Environmental Sustainability of Heat Produced by Poplar Short-Rotation Coppice (SRC) Woody Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Poplar SRC Plantations
2.2. Biomass and Diesel Boilers
2.3. Environmental Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA Renewables. Analysis and Forecasts; Executive Summary; IEA: Paris, France, 2017; Available online: https://www.iea.org/ (accessed on 13 May 2021).
- IEA Renewables. Analysis and Forecasts; Executive Summary; IEA: Paris, France, 2018; Available online: https://www.iea.org/ (accessed on 13 May 2021).
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Banja, M.; Motola, V. Renewable energy policy framework and bioenergy contribution in the European Union—An overview from National Renewable Energy Action Plans and Progress Reports. Renew. Sustain. Energy Rev. 2015, 51, 969–985. [Google Scholar] [CrossRef]
- Punter, G.; Rickeard, D.; Larivé, J.F.; Edwards, R.; Mortimer, N.; Horne, R.; Bauen, A.; Woods, J. Well-to-Wheel Evaluation for Production of Ethanol from Wheat; A Report by the LowCVP Fuels Working Group, WTW Sub-Group; Zemo Partnership: London, UK, 2004; Volume 40, Available online: http://www.rms.lv/bionett/Files/BioE-2004-001%20Ethanol_WTW_final_report.pdf (accessed on 13 May 2021).
- Kim, S.; Dale, B.E. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass Bioenergy 2005, 29, 426–439. [Google Scholar] [CrossRef]
- Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’hare, M.; Kammen, D.M. Ethanol can contribute to energy and environmental goals. Science 2006, 311, 506–508. [Google Scholar] [CrossRef] [Green Version]
- Fritsche, U.R.; Hünecke, K.; Hermann, A.; Schulze, F.; Wiegmann, K.; Adolphe, M. Sustainability Standards for Bioenergy; Final Report; Oko-Institute e.V.: Darmstadt, Germany, 2006; p. 39. Available online: http://np-net.pbworks.com/f/OEKO+(2006)+Sustainability+Standards+for+Bioenergy.pdf (accessed on 13 May 2021).
- Scharlemann, J.P.W.; Laurance, W.F. How Green Are Biofuels? Environmental science? Science 2008, 319, 43–44. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Recchia, L. Is life cycle assessment (LCA) a suitable method for quantitative CO2 saving estimations? the impact of field input on the LCA results for a pure vegetable oil chain. Biomass Bioenergy 2010, 34, 787–797. [Google Scholar] [CrossRef]
- Dias, G.M.; Ayer, N.W.; Kariyapperuma, K.; Thevathasan, N.; Gordon, A.; Sidders, D.; Johannesson, G.H. Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada. Appl. Energy 2017, 204, 343–352. [Google Scholar] [CrossRef]
- Sanz Requena, J.F.; Guimaraes, A.C.; Quirós Alpera, S.; Relea Gangas, E.; Hernandez-Navarro, S.; Navas Gracia, L.M.; Martin-Gil, J.; Fresneda Cuesta, H. Life Cycle Assessment (LCA) of the biofuel production process from sunflower oil, rapeseed oil and soybean oil. Fuel Process. Technol. 2011, 92, 190–199. [Google Scholar] [CrossRef]
- Di Matteo, G.; Sperandio, G.; Verani, S. Field performance of poplar for bioenergy in southern Europe after two coppicing rotations: Effects of clone and planting density. IForest 2012, 5, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Picco, F.; Giorcelli, A.; Castro, G. Dichotomous Key for the Nursey Recognition of the Main Poplar Clones Grown in the European Union; Volume II Clonal cards CRA-PLF; Research Units for Intensive Wood Production: Casale Monferrato, Italy, 2007; Volume 352. [Google Scholar]
- Di Matteo, G.; Nardi, P.; Verani, S.; Sperandio, G. Physiological adaptability of Poplar clones selected for bioenergy purposes under non-irrigated and suboptimal site conditions: A case study in Central Italy. Biomass Bioenergy 2015, 81, 183–189. [Google Scholar] [CrossRef]
- Costa, C.; Sperandio, G.; Verani, S. Use of multivariate approaches in biomass energy plantation harvesting: Logistics advantages. Agric. Eng. Int. CIGR J. 2014, 70–79. [Google Scholar]
- Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; et al. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Verani, S.; Sperandio, G.; Picchio, R.; Marchi, E.; Costa, C. Sustainability assessment of a self-consumption wood-energy chain on small scale for heat generation in central Italy. Energies 2015, 8, 5182–5197. [Google Scholar] [CrossRef] [Green Version]
- Brentrup, F.; Kusters, J.; Lammel, J.; Kuhlmann, H. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 2000, 5, 349–357. [Google Scholar] [CrossRef]
- De Klein, C.; Novoa, R.S.A.; Ogle, S.; Smith, K.A.; Rochette, P.; Wirth, T.C.; McConkey, B.G.; Mosier, A.; Rypdal, K.; Walsh, M. N2O emissions from managed soils, and CO2 emissions from lime and urea application. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006; Volume 4, pp. 1–54. [Google Scholar]
- Dijkman, T.J.; Birkved, M.; Hauschild, M.Z. PestLCI 2.0: A second generation model for estimating emissions of pesticides from arable land in LCA. Int. J. Life Cycle Assess. 2012, 17, 973–986. [Google Scholar] [CrossRef]
- Pecenka, R.; Lenz, H.; Hering, T. Options for Optimizing the Drying Process and Reducing Dry Matter Losses in Whole-Tree Storage of Poplar from Short-Rotation Coppices in Germany. Forests 2020, 11, 374. [Google Scholar] [CrossRef] [Green Version]
- Lenz, H.; Idler, C.; Hartung, E.; Pecenka, R. Open-air storage of fine and coarse wood chips of poplar from short rotation coppice in covered piles. Biomass Bioenergy 2015, 83, 269–277. [Google Scholar] [CrossRef]
- Facciotto, G.; Bergante, S.; Rosso, L.; Minotta, G. Comparison between two and five years rotation models in poplar, willow and black locust Short Rotation Coppices (SRC) in North West Italy. Ann. Silvic. Res. 2020, 45, 12–20. [Google Scholar]
- Manzone, M.; Bergante, S.; Facciotto, G. Energy and economic evaluation of a poplar plantation for woodchips production in Italy. Biomass Bioenergy 2014, 60, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Njakou Djomo, S.; Ac, A.; Zenone, T.; De Groote, T.; Bergante, S.; Facciotto, G.; Sixto, H.; Ciria Ciria, P.; Weger, J.; Ceulemans, R. Energy performance of intensive and extensive short rotation cropping systems for woody biomass production in the EU. Renew. Sustain. Energy Rev. 2015, 41, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, N.; Forleo, M.B.; Giannoccaro, G.; Suardi, A. Environmental impact of cereal straw management: An on-farm assessment. J. Clean. Prod. 2017, 142, 2950–2964. [Google Scholar] [CrossRef]
- Sommer, R.; Bossio, D. Dynamics and climate change mitigation potential of soil organic carbon sequestration. J. Environ. Manag. 2014, 144, 83–87. [Google Scholar] [CrossRef]
- Brandão, M.; Milà i Canals, L.; Clift, R. Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 2011, 35, 2323–2336. [Google Scholar] [CrossRef]
- Brandão, M.; Levasseur, A.; Kirschbaum, M.U.F.; Weidema, B.P.; Cowie, A.L.; Jørgensen, S.V.; Hauschild, M.Z.; Pennington, D.W.; Chomkhamsri, K. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int. J. Life Cycle Assess. 2013, 18, 230–240. [Google Scholar] [CrossRef]
- Petersen, B.M.; Knudsen, M.T.; Hermansen, J.E.; Halberg, N. An approach to include soil carbon changes in life cycle assessments. J. Clean. Prod. 2013, 52, 217–224. [Google Scholar] [CrossRef]
- Whittaker, C.; Macalpine, W.; Yates, N.E.; Shield, I. Dry matter losses and methane emissions during wood chip storage: The impact on full life cycle greenhouse gas savings of short rotation coppice willow for heat. BioEnergy Res. 2016, 9, 820–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordborg, M.; Berndes, G.; Dimitriou, I.; Henriksson, A.; Mola-Yudego, B.; Rosenqvist, H. Energy analysis of poplar production for bioenergy in Sweden. Biomass Bioenergy 2018, 112, 110–120. [Google Scholar] [CrossRef]
- Fernando, A.L.; Rettenmaier, N.; Soldatos, P.; Panoutsou, C. Sustainability of Perennial Crops Production for Bioenergy and Bioproducts. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 245–283. [Google Scholar]
- Schweier, J.; Molina-Herrera, S.; Ghirardo, A.; Grote, R.; Díaz-Pinés, E.; Kreuzwieser, J.; Haas, E.; Butterbach-Bahl, K.; Rennenberg, H.; Schnitzler, J.P.; et al. Environmental impacts of bioenergy wood production from poplar short-rotation coppice grown at a marginal agricultural site in Germany. GCB Bioenergy 2017, 9, 1207–1221. [Google Scholar] [CrossRef] [Green Version]
- Njakou Djomo, S.; Witters, N.; Van Dael, M.; Gabrielle, B.; Ceulemans, R. Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies. Appl. Energy 2015, 154, 122–130. [Google Scholar] [CrossRef]
- Gabrielle, B.; Nguyen The, N.; Maupu, P.; Vial, E. Life cycle assessment of eucalyptus short rotation coppices for bioenergy production in southern France. GCB Bioenergy 2013, 5, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Forleo, M.B.; Palmieri, N.; Suardi, A.; Coaloa, D.; Pari, L. The eco-efficiency of rapeseed and sunflower cultivation in Italy. Joining environmental and economic assessment. J. Clean. Prod. 2018, 172, 3138–3153. [Google Scholar] [CrossRef]
- Palmieri, N.; Forleo, M.B.; Suardi, A.; Coaloa, D.; Pari, L. Rapeseed for energy production: Environmental impacts and cultivation methods. Biomass Bioenergy 2014, 69, 1–11. [Google Scholar] [CrossRef]
- Fazio, S.; Monti, A. Life cycle assessment of different bioenergy production systems including perennial and annual crops. Biomass Bioenergy 2011, 35, 4868–4878. [Google Scholar] [CrossRef]
- Roedl, A. Production and energetic utilization of wood from short rotation coppice-a life cycle assessment. Int. J. Life Cycle Assess. 2010, 15, 567–578. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Warmiński, K. Life cycle assessment of poplar production: Environmental impact of different soil enrichment methods. J. Clean. Prod. 2019, 206, 785–796. [Google Scholar] [CrossRef]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P.P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhardt, G.A.; Von Falkenstein, E. Environmental assessment of biofuels for transport and the aspects of land use competition. Biomass Bioenergy 2011, 35, 2315–2322. [Google Scholar] [CrossRef]
- Milà i Canals, L.; Rigarlsford, G.; Sim, S. Land use impact assessment of margarine. Int. J. Life Cycle Assess. 2013, 18, 1265–1277. [Google Scholar] [CrossRef]
- Arzoumanidis, I.; Fullana-i-Palmer, P.; Raggi, A.; Gazulla, C.; Raugei, M.; Benveniste, G.; Anglada, M. Unresolved issues in the accounting of biogenic carbon exchanges in the wine sector. J. Clean. Prod. 2014, 82, 16–22. [Google Scholar] [CrossRef]
- Hamelin, L.; Jørgensen, U.; Petersen, B.M.; Olesen, J.E.; Wenzel, H. Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark: A consequential life cycle inventory. GCB Bioenergy 2012, 4, 889–907. [Google Scholar] [CrossRef]
Boilers | ||
---|---|---|
Biomass | Diesel | |
Building volume (m3) | 9450 | 9450 |
Operating period (days y−1) | 130 | 130 |
Heating period (h y−1) | 3120 | 1560 |
Rated thermal power (kWt) | 350 | 315 |
Thermal efficiency of the boiler (%) | 81% | 90% |
Lower heating value (LHV) (kWh kg−1) | 3.11 | 11.86 |
Water content (%) | 35.00% | ≤0.05% |
Average biomass/diesel consumption (Mg y−1) | 290.1 | 41.4 |
Operation | Period (Years) | Machine | Equipment | Technical Input | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Operation (n./ha) | Power (kW) | Weight (kg) | Work Time (h/ha) | Fuel (L/ha) | Machine (N.) | Weight (kg) | Type | Type | Quantity (kg) | Rates (kg/ha) | ||
Field preparation, planting and management | ||||||||||||
- Deep scarification | 1 | 1 | 199 | 8700 | 3.50 | 136 | 1 | 800 | Ripper | |||
- Light ploughing | 1 | 1 | 199 | 8700 | 1.60 | 67 | 1 | 1100 | Plowshares | |||
- Fertilization (pre- and post-planting) | 1 | 2 | 59 | 3100 | 0.60 | 5 | 2 | 200 | Fertilizer spreader | N-P-K | 800.00 | 500 KP; 300N |
- Mechanized transplantation | 1 | 1 | 73 | 3800 | 4.00 | 39 | 1 | 380 | Transplanter | Cuttings | n. 7000 | |
- Chemical weeding post-planting | 1 | 1 | 59 | 3100 | 0.80 | 6 | 1 | 250 | Sprayer | Goal | 2.00 | |
- Irrigation | 1 | 1 | 59 | 3100 | 7.00 | 56 | 1 | 300 | Pump and sprinkler | Water | 400,000 | |
- Milling | 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16 | 1 | 26 | 2035 | 6.00 | 30 | 2 | 380 | Milling machine | |||
- Harrowing | 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16 | 1 | 80 | 4100 | 1.20 | 14 | 1 | 500 | Harrow | |||
- Stump grinding at the end cycle | 15 or 16 | 1 | 199 | 8700 | 8.75 | 340 | 1 | 500 | Stump grinder | |||
Harvesting | ||||||||||||
-Option 1 (2y)—harvesting every 2 years | 1 | |||||||||||
- Felling (tractor with disksaw) | 2-4-6-8-10-12-14-16 | 1 | 59 | 3100 | 2.13 | 17 | 1 | 180 | Disk saw | |||
- Extraction (tractor with grapple) | 1 | 80 | 5500 | 2.84 | 37 | 1 | 150 | Log grapple | ||||
- Chipping (farm chipper) | 1 | 106 | 5500 | 10.22 | 195 | 1 | 1870 | Chipper | ||||
- Moving and load (chipwood) | 1 | 74.50 | 7130 | 8.76 | 98 | 1 | ||||||
-Option 2 (2y)—harvesting every 2 years | 1 | |||||||||||
- harvesting (forage harvester) | 2-4-6-8-10-12-14-16 | 1 | 350 | 12,000 | 1.25 | 72 | 1 | |||||
- Extraction (tractor with trailer) | 1 | 73 | 3800 | 1.25 | 14 | 2 | 600 | Trailer | ||||
- Moving stored chipwood | 74.5 | 7130 | 2.84 | 35 | 1 | |||||||
- Load chipwood (biomass plant) | 1 | 125 | 8 | 74.50 | 35 | 1 | ||||||
-Option 1 (3y)—harvesting every 3 years | 1 | |||||||||||
- Felling (tractor with disksaw) | 3-6-9-12-15 | 1 | 59 | 3100 | 2.90 | 26 | 1 | 180 | Disk saw | |||
- Extraction (tractor with grapple) | 1 | 80 | 5500 | 3.76 | 50 | 1 | 150 | Log grapple | ||||
- Chipping (farm chipper) | 1 | 106 | 5500 | 13.94 | 244 | 1 | 1870 | Chipper | ||||
- Moving and load (chipwood) | 74.5 | 7130 | 13.15 | 147 | 1 | |||||||
-Option 2 (3y) harvesting every 3 years | 1 | |||||||||||
- harvesting (forage harvester) | 3-6-9-12-15 | 1 | 350 | 12,000 | 1.78 | 103 | 1 | |||||
- Extraction (tractor with trailer) | 1 | 73 | 3800 | 1.78 | 19 | 2 | 600 | Trailer | ||||
- Moving stored chipwood | 1 | 74.5 | 7130 | 4.26 | 52 | 1 | ||||||
- Chipwood load | 1 | 74.5 | 7130 | 13.15 | 147 | 1 | ||||||
-Option 3 (4y)—harvesting every 4 years | 1 | |||||||||||
- Felling (manual with chainsaw) | 4-8-12-16 | 1 | 1.7 | 4 | 85.20 | 43 | 1 | |||||
- Extraction (tractor winch) | 1 | 70 | 3800 | 24.34 | 281 | 1 | 330 | Winch | ||||
- Chipping (farm chipper) | 1 | 106 | 5500 | 17.53 | 307 | 1 | 1870 | Chipper | ||||
- Moving and load chipwood | 1 | 74.5 | 7130 | 17.53 | 196 | 1 | ||||||
-Option 4 (4y)—harvesting every 4 years | 1 | |||||||||||
- Felling (shear head) | 4-8-12-16 | 1 | 69 | 17,000 | 17.04 | 194 | 1 | 1350 | Shear head | |||
- Extraction (skidder) | 1 | 90 | 8000 | 5.68 | 84 | 1 | ||||||
- Chipping (farm chipper) | 1 | 106 | 5500 | 17.53 | 307 | 1 | 330 | Chipper | ||||
- Moving and load (chipwood) | 74.5 | 7130 | 17.53 | 196 | 1 | |||||||
-Option 3 (harvesting every 5 years) | 1 | |||||||||||
- Felling (manual with chainsaw) | 5-10-15 | 1 | 1.7 | 4 | 88.75 | 45 | 1 | |||||
- Extraction (tractor winch) | 1 | 70 | 3800 | 28.03 | 324 | 1 | Winch | |||||
- Chipping (farm chipper) | 1 | 106 | 5500 | 20.72 | 362 | 1 | 330 | Chipper | ||||
- Moving and load (chipwood) | 1 | 74.5 | 7130 | 21.91 | 245 | 1 | ||||||
-Option 4 (harvesting every 5 years) | ||||||||||||
- Felling (shear head) | 5-10-15 | 1 | 90 | 8000 | 19.36 | 220 | 1 | 1350 | Shear head | |||
- Extraction (skidder) | 1 | 90 | 8000 | 6.66 | 99 | 1 | ||||||
- Chipping (farm chipper) | 1 | 106 | 5500 | 20.72 | 362 | 1 | Chipper | |||||
- Moving and load (chipwood) | 1 | 74.5 | 7130 | 21.91 | 245 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sperandio, G.; Suardi, A.; Acampora, A.; Civitarese, V. Environmental Sustainability of Heat Produced by Poplar Short-Rotation Coppice (SRC) Woody Biomass. Forests 2021, 12, 878. https://doi.org/10.3390/f12070878
Sperandio G, Suardi A, Acampora A, Civitarese V. Environmental Sustainability of Heat Produced by Poplar Short-Rotation Coppice (SRC) Woody Biomass. Forests. 2021; 12(7):878. https://doi.org/10.3390/f12070878
Chicago/Turabian StyleSperandio, Giulio, Alessandro Suardi, Andrea Acampora, and Vincenzo Civitarese. 2021. "Environmental Sustainability of Heat Produced by Poplar Short-Rotation Coppice (SRC) Woody Biomass" Forests 12, no. 7: 878. https://doi.org/10.3390/f12070878
APA StyleSperandio, G., Suardi, A., Acampora, A., & Civitarese, V. (2021). Environmental Sustainability of Heat Produced by Poplar Short-Rotation Coppice (SRC) Woody Biomass. Forests, 12(7), 878. https://doi.org/10.3390/f12070878