Importance of the Moisture Content of Large-Sized Scots Pine (Pinus sylvestris L.) Roundwood in Its Road Transport
Abstract
:1. Introduction
2. Materials and Methods
2.1. Roundwood Deliveries
2.2. Moisture Content of Wood
3. Results
3.1. Characteristic of Scots Pine Sawlogs Deliveries
3.2. Moisture Content of Scots Pine Sawlogs Deliveries
3.3. Relationships between Scots Pine Sawlogs Moisture Content and Wood Deliveries Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kozakiewicz, P. Fizyka Drewna w Teorii i Zadaniach (Physic of Wood in Theory and Practice), 4th ed.; Changed; SGGW: Warsaw, Poland, 2012; Available online: https://www.researchgate.net/publication/326557330 (accessed on 15 January 2021). (In Polish)
- Sosa, A.; Acuna, M.; McDonnell, K.; Devlin, G. Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland. Appl. Energy 2015, 137, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Koirala, A.; Kizhal, A.R.; Roth, B.E. Perceiving Major Problems in Forest Products Transportation by Trucks and Trailers: A Cross-sectional Survey. Eur. J. Forest Eng. 2017, 3, 23–34. [Google Scholar]
- Trzciński, G.; Tymendorf, Ł. Dostawy drewna po wprowadzeniu normatywnych przeliczników gęstości drewna do określenia masy ładunku (Deliveries of wood after the normative calculators wood density to determine the weight of the load). Sylwan 2017, 161, 451–459. (In Polish) [Google Scholar]
- Hamsley, A.; Greene, W.G.; Siry, J.; Mendell, B. Improving timber trucking performance by reducing variability of log truck weights. South. J. Appl. For. 2007, 31, 12–16. [Google Scholar] [CrossRef] [Green Version]
- McDonell, K.M.; Devlin, G.J.; Lyons, J.; Russell, F.; Mortimer, D. Assessment of GPS tracking devices and associated software suitable for real time monitoring of timber haulage trucks. In Annual Report; COFORD: Ireland, UK, 2008; Available online: http://www.coford.ie/media/coford/content/researchprogramme/thematicareaharvestingandproducts/08gpstrack.pdf (accessed on 5 July 2021).
- Ghaffariyan, M.R.; Acuna, M.; Brown, M. Analysing the effect of five operational factors on forest residue supply chain costs: A case study in Western Australia. Biomass Bioenergy 2013, 59, 486–493. [Google Scholar] [CrossRef]
- Owusu−Ababio, S.; Schmitt, R. Analysis of Data on Heavier Truck Weights. Transp. Res. Rec. J. Transp. Res. Board 2015, 2478, 82–92. [Google Scholar] [CrossRef]
- Brown, M. The Impact of Tare Weight on Transportation Efficiency in Australian Forest Operations. In Harvesting and Operations Program, Research Bulletin 3; CRC Forestry Harvesting and Operations Program: Hobart, TAS, Australia, 2008; Available online: https://fgr.nz/documents/download/4740 (accessed on 8 December 2017).
- Trzciński, G.; Moskalik, T.; Wojtan, R. Total weight and axle loads of truck units in the transport of timber depending on the timber cargo. Forests 2018, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Tymendorf, Ł.; Trzciński, G. Multi-Factorial Load Analysis of Pine sawlogs in Transport to Sawmill. Forests 2020, 11, 366. [Google Scholar] [CrossRef] [Green Version]
- Ruotsalainen, S.; Persson, T. Scots pine–Pinus sylvestris L. In Best Practice for Tree Breeding in Europe; Springer: Dordrecht, The Netherlands, 2013; pp. 49–63. [Google Scholar]
- Krakau, U.K.; Liesebach, M.; Aronen, T.; Lelu-Walter, M.A.; Schneck, V. Scots pine (Pinus sylvestris L.). In Forest Tree Breeding in Wurope; Pâques, L.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 25, pp. 267–323. [Google Scholar] [CrossRef]
- Giertych, M.; Oleksyn, J. Studies on genetic variation in Scots pine (Pinus sylvestris L.) coordinated by IUFRO. Silvae Genet. 1992, 41, 133–143. [Google Scholar]
- Andrzejczyk, T.; Żybura, H. Sosna Zwyczajna. Odnawianie Naturalne i Alternatywne Metody Hodowli (Scots Pine. Natural Regeneration and Alternative Breeding Methods); State Agricultural and Forest Publishing House: Warsaw, Poland, 2012. (In Polish) [Google Scholar]
- Dzbeński, W.; Kozakiewicz, P.; Krutul, D.; Hrol, J.; Belkova, L. Niektóre właściwości fizyko-mechaniczne drewna sosny zwyczajnej (Pinus sylvestris L.) rogowskiej jako materiału porównawczego do badań na sośnie proweniencji łotewskiej (Some Physical and Mechanical Properties of Scots Pine (Pinus sylvestris L.) Rogów Pine as a Comparative Material for Research on the Latvian Pine Provenance). In Proceedings of the Materials of the 14th WTD Conference of the Warsaw University of Life Sciences “Wood-the material of all times”, Rogów, Poland, 13–15 November 2000; pp. 31–36. (In Polish). [Google Scholar]
- Auty, D.; Achim, A.; Mscdonald, E.; Cameron, A.D.; Gardiner, B.A. Models for predicting wood density variation in Scots pine. Forestry 2014, 87, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Chmielowski, J.; Kozakiewicz, P.; Buraczyk, W. Variability of Annual Rings and Density of Scots Pine (Pinus sylvestris L.) Wood of Bolewice Origin from the Provenance Surface in Rogów; Annals of Warsaw University of Life Sciences–SGGW; Forestry and Wood Technology: Warsaw, Poland, 2018; Volume 102, pp. 11–15. [Google Scholar]
- Millers, M.; Magaznieks, J. Scots Pine (Pinus sylvestris L.) Stem Wood and Bark Moisture and Density Influencing Factors. In Proceedings of the Research for Rural Development, Annual 18th International Scientific Conference Proceedings, Jelgava, Latvia, 16–18 May 2012; Volume 2, pp. 91–96. Available online: https://www2.llu.lv/research_conf/Proceedings/18th_volume2.pdf (accessed on 20 January 2021).
- Tomczak, A.; Jelonek, T. Green density of Scots pine (Pinus sylvestris L.) sapwood coming from selected stands north-western Poland. For. Lett. 2014, 107, 5–9. (In Polish) [Google Scholar]
- Tomczak, A.; Wesołowski, P.; Jelonek, T.; Jakubowski, M. Weight loss and green density changes of Scots pine pulpwood harvested and stored during the summer. Sylwan 2016, 160, 619–626. (In Polish) [Google Scholar]
- Tomczak, K.; Tomczak, A.; Jelonek, T. Effect of Natural Drying Methods on Moisture Content and Mass Change of Scots Pine Roundwood. Forests 2020, 11, 668. [Google Scholar] [CrossRef]
- Polish Standardization Committee. Round Wood. In Classification, Terminology and Symbols; PN-93/D-02002; Polish Standardization Committee: Warsaw, Poland, 2002. (In Polish) [Google Scholar]
- General Directorate of the State Forests. Zarządzenie nr 51 Dyrektora Generalnego Lasów Państwowych z dnia 30.09.2019 r. Regulation No. 51 of the General Director of the State Forests of 30.09.2019; General Directorate of the State Forests: Warsaw, Poland, 2019. Available online: http://drewno.zilp.lasy.gov.pl/drewno/Normy/1._podzia_terminologia_i_symbole_-_ujednolicono_wg_zarz_54-2020.pdf (accessed on 20 October 2020). (In Polish)
- Moisture Content of a Piece of Sawn Timber—Part 2: Estimation by Electrical Resistance Method; EN 13183-2:2002; Comité Européen de Normalisation (CEN)): Brussels, Belgium. 2002. Available online: https://standards.iteh.ai/catalog/standards/cen/c04b1bc8-0dd6-4669-9ac6-4a1cc375369d/en-13183-2-2002 (accessed on 1 February 2010).
- Wasilewska, E. Statystyka Opisowa nie Tylko dla Socjologów. Teoria, Przykłady, Zadania (Descriptive Statistics not Only for Sociologists. Theory, Examples, Tasks); Warsaw University of Life Sciences—SGGW: Warszawa, Poland, 2008; (In Polish). ISBN 9788372449443. [Google Scholar]
- Moisture Content of a Piece of Sawn Timber—Part 1: Determination by Oven Dry Method; EN 13183-1:2002; Comité Européen de Normalisation (CEN): : Brussels, Belgium, 2002; Available online: https://standards.iteh.ai/catalog/standards/cen/ebaf1b83-ed78-4bfe-838f-b02fef750459/en-13183-1-2002 (accessed on 1 February 2010).
- Korzuchowski, K. Klimat Polski. Climate of Poland, 1st ed.; Polish Scientific Publishers PWN: Warsaw, Poland, 2011. (In Polish) [Google Scholar]
- Wagenführ, R. Holzatlas. Mit 890 Zum Teil Mehrfarbigen Bildern (Wooden Atlas. With 890 Partly Multicolored Pictures); VEB Fachbuchverlag Leipzig: Leipzig, Germany, 2007. (In German) [Google Scholar]
- Shmulsky, R.; Jones, P.D. Forest Products and Wood Science, 6th ed.; Wiley-Blackwell: Chichester, UK; Ames, IA, USA, 2011; ISBN 978-0-8138-2074-3. [Google Scholar]
- Kozakiewicz, P. Suszenie drewna okrągłego (Log drying). Przemysł Drzewny 2000, 1, 24–27. (In Polish) [Google Scholar]
- Kolström, M.; Ruotsalainen, J.; Sikanen, L. Validation of Prediction Models for Estimating the Moisture Content of Small Diameter Stem Wood. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2015, 36, 283–291. Available online: https://hrcak.srce.hr/151826 (accessed on 18 June 2021).
- Lukason, O.; Ukrainski, K.; Varblane, U. Economic benefit of maximum truck weight regulation change for Estonian forest sektor (Veokite täismassi regulatsiooni muutmise majanduslikud mõjud eesti metsatööstuse sektorile). Est. Discuss. Econ. Policy 2011, 19. [Google Scholar] [CrossRef] [Green Version]
- Liimatainen, H.; Nykänen, L. Impacts of Increasing Maximum Truck Weight—Case Finland; Transport Research Centre Verne: Brno, Czechia; Tampere University of Technology: Tampere, Finland, 2017; Available online: http://www.tut.fi/verne/aineisto/LiimatainenNyk%C3%A4nen.pdf (accessed on 10 January 2021).
- Palander, T.; Kärhä, K. Potential traffic levels after increasing the maximum vehicle weight in environmentally efficient transportation system: The Case of Finland. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5, 417–429. [Google Scholar] [CrossRef]
- Wilson, S. Permissible Maximum Weights of Lorries in Europe. Available online: https://www.itf-oecd.org/permissible-maximum-weights-lorries-europe (accessed on 26 January 2018).
Parameter Date | Scots Pine Sawlogs Deliveries | Delivered Quantity of Wood (m3) | Number of Deliveries Tested and Sampled |
---|---|---|---|
5–6 XI 2018 | 112 | 3.306 | 58 |
4–6 II 2019 | 154 | 4.540 | 61 |
8–9 IV 2019 | 93 | 2.763 | 41 |
17–19 VI 2019 | 156 | 4.608 | 31 |
Total | 515 | 15.217 | 191 |
Measure | Mean | SD | Min | Max | Q1 | Median | Q3 |
---|---|---|---|---|---|---|---|
Weight of load (Mg) | 30.88 | 2.52 | 22.10 | 37.60 | 29.15 | 31.00 | 32.50 |
Load volume (m3) | 29.64 | 1.87 | 22.87 | 35.85 | 28.43 | 29.17 | 30.95 |
Weight of 1 m3 of load from weighing the trucks (Mg m−3) | 1.042 | 0.069 | 0.805 | 1.309 | 1.004 | 1.041 | 1.082 |
Green density (Mg m−3) | 0.878 | 0.162 | 0.392 | 1.698 | 0.782 | 0.861 | 0.935 |
Measure | Mean | SD | Min | Max | Q1 | Median | Q3 |
---|---|---|---|---|---|---|---|
Absolute moisture content of wood (AMC) (%) | 94.17 | 21.53 | 40.26 | 157.00 | 79.91 | 95.33 | 108.60 |
Absolute moisture content of sapwood on side of log (AMCSs) (%) | 58.31 | 11.43 | 30.11 | 89.05 | 50.20 | 56.68 | 66.69 |
Absolute moisture content of sapwood on cross-cut end (AMCSc) (%) | 52.60 | 14.31. | 27.18 | 87.80 | 41.35 | 47.27 | 65.60 |
Measure Parameters | Load Volume (m3) | Weight of Load Volume (Mg) | Weight of 1 m3 of Load (Mg m−3) | Green Density (Mg m−3) | AMC (%) | AMCSs (%) | AMCSc (%) |
---|---|---|---|---|---|---|---|
Load volume (m3) | - | 0.6120 | - | - | - | - | - |
Weight of load (Mg) | 0.6120 | - | 0.4653 | 0.2445 | 0.1724 | 0.2253 | 0.2335 |
Weight of 1 m3 of load (Mg m−3) | - | 0.4653 | - | 0.3729 | 0.3216 | 0.3520 | 0.3337 |
Green density (Mg·m−3) | - | 0.2445 | 0.3729 | - | 0.6804 | 0.4936 | 0.3692 |
AMC (%) | - | 0.1724 | 0.3216 | 0.6804 | - | 0.5975 | 0.5062 |
AMCSs (%) | - | 0.2253 | 0.3520 | 0.4936 | 0.5975 | - | 0.8039 |
AMCSc (%) | - | 0.2335 | 0.3337 | 0.3692 | 0.5062 | 0.8039 | - |
Parameter | Parameter Value | Standard Error | t-Statistic | p-Value | Standard Error of Estimation | r2-Coefficient of Determination |
---|---|---|---|---|---|---|
Constant term | 0.48144 | 0.04393 | 10.9595 | 0.0000 | 0.1349 | 0.3116 |
AMC | 0.00421 | 0.00046 | 9.2487 | 0.0000 |
Parameter | Parameter Value | Standard Error | t-Statistic | p-Value | Standard Error of Estimation | r2-Coefficient of Determination |
---|---|---|---|---|---|---|
Constant term | 33.82887 | 7.90207 | 4.24102 | 0.0000 | 18.236 | 0.2808 |
AMC | 0.99382 | 0.13302 | 7.47148 | 0.0000 |
Parameter | Parameter Value | Standard Error | t-Statistic | p-Value | Standard Error of Estimation | r2-Coefficient of Determination |
---|---|---|---|---|---|---|
Constant term | 4.26925 | 2.54496 | 1.67753 | 0.09564 | 1.8465 | 0.4385 |
Load volume (m3) | 0.77451 | 0.08119 | 9.53947 | 0.00000 | ||
AMCSs | 0.06060 | 0.01347 | 4.49967 | 0.00001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozakiewicz, P.; Tymendorf, Ł.; Trzciński, G. Importance of the Moisture Content of Large-Sized Scots Pine (Pinus sylvestris L.) Roundwood in Its Road Transport. Forests 2021, 12, 879. https://doi.org/10.3390/f12070879
Kozakiewicz P, Tymendorf Ł, Trzciński G. Importance of the Moisture Content of Large-Sized Scots Pine (Pinus sylvestris L.) Roundwood in Its Road Transport. Forests. 2021; 12(7):879. https://doi.org/10.3390/f12070879
Chicago/Turabian StyleKozakiewicz, Paweł, Łukasz Tymendorf, and Grzegorz Trzciński. 2021. "Importance of the Moisture Content of Large-Sized Scots Pine (Pinus sylvestris L.) Roundwood in Its Road Transport" Forests 12, no. 7: 879. https://doi.org/10.3390/f12070879
APA StyleKozakiewicz, P., Tymendorf, Ł., & Trzciński, G. (2021). Importance of the Moisture Content of Large-Sized Scots Pine (Pinus sylvestris L.) Roundwood in Its Road Transport. Forests, 12(7), 879. https://doi.org/10.3390/f12070879