Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Cafeteria Study
2.3. Chemistry Collection and Analyses
2.4. Arthropod Surveys
2.5. Statistical Analyses
3. Results
3.1. Beaver Cafeteria Feeding Experiment
3.2. Tree Phytochemical Responses to Beaver Herbivory
3.3. Arthropod Responses to Herbivory
4. Discussion
4.1. Feeding Preferences for Cottonwoods over Other Native and Exotic Species
4.2. Phytochemical Responses That May Deter Future Beaver Herbivory
4.3. Phytochemical Responses to Herbivory That Affect Arthropods
4.4. Interacting Foundation Species (Beavers and Cottonwoods) Redefine Communities
4.5. Conservation and Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holling, C.S. Cross-Scale Morphology, Geometry, and Dynamics of Ecosystems. Ecol. Monogr. 1992, 62, 447–502. [Google Scholar] [CrossRef]
- Dayton, P.K. Toward an Understanding of Community Resilience and the Potential Effects of Enrichments to the Benthos at McMurdo Sound, Antarctica. In Proceedings of the Colloquium on Conservation Problems in Antarctica; Parker, B.C., Ed.; Allen Press: Lawrence, KS, USA, 1972; pp. 81–96. [Google Scholar]
- Ellison, A.M.; Bank, M.S.; Clinton, B.D.; Colburn, E.A.; Elliot, K.; Ford, C.R.; Foster, D.R.; Kloeppel, B.D.; Knoepp, J.D.; Lovett, G.M.; et al. Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 2005, 3, 479–486. [Google Scholar] [CrossRef]
- Whitham, T.G.; Allan, G.J.; Cooper, H.F.; Shuster, S.M. Intraspecific genetic variation and species interactions contribute to community evolution. Annu. Rev. Ecol. Syst. 2020, 51, 587–612. [Google Scholar] [CrossRef]
- Keith, A.R.; Bailey, J.K.; Whitham, T.G. A genetic basis to community repeatability and stability. Ecology 2010, 11, 3398–3406. [Google Scholar] [CrossRef]
- Keith, A.R.; Bailey, J.K.; Lau, M.K.; Whitham, T.G. Genetics-based interactions of foundation species affect community diversity, stability, and network structure. Proc. Biol. Sci. 2017, 284, 20162703. [Google Scholar] [CrossRef] [Green Version]
- Hagglund, A.; Sjoberg, G. Effects of beaver dams on the fish fauna of forest streams. For. Ecol. Manag. 1999, 115, 259–266. [Google Scholar] [CrossRef]
- Hammerson, G.A. Beaver (Castor canadensis): Ecosystem alterations, management, and monitoring. Nat. Area J. 1994, 14, 44–57. [Google Scholar]
- Rosell, F.; Bozsér, O.; Collen, P.; Parker, H. Ecological impact of beavers Castor fiber and Castor Canadensis and their ability to modify ecosystems. Mammal Rev. 2005, 35, 248–276. [Google Scholar] [CrossRef]
- Naiman, R.J.; Pinay, G.; Johnston, C.A.; Pastor, J. Beaver influences on the long-term biogeochemical characteristics of boreal forest drainage networks. Ecology 1994, 75, 905–921. [Google Scholar] [CrossRef]
- Ecke, F.; Levanoni, O.; Audet, J.; Carlson, P.; Eklof, K.; Hartman, G.; McKie, B.; Ledsma, J.; Segersten, J.; Truchy, A.; et al. Meta-analysis of environmental effects of beaver in relation to artificial dams. Environ. Res. Lett. 2017, 12, 11302. [Google Scholar] [CrossRef]
- Martinsen, G.D.; Driebe, E.M.; Whitham, T.G. Indirect interactions mediated by changing plant chemistry: Beaver browsing benefits beetles. Ecology 1998, 79, 192–200. [Google Scholar] [CrossRef]
- Bailey, J.K.; Whitham, T.G. Interactions between cottonwood and beavers positively affect sawfly abundance. Eco. Entomol. 2006, 31, 294–297. [Google Scholar] [CrossRef]
- Bailey, J.K.; Whitham, T.G. Biodiversity is Related to Indirect Interactions among Species of Large Effect. In Ecological Communities: Plant Mediation in Indirect Interaction Webs; Ohgushi, T., Craig, T.P., Price, P.W., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 306–328. [Google Scholar]
- Bailey, J.K.; Schweitzer, J.A.; Rehill, B.J.; Lindroth, R.L.; Martinsen, G.D.; Whitham, T.G. Beavers as molecular geneticists: A genetic basis to the foraging of an ecosystem engineer. Ecology 2004, 85, 603–608. [Google Scholar] [CrossRef]
- Strzelec, M.; Białek, K.; Spyra, A. Activity of beavers as an ecological factor that affects the benthos of small rivers—A case study in the Żylica River (Poland). Biologia 2018, 73, 577–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, C.C. Vegetation change in a topogenic bog following beaver activity. Bull. Torrey Bot. Club 1999, 120, 136–147. [Google Scholar] [CrossRef]
- McGinley, A.; Whitham, T.G. Central place foraging by beavers (Castor canadensis): A test of foraging predictions and the impact of selective feeding on the growth form of cottonwoods (Populus fremontii). Oecologia 1985, 66, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Walker, F.M.; Durben, R.; Shuster, S.M.; Lindroth, R.L.; Whitham, T.G. Heterozygous trees rebound fastest after felling by beavers to positively affect arthropod community diversity. Forests 2021, 12, 694. [Google Scholar] [CrossRef]
- Johnston, C.A.; Naiman, R.J. The use of a geographic information system to analyze long-term landscape alteration by beaver. Landsc. Ecol. 1990, 4, 5–19. [Google Scholar] [CrossRef]
- Chadde, S.W.; Kay, C.E. Tall Willow Communities on Yellowstone’s Northern Range: A test of the ‘‘Natural Regulation’’ Paradigm. In The Greater Yellowstone Ecosystem; Keiter, R.B., Boyce, M.S., Eds.; Yale University Press: New Haven, CT, USA, 1991; pp. 231–262. [Google Scholar]
- Wright, J.; Chambers, J. Restoring riparian meadows currently dominated by Artemisa using alternative state concepts—Above-ground vegetation response. Appl. Veg. Sci. 2002, 5, 237–246. [Google Scholar]
- Stevens, C.E.; Paszkowski, C.A.; Scrimgeour, G.J. Older is better: Beaver ponds on boreal streams as breeding habitat for the wood frog. J. Wildl. Manag. 2006, 70, 1360–1371. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H.; Pollack, M. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl. 1993, 3, 209–212. [Google Scholar] [CrossRef]
- Farley, G.; Ellis, L.; Stuart, J.; Scott, N. Avian species richness in different-aged stands of riparian forest along the Middle Rio Grande, New Mexico. Conserv. Biol. 1994, 8, 1098–1108. [Google Scholar] [CrossRef]
- Zimmerman, J.C.; DeWald, L.E.; Rowlands, P.G. Vegetation diversity in an interconnected ephemeral riparian system of north-central Arizona, USA. Biol. Conserv. 1999, 90, 217–228. [Google Scholar] [CrossRef]
- Jenkins, S.H.; Busher, P.E. Castor canadensis. Mamm. Species 1979, 120, 1–8. [Google Scholar] [CrossRef]
- Hersch-Green, E.I.; Allan, G.J.; Whitham, T.G. Genetic analysis of admixture and patterns of introgression in foundation cottonwood trees (Salicaceae) in southwestern Colorado, USA. Tree Genet. Genomes 2014, 10, 527–539. [Google Scholar] [CrossRef]
- Schweitzer, J.A.; Martinsen, G.D.; Whitham, T.G. Cottonwood hybrids gain fitness traits of both parents: A mechanism for their long-term persistence? Am. J. Bot. 2002, 89, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, C.T.; Barker, H.L.; Rubert-Nason, K.F.; Morrow, C.J.; Riehl, J.F.L.; Köllner, T.G.; Lackus, N.D.; Lindroth, R.L. Growing up aspen: Ontogeny and tradeoffs shape growth, defence, and reproduction in a foundation species. Ann. Bot. Lond. 2021, 127, 505–517. [Google Scholar] [CrossRef]
- Rehill, B. Foliar phenolic glycosides from Populus fremontii, Populus angustifolia, and their hybrids. Biochem. Syst. Ecol. 2005, 33, 125–131. [Google Scholar] [CrossRef]
- Lindroth, R.L.; Kinney, K.K.; Platz, c.L. Responses of deciduous trees to elevated atmospheric CO2: Productivity, phytochemistry, and insect performance. Ecology 1993, 74, 763–777. [Google Scholar] [CrossRef]
- Parsons, W.F.J.; Bockheim, J.G.; Lindroth, R.L. Independent, interactive, and species-specific responses of leaf litter decomposition to elevated CO2 and O3 in a northern hardwood forest. Ecosystems 2008, 21, 505–519. [Google Scholar] [CrossRef]
- Palo, R.T. Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J. Chem. Ecol. 1984, 10, 499–520. [Google Scholar] [CrossRef] [PubMed]
- Lindroth, R.L.; Hsia, M.T.S.; Scriber, J.M. Characterization of phenolic glycosides from quaking aspen. Biochem. Syst. Ecol. 1987, 15, 677–680. [Google Scholar] [CrossRef]
- Lindroth, R.L.; Hsia, M.T.S.; Scriber, J.M. Seasonal patterns in the phytochemistry of three Populus species. Biochem. Syst. Ecol. 1987, 15, 681–686. [Google Scholar] [CrossRef]
- Rehill, B.; Whitham, T.G.; Martinsen, G.D.; Schweitzer, J.A.; Bailey, J.K.; Lindroth, R.L. Developmental trajectories in cottonwood phytochemistry. J. Chem. Ecol. 2006, 32, 2269–2285. [Google Scholar] [CrossRef] [Green Version]
- Porter, L.J.; Hirstich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Wimp, G.M.; Martinsen, G.D.; Floate, K.D.; Bangert, R.K.; Whitham, T.G. Plant genetic determinants of arthropod community structure and diversity. Evolution 2005, 59, 61–69. [Google Scholar] [CrossRef]
- Wimp, G.M.; Wooley, S.; Bangert, R.K.; Young, W.P.; Martinson, G.D.; Keim, P.; Rehill, B.; Lindroth, R.L.; Whitham, T.G. Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure. Mol. Ecol. 2007, 16, 5057–5069. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. Multivariate Analysis of Ecological Data, PC-ORD Version 4.14; MjM Software: Gleneden Beach, OR, USA, 1999. [Google Scholar]
- Wimp, G.M.; Whitham, T.G. Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology 2001, 82, 440–452. [Google Scholar]
- Stone, A.C.; Gehring, C.A.; Whitham, T.G. Drought negatively affects communities on a foundation tree: Growth rings predict diversity. Oecologia 2010, 164, 751–761. [Google Scholar] [CrossRef]
- McCune, B.P.; Grace, J.B. Analysis of Ecological Communities. J. Exp. Mar. Biol. Ecol. 2002, 289. [Google Scholar] [CrossRef]
- Dufrene, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- SAS. JMP 8.0.1; SAS Institute Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Rohlf, F.J.; Sokal, R.R. Statistical Tables, 3rd ed.; W. H. Freeman and Company: San Francisco, CA, USA,, 1995. [Google Scholar]
- Lesica, P.; Miles, S. Beavers indirectly enhance the growth of Russian olive and tamarisk along eastern Montana rivers. Am. Nat. 2004, 64, 93–100. [Google Scholar]
- Bailey, J.K.; Schweitzer, J.A.; Howe, M.M.; Martinsen, G.D.; Whitham, T.G. Interactions among Beaver, Exotic Tree Species, and Aquatic Macroinvertebrates: Links between Terrestrial and Aquatic Systems. In Proceedings of the 11th International Conference on Aquatic Invasive Species, Alexandria, VA, USA, 25–28 February 2002; The Professional Edge: Pembroke, ON, Canada, 2002; pp. 180–188. [Google Scholar]
- Schweitzer, J.A.; Madritch, M.D.; Bailey, J.K.; LeRoy, C.J.; Fischer, D.G.; Rehill, B.J.; Lindroth, R.L.; Whitham, T.G. Review—Ecological impacts of foliar condensed tannins: A genes-to-ecosystem approach. Ecosystems 2008, 11, 1005–1020. [Google Scholar] [CrossRef]
- Bailey, J.K.; Schweitzer, J.A.; Rehill, B.J.; Irschick, D.J.; Whitham, T.G.; Lindroth, R.L. Rapid shifts in the chemical composition of aspen forests: An introduced herbivore as an agent of natural selection. Biol. Invasions 2007, 9, 715–722. [Google Scholar] [CrossRef]
- Basey, J.M.; Jenkins, S.H.; Busher, P.E. Optimal central-place foraging by beavers: Tree size selection in relation to defensive chemicals of quaking aspen. Oecologia 1998, 76, 278–282. [Google Scholar] [CrossRef]
- Basey, J.M.; Jenkins, S.H.; Miller, G.C. Food selection by beavers in relation to inducible defenses of quaking aspen. Oikos 1990, 59, 57–62. [Google Scholar] [CrossRef]
- Diner, B.; Berteaux, D.; Fyles, J.; Lindroth, R.L. Behavioural archives link the chemistry and clonal structure of quaking aspen to the food choice of North American porcupine. Oecologia 2009, 160, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Wooley, S.C.; Walker, S.; Vernon, J.; Lindroth, R.L. Aspen decline, aspen chemistry, and elk herbivory: Are they linked? Rangelands 2008, 2, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Muller-Schwarze, D.; Brashear, H.; Kinnel, R.; Hintz, K.A.; Lioubomirov, A.; Skibo, C. Food processing by animals: Do beavers leach tree bark to improve palatability? J. Chem. Ecol. 2001, 27, 1011–1028. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.P.; Chapin, F.S., III; Klein, D.R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 1983, 40, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Basey, J.M.; Jenkins, S.H. Production of chemical defenses in relation to plant growth rate. Oikos 1993, 68, 323–328. [Google Scholar] [CrossRef]
- Body, M.J.A.; Zinkgraf, M.S.; Whitham, T.G.; Lin, C.; Richardson, R.A.; Appel, H.M.; Schultz, J.C. Heritable phytohormone profiles of poplar genotypes vary in resistance to a galling aphid. Mol. Plant Microbe 2019, 32, 654–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangert, R.K.; Turek, R.J.; Rehill, B.; Allan, G.J.; Wimp, G.M.; Schweitzer, J.A.; Bailey, J.K.; Martinsen, G.D.; Keim, P.; Lindroth, R.L.; et al. A genetic similarity rule determines arthropod community structure. Mol. Ecol. 2006, 15, 1379–1392. [Google Scholar] [CrossRef]
- Helfield, J.M.; Naiman, R.J. Keystone interactions: Salmon and bear in riparian forests of Alaska. Ecosystems 2006, 9, 167–180. [Google Scholar] [CrossRef]
- Harrold, C.; Reed, D.C. Food availability, sea urchin grazing, and kelp forest community structure. Ecology 1985, 66, 1160–1169. [Google Scholar] [CrossRef] [Green Version]
- Estes, J.A.; Duggins, D.O. Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecol. Monogr. 1995, 65, 75–100. [Google Scholar] [CrossRef] [Green Version]
- Martinsen, G.D.; Floate, K.D.; Waltz, A.M.; Wimp, G.M.; Whitham, T.G. Positive interactions between leaf rollers and other arthropods enhance biodiversity on hybrid cottonwoods. Oecologia 2000, 123, 82–89. [Google Scholar] [CrossRef]
- Busby, P.E.; Lamit, L.J.; Keith, A.R.; Newcombe, G.; Gehring, C.A.; Whitham, T.G.; Dirzo, R. Genetics-based interactions among plants, pathogens and herbivores define arthropod community structure. Ecology 2015, 96, 1974–1984. [Google Scholar] [CrossRef]
- Collen, P.; Gibson, R.J. The general ecology of beavers (Castor spp.) as related to their influence on stream ecosystems and riparian habitats, and the subsequent effects on fish—A review. Rev. Fish Biol. Fish. 2001, 10, 439–461. [Google Scholar] [CrossRef]
- Gibson, P.P.; Olden, J.D. Ecology, management, and conservation implications of North American beaver (Castor canadensis) in dryland streams. Aquat. Conserv. 2014, 24, 391–409. [Google Scholar] [CrossRef]
- Charnley, S.; Gosnell, H.; Davee, R.; Abrams, J. Ranchers and beavers: Understanding the human dimensions of beaver-related stream restoration on western rangelands. Rangel. Ecol. Manag. 2020, 73, 712–723. [Google Scholar] [CrossRef]
- Bartel, R.A.; Haddad, N.M.; Wright, J.P. Ecosystem engineers maintain a rare species of butterfly and increase plant diversity. Oikos 2010, 119, 883–890. [Google Scholar] [CrossRef]
- Bouwes, N.; Weber, N.; Jordan, C.E.; Sanders, W.C.; Tattam, I.A.; Volk, C.; Wheaton, J.M.; Pollock, M.M. Ecosystem experiment reveals benefits of natural and simulated beaver dams to a threatened population of steelhead (Oncorhynchus mykiss). Sci. Rep. UK 2016, 6, 28581. [Google Scholar] [CrossRef]
- Bateman, H.L.; Paxton, E.H. Chapter 4: Saltcedar and Russian Olive Interactions with Wildlife. In Saltcedar and Russian Olive Control and Demonstration Act Science Assessment; U.S. Geological Survey: Reston, VA, USA, 2009; Volume 5247, pp. 51–59. [Google Scholar]
- Pendleton, R.L.; Pendleton, B.K.; Finch, D. Displacement of native riparian shrubs by woody exotics: Effects on arthropod and pollinator community composition. Nat. Resour. Environ. Issues 2011, 16. Available online: https://digitalcommons.usu.edu/nrei/vol16/iss1/25/ (accessed on 20 April 2021).
- Mahoney, S.M.; Smith, A.N.B.; Motyka, P.J.; Lundgren, E.J.; Winton, R.R.; Stevens, B.; Johnson, M.J. Russian olive habitat along an arid river supports fewer bird species, functional groups and a different species composition relative to mixed vegetation habitats. J. Arid Environ. 2019, 167, 26–33. [Google Scholar] [CrossRef]
- Rosell, F.; Parker, H. The beaver’s (Castor spp.) role in forest ecology: A key species returns. Fauna 1996, 49, 192–211. [Google Scholar]
- Williams, A.P.; Cook, E.R.; Smerdon, J.E.; Cook, B.I.; Abatzoglou, J.T.; Bolles, K.; Baek, S.H.; Badger, A.M.; Livneh, B. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 2020, 368, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Fairfax, E.; Whittle, A. Smoky the beaver: Beaver-dammed riparian corridors stay green during wildfire throughout the western United States. Ecol. Appl. 2020, 30, e02225. [Google Scholar] [CrossRef] [PubMed]
- Dittbrenner, B.J.; Pollock, M.M.; Schilling, J.W.; Olden, J.D.; Lawler, J.J.; Torgersen, C.E. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation. PLoS ONE 2018, 13, e0192538. [Google Scholar] [CrossRef]
Chemistry | Dry Beaver Creek, AZ Fremont (N = 24 Pairs) | Verde River, AZ, Fremont (N = 24 Pairs) | San Miguel, CO Narrowleaf (N = 22 Pairs) | San Miguel, CO Eastern (N = 18 Pairs) |
---|---|---|---|---|
Carbon | Felled = Unfelled | Felled > Unfelled | Felled = Unfelled | |
µ (felled) = 46.53 | µ (felled) = 48.73 | µ (felled) = 46.31 | ||
µ (unfelled) = 46.44 | µ (unfelled) = 47.97 | µ (unfelled) = 46.70 | ||
SE = 0.19 | SE = 0.22 | SE = 0.32 | ||
p = 0.10 | p = 0.0009 ** | p = 0.83 | ||
Nitrogen | Felled > Unfelled | Felled > Unfelled | Felled = Unfelled | |
µ (felled) = 0.86 | µ (felled) = 0.98 | µ (felled) = 0.62 | ||
µ (unfelled) = 0.74 | µ (unfelled) = 0.73 | µ (unfelled) = 0.56 | ||
SE = 0.03 | SE = 0.05 | SE = 0.032 | ||
p < 0.0001 ** | p < 0.001 ** | p = 0.047 * | ||
Lignin | Felled < Unfelled | Felled < Unfelled | Felled > Unfelled | |
µ (felled) = 13.36 | µ (felled) = 13.50 | µ (felled) = 16.46 | ||
µ (unfelled) = 14.39 | µ (unfelled) = 15.74 | µ (unfelled) = 16.37 | ||
SE = 0.0.42 | SE = 0.81 | SE = 0.70 | ||
p < 0.0035 ** | p = 0.0037 ** | p = 0.51 | ||
Salicortin | Felled > Unfelled | Felled > Unfelled | Felled > Unfelled | Felled = Unfelled |
µ (felled) = 3.83 | µ (felled) = 1.39 | µ (felled) = 11.62 | µ (felled) = 1.98 | |
µ (unfelled) = 2.55 | µ (unfelled) = 0.93 | µ (unfelled) = 8.0 | µ (unfelled) = 2.35 | |
SE = 0.41 | SE = 0.15 | SE = 1.04 | SE = 0.49 | |
p = 0.002 ** | p = 0.002 ** | p = 0.0003 ** | p = 0.06 | |
HCH-Salicortin | Felled > Unfelled | Felled > Unfelled | Felled = Unfelled | Felled = Unfelled |
µ (felled) = 0.55 | µ (felled) = 0.37 | µ (felled) = 0.35 | µ (felled) = 0.60 | |
µ (unfelled) = 0.39 | µ (unfelled) = 0.26 | µ (unfelled) = 0.44 | µ (unfelled) = 0.20 | |
SE = 0.06 | SE = 0.06 | SE = 0.17 | SE = 0.15 | |
p = 0.009 ** | p = 0.035 * | p = 0.29 | p = 0.13 | |
Condensed Tannins | Not Tested | Felled = Unfelled | Not Tested | |
µ (felled) = 2.02 | ||||
µ (unfelled) = 1.85 | ||||
SE = 0.14 | ||||
p = 0.12 |
Metric | Site | |||||
---|---|---|---|---|---|---|
Date | Dry Beaver Creek, AZ Fremont | Verde River, AZ Fremont | Date | San Miguel, CO Narrowleaf | San Miguel, CO Eastern | |
Results | Results | Results | Results | |||
Total Abundance | May 2009 | N = 19 pairs | N = 30 pairs | May/June 2009 | N = 25 pairs | N = 25 pairs |
Felled = Unfelled | Felled > Unfelled | Felled > Unfelled | Felled = Unfelled | |||
µ (felled) = 14.58 | µ (felled) = 23.9 | µ (felled) = 23.4 | µ (felled) = 29.50 | |||
µ (unfelled) = 28.73 | µ (unfelled) = 8.93 | µ (unfelled) = 9.32 | µ (unfelled) = 41.71 | |||
SE = 10.53 | SE = 11.44 | SE = 9.84 | SE = 9.38 | |||
p = 0.91 | p = 0.013 * | p = 0.004 ** | p = 0.23 | |||
Relativized Abundances | N = 19 pairs | N = 30 pairs | N = 25 pairs | N = 25 pairs | ||
Felled > Unfelled | Felled = Unfelled | Felled > Unfelled | Felled = Unfelled | |||
µ (felled) = 3.25 | µ (felled) = 2.60 | µ (felled) = 3.62 | µ (felled) = 1.46 | |||
µ (unfelled) = 2.40 | µ (unfelled) = 2.02 | µ (unfelled) = 2.66 | µ (unfelled) = 1.81 | |||
SE = 0.39 | SE = 0.43 | SE = 0.50 | SE = 0.33 | |||
p = 0.019 * | p = 0.11 | p = 0.02 * | p = 0.13 | |||
Species Richness | N =19 pairs | N = 30 pairs | N = 25 pairs | N = 22 pairs | ||
Felled > Unfelled | Felled = Unfelled | Felled > Unfelled | Felled = Unfelled | |||
µ (felled) = 4.74 | µ (felled) = 4.50 | µ (felled) = 5.8 | µ (felled) = 2.95 | |||
µ (unfelled) = 3.74 | µ (unfelled) = 3.63 | µ (unfelled) = 4.6 | µ (unfelled) = 3.27 | |||
SE = 0.47 | SE = 0.57 | SE = 0.59 | SE = 0.48 | |||
p = 0.026 * | p = 0.08 | p = 0.038 * | p = 0.69 | |||
Shannon’s Diversity | N = 19 pairs | N = 30 pairs | N = 25 pairs | N = 23 pairs | ||
Felled > Unfelled | Felled = Unfelled | Felled = Unfelled | Felled = Unfelled | |||
µ (felled) = 1.14 | µ (felled) = 1.09 | µ (felled) = 1.44 | µ (felled) = 0.63 | |||
µ (unfelled) = 0.75 | µ (unfelled) = 0.97 | µ (unfelled) = 1.31 | µ (unfelled) = 0.72 | |||
SE = 0.13 | SE = 0.16 | SE = 0.13 | SE = 0.11 | |||
p = 0.0039 ** | p = 0.08 | p = 0.20 | p = 0.34 | |||
Total Abundance | August 2009 | N = 18 pairs | N = 28 pairs | N/A | N/A | |
Felled = Unfelled | Felled = Unfelled | |||||
µ (felled) = 23.94 | µ (felled) = 53.57 | |||||
µ (unfelled) = 15.94 | µ (unfelled) = 37.79 | |||||
SE = 5.30 | SE = 14.82 | |||||
p = 0.08 | p = 0.13 | |||||
Relativized Abundance | N = 18 pairs | N = 28 pairs | N/A | N/A | ||
Felled > Unfelled | Felled > Unfelled | |||||
µ (felled) = 2.75 | µ (felled) = 3.43 | |||||
µ (unfelled) = 1.43 | µ (unfelled) = 1.60 | |||||
SE = 0.38 | SE = 0.37 | |||||
p = 0.0015 ** | p < 0.0001 ** | |||||
Species Richness | N = 18 pairs | N = 28 pairs | N/A | N/A | ||
Felled > Unfelled | Felled > Unfelled | |||||
µ (felled) = 7.06 | µ (felled) = 7.08 | |||||
µ (unfelled) = 4.50 | µ (unfelled) = 5.12 | |||||
SE = 0.56 | SE = 0.61 | |||||
p = 0.0003 ** | p = 0.0018 ** | |||||
Shannon’s Diversity | N = 18 pairs | N = 27 pairs | N/A | N/A | ||
Felled > Unfelled | Felled > Unfelled | |||||
µ (felled) = 1.52 | µ (felled) = 1.58 | |||||
µ (unfelled) = 0.11 | µ (unfelled) = 1.20 | |||||
SE = 0.56 | SE = 0.12 | |||||
p = 0.0007 ** | p = 0.0029 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durben, R.M.; Walker, F.M.; Holeski, L.; Keith, A.R.; Kovacs, Z.; Hurteau, S.R.; Lindroth, R.L.; Shuster, S.M.; Whitham, T.G. Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species. Forests 2021, 12, 877. https://doi.org/10.3390/f12070877
Durben RM, Walker FM, Holeski L, Keith AR, Kovacs Z, Hurteau SR, Lindroth RL, Shuster SM, Whitham TG. Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species. Forests. 2021; 12(7):877. https://doi.org/10.3390/f12070877
Chicago/Turabian StyleDurben, Rachel M., Faith M. Walker, Liza Holeski, Arthur R. Keith, Zsuzsi Kovacs, Sarah R. Hurteau, Richard L. Lindroth, Stephen M. Shuster, and Thomas G. Whitham. 2021. "Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species" Forests 12, no. 7: 877. https://doi.org/10.3390/f12070877
APA StyleDurben, R. M., Walker, F. M., Holeski, L., Keith, A. R., Kovacs, Z., Hurteau, S. R., Lindroth, R. L., Shuster, S. M., & Whitham, T. G. (2021). Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species. Forests, 12(7), 877. https://doi.org/10.3390/f12070877