.; Mastrocicco, M. Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin. J. Environ. Manag. 2020, 266. [Google Scholar] [CrossRef]
- Abbas, T.; Nabi, G.; Boota, M.W.; Hussain, F.; Azam, M.I.; Jin, H.; Faisal, M. Uncertainty analysis of runoff and sedimentation in a forested watershed using sequential uncertainty fitting method. Sci. Cold Arid Reg. 2016, 8, 297–310. [Google Scholar] [CrossRef]
- Briones, R.U.; Ella, V.B.; Bantayan, N.C. Hydrologic impact evaluation of land use and land cover change in Palico Watershed, Batangas, Philippines Using the SWAT model. J. Environ. Sci. Manag. 2016, 19, 96–107. [Google Scholar]
- Narsimlu, B.; Gosain, A.K.; Chahar, B.R.; Singh, S.K.; Srivastava, P.K. SWAT Model Calibration and Uncertainty Analysis for Streamflow Prediction in the Kunwari River Basin, India, Using Sequential Uncertainty Fitting. Environ. Process. 2015, 2, 79–95. [Google Scholar] [CrossRef]
- Adhikary, P.P.; Sena, D.R.; Dash, C.J.; Mandal, U.; Nanda, S.; Madhu, M.; Sahoo, D.C.; Mishra, P.K. Effect of Calibration and Validation Decisions on Streamflow Modeling for a Heterogeneous and Low Runoff–Producing River Basin in India. J. Hydrol. Eng. 2019, 24, 05019015. [Google Scholar] [CrossRef]
- United Nations Transforming Our World: The 2030 Agenda for Sustainable Development: Sustainable Development Knowledge Platform. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 12 June 2020).
- Carpathian Framework Convention. Framework Convention on the Protection and Sustainable Development of the Carpathians. Available online: http://www.carpathianconvention.org/tl_files/carpathiancon/Downloads/01TheConvention/1.1.1.1_CarpathianConvention.pdf (accessed on 19 February 2021).
Parameter | Description | Variation Method | Minimum and Maximum Value | Adjusted Value |
---|---|---|---|---|
First calibration performed for parameters that insert water into the system | ||||
SFTMP.bsn | Snowfall temperature | Replace | −20…20 | −4.791781 |
SMFMX.bsn | Maximum melt rate for snow during year | Replace | 0…20 | 13.605089 |
SMFMN.bsn | Minimum melt rate for snow during the year | Replace | 0…20 | 6.092970 |
SMTMP.bsn | Snow melt base temperature | Replace | −20…20 | 2.299827 |
CANMX.hru_FRSE | Maximum canopy storage for forest evergreen | Replace | 0…100 | 2.149979 |
CANMX.hru_FRSD | Maximum canopy storage for forest deciduous | Replace | 0…100 | 4.746581 |
CANMX.hru_PAST | Maximum canopy storage for pastures | Replace | 0…100 | 4.563951 |
Second calibration performed for chosen parameters | ||||
CN2.mgt | SCS runoff curve number (-) | Multiply | −0.20…0.20 | 0.120750 |
ESCO.hru | Soil evaporation compensation factor | Replace | 0…1 | 0.506750 |
EPCO.hru | Plant uptake compensation factor (-) | Replace | 0…1 | 0.337250 |
HRU_SLP.hru | Average slope steepness (m/m) | Multiply | 0…1 | 0.597250 |
OV_N.hru | Manning’s “n” value for overland flow (-) | Multiply | −0.20…0.00 | −0.078850 |
GW_REVAP.gw | Coefficient for groundwater revap (days) | Replace | 0.02…0.2 | 0.165935 |
GW_DELAY.gw | Groundwater delay time (days) | Replace | 0…500 | 496.875000 |
ALPHA_BF.gw | Base flow alpha factor (1/days) | Replace | 0…1 | 0.640750 |
RCHRG_DP.gw | Deep aquifer percolation fraction (-) | Multiply | 0…1 | 0.899750 |
REVAPMN.gw | Threshold depth of water in the shallow aquifer for revap or percolation (mm) | Replace | 0…500 | 132.875000 |
GWQMN.gw | Threshold depth of water in the shallow aquifer for return flow (mm) | Replace | 0…5000 | 288.750000 |
SURLAG.bsn | Surface runoff lag time | Replace | 0.05…24 | 10.847938 |
SOL_BD(1).sol | Moist bulk density | Multiply | 0.9…2.5 | 0.047175 |
SOL_K(1).sol | Saturated hydraulic conductivity (mm/hr) | Multiply | −0.80…0.80 | −0.410800 |
SOL_AWC(1).sol | Available water capacity of the soil layer (mmH2O/mm soil) | Multiply | −0.20…0.10 | −0.175625 |
CH_N2.rte | Manning’s “n” value for the main channel | Replace | −0.01…0.3 | 0.119475 |
CH_K2.rte | Effective hydraulic conductivity in main channel alluvium | Replace | −0.01…500 | 172.625000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudose, N.C.; Marin, M.; Cheval, S.; Ungurean, C.; Davidescu, S.O.; Tudose, O.N.; Mihalache, A.L.; Davidescu, A.A. SWAT Model Adaptability to a Small Mountainous Forested Watershed in Central Romania. Forests 2021, 12, 860. https://doi.org/10.3390/f12070860
Tudose NC, Marin M, Cheval S, Ungurean C, Davidescu SO, Tudose ON, Mihalache AL, Davidescu AA. SWAT Model Adaptability to a Small Mountainous Forested Watershed in Central Romania. Forests. 2021; 12(7):860. https://doi.org/10.3390/f12070860
Chicago/Turabian StyleTudose, Nicu Constantin, Mirabela Marin, Sorin Cheval, Cezar Ungurean, Serban Octavian Davidescu, Oana Nicoleta Tudose, Alin Lucian Mihalache, and Adriana Agafia Davidescu. 2021. "SWAT Model Adaptability to a Small Mountainous Forested Watershed in Central Romania" Forests 12, no. 7: 860. https://doi.org/10.3390/f12070860
APA StyleTudose, N. C., Marin, M., Cheval, S., Ungurean, C., Davidescu, S. O., Tudose, O. N., Mihalache, A. L., & Davidescu, A. A. (2021). SWAT Model Adaptability to a Small Mountainous Forested Watershed in Central Romania. Forests, 12(7), 860. https://doi.org/10.3390/f12070860