Forecasting Variations in Profitability and Silviculture under Climate Change of Radiata Pine Plantations through Differentiable Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optimization Approach
2.2. Transition Functions and Parameters
2.3. Future Forest Productivity
2.4. Numerical Resolution and Analysis
3. Results
3.1. Productivity and Economic Indicators
3.2. Optimum Silviculture
3.3. Results under Climate-Insensitive Silviculture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bontemps, J.D.; Bouriaud, O. Predictive approaches to forest site productivity: Recent trends, challenges and future perspectives. Forestry 2014, 87, 109–128. [Google Scholar] [CrossRef]
- Lindner, M.; Garcia-Gonzalo, J.; Kolström, M.; Green, T.; Reguera, R.; Maroschek, M.; Seidl, R.; Lexer, M.J.; Netherer, S.; Schopf, A.; et al. Impacts of Climate Change on European Forests and Options for Adaptation; Report to the European Commission Directorate-General for Agriculture and Rural Development; JFNW: Joensuu, Finland, 2008. [Google Scholar]
- Bussotti, F.; Pollastrini, M.; Holland, V.; Brüggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Exp. Bot. 2015, 111, 91–113. [Google Scholar] [CrossRef]
- Thurm, E.A.; Hernandez, L.; Baltensweiler, A.; Ayan, S.; Rasztovits, E.; Bielak, K.; Zlatanov, T.M.; Hladnik, D.; Balic, B.; Freudenschuss, A.; et al. Alternative tree species under climate warming in managed European forests. For. Ecol. Manag. 2018, 430, 485–497. [Google Scholar] [CrossRef]
- Brecka, A.F.; Shahi, C.; Chen, H.Y. Climate change impacts on boreal forest timber supply. For. Policy Econ. 2018, 92, 11–21. [Google Scholar] [CrossRef]
- Mei, B.; Clutter, M.L.; Harris, T.G. Timberland Return Drivers and Timberland Returns and Risks: A Simulation Approach. South. J. Appl. For. 2013, 37, 18–25. [Google Scholar] [CrossRef]
- Sonwa, D.J.; Somorin, O.A.; Jum, C.; Bele, M.Y.; Nkem, J.N. Vulnerability, forest-related sectors and climate change adaptation: The case of Cameroon. For. Policy Econ. 2012, 23, 1–9. [Google Scholar] [CrossRef]
- Fontes, L.; Bontemps, J.D.; Bugmann, H.; Van Oijen, M.; Gracia, C.; Kramer, K.; Lindner, M.; Rotzer, T.; Skovsgaard, J.P. Models for supporting forest management in a changing environment. For. Syst. 2010, 19, 8–29. [Google Scholar] [CrossRef] [Green Version]
- Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry 2008, 81, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Aertsen, W.; Kint, V.; van Orshoven, J.; Özkan, K.; Muys, B. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol. Model. 2010, 221, 1119–1130. [Google Scholar] [CrossRef]
- Sabatia, C.O.; Burkhart, H.E. Predicting site index of plantation loblolly pine from biophysical variables. For. Ecol. Manag. 2014, 326, 142–156. [Google Scholar] [CrossRef]
- González-Rodríguez, M.; Diéguez-Aranda, U. Exploring the use of learning techniques for relating the site index of radiata pine stands with climate, soil and physiography. For. Ecol. Manag. 2020, 458. [Google Scholar] [CrossRef]
- Roessiger, J.; Griess, V.C.; Knoke, T. May risk aversion lead to near-natural forestry? A simulation study. Forestry 2011, 84, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Pukkala, T.; Kellomäki, S. Anticipatory vs. adaptive optimization of stand management when tree growth and timber prices are stochastic. Forestry 2012, 85, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Hahn, W.A.; Härtl, F.; Irland, L.C.; Kohler, C.; Moshammer, R.; Knoke, T. Financially optimized management planning under risk aversion results in even-flow sustained timber yield. For. Policy Econ. 2014, 42, 30–41. [Google Scholar] [CrossRef]
- Mei, B.; Wear, D.N.; Henderson, J.D. Timberland investment under both financial and biophysical risk. Land Econ. 2019, 95, 279–291. [Google Scholar] [CrossRef]
- Pasalodos-Tato, M. Optimising forest stand management in Galicia, north-western Spain. Diss. For. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Arimizu, T. Regulation of the cut by dynamic programming. J. Oper. Res. Soc. Jpn. 1958, 1, 175–182. [Google Scholar]
- Valsta, L.T. A comparison of numerical methods for optimizing even aged stand management. Can. J. For. Res. 1990, 20, 961–969. [Google Scholar] [CrossRef]
- Kao, C.; Brodie, J. Simultaneous optimisation of thinning and rotation with continuous stocking and entry intervals. For. Sci. 1980, 26, 338–346. [Google Scholar]
- Valsta, L. Stand Management Optimization Based on Growth Simulators; Research Paper 453; Finnish Forest Research Institute: Joensuu, Finland, 1993. [Google Scholar]
- Hooke, R.; Jeeves, T.A. “Direct Search” Solution of Numerical and Statistical Problems. J. ACM 1961, 8, 212–229. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: New York, NY, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Beyer, H.G.; Schwefel, H.P. Evolution strategies – A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [Google Scholar] [CrossRef]
- Arias-Rodil, M.; Diéguez-Aranda, U.; Vázquez-Méndez, M. A differentiable optimization model for the management of single-species, even-aged stands. Can. J. For. Res. 2017, 47, 506–514. [Google Scholar] [CrossRef] [Green Version]
- García, O. The state-space approach in growth modelling. Can. J. For. Res. 1994, 24, 1894–1903. [Google Scholar] [CrossRef]
- Bettinger, P.; Boston, K.; Siry, J.P.; Grebner, D.L. Forest Management and Planning, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 1–349. [Google Scholar]
- Diéguez-Aranda, U.; Burkhart, H.E.; Rodríguez-Soalleiro, R. Modeling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in north-western Spain. For. Ecol. Manag. 2005, 215, 271–284. [Google Scholar] [CrossRef]
- Castedo-Dorado, F.; Diéguez-Aranda, U.; Álvarez-González, J.G. A growth model for Pinus radiata D. Don stands in north-western Spain. Ann. For. Sci. 2007, 64, 453–465. [Google Scholar] [CrossRef] [Green Version]
- Arias-Rodil, M.; Romero-Martínez, P.; Diéguez-Aranda, U. Estimación Delvolumen Comercial a Partir de Variables de Rodal; 7° Congreso Forestal Español; Sociedad Española de Ciencias Forestales: Plasencia, Spain, 2017. [Google Scholar]
- Vapnik, V.; Golowich, S.; Smola, A. Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems, 9th ed.; Mozer, M., Jordan, M., Petsche, T., Eds.; MIT Press: Cambridge, MA, USA, 1997; pp. 281–287. [Google Scholar] [CrossRef]
- González-Rodríguez, M.; Diéguez-Aranda, U. Delimiting the spatio-temporal uncertainty of climate-sensitive forest productivity projections using Support Vector Regression. Ecol. Indic. 2021, 128. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.G. The NLopt Nonlinear-Optimization Package (Version 1.2.2.2). Available online: http://ab-initio.mit.edu/nlopt (accessed on 2 July 2020).
- R Development Core Team. R: A Language and Environmental for Estatistical Computing (Version 4.1.0); R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 18 May 2021).
- Nocedal, J.; Wright, S. Numerical Optimization; Springer Series in Operations Research and Financial Engineering; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Microsoft Corporation and Steve Weston. doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package (Version 1.0.14). Available online: https://CRAN.R-project.org/package=doParallel (accessed on 24 September 2018).
- Artzner, P.; Delbaen, F.; Eber, J.M.; Heath, D. Thinking coherently, Risk magazine. Risk Mag. 1997, 10, 68–71. [Google Scholar]
- Artzner, P.; Delbaen, F.; Eber, J.M.; Heath, D. Coherent Measures of Risk. Math. Financ. 1999, 9, 203–228. [Google Scholar] [CrossRef]
- Yamai, Y.; Yoshiba, T. Value-at-risk versus expected shortfall: A practical perspective. J. Bank. Financ. 2005, 29, 997–1015. [Google Scholar] [CrossRef]
- Pfaff, B. Financial Risk Modelling and Portfolio Optimization with R; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 1–426. [Google Scholar] [CrossRef]
- González-Rodríguez, M.Á.; Diéguez-Aranda, U. Rule-based vs. parametric approaches for developing climate-sensitive site index models: A case study for Scots pine stands in northwestern Spain. Ann. For. Sci. 2021, 78, 23. [Google Scholar] [CrossRef]
- Valkonen, M.L.; Hänninen, H.; Pelkonen, P.; Repo, T. Frost hardiness of Scots pine seedlings during dormancy. Silva Fennica. 1990, 24, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Hallgren, S.W.; Ferris, D.M.; Conway, K.E. Effects of moist chilling and solid matrix priming on germination of loblolly pine (Pinus taeda L.) seeds. New For. 2001, 21, 1–16. [Google Scholar] [CrossRef]
- Salafsky, N. Drought in the rain forest: Effects of the 1991 El Niño-Southern Oscillation event on a rural economy in West Kalimantan, Indonesia. Clim. Chang. 1994, 27, 373–396. [Google Scholar] [CrossRef]
- van Kooten, G.C. Climate Change Impacts on Forestry: Economic Issues. Can. J. Agric. Econ. Can. D’Agroeconomie 1990, 38, 701–710. [Google Scholar] [CrossRef]
- Feeley, K.J.; Wright, S.J.; Nur Supardi, M.N.; Kassim, A.R.; Davies, S.J. Decelerating growth in tropical forest trees. Ecol. Lett. 2007, 10, 461–469. [Google Scholar] [CrossRef]
- Alig, R.J.; Adams, D.M.; McCarl, B.A. Projecting impacts of global climate change on the US forest and agriculture sectors and carbon budgets. For. Ecol. Manag. 2002, 169, 3–14. [Google Scholar] [CrossRef]
- Susaeta, A.; Adams, D.C.; Carter, D.R.; Gonzalez-Benecke, C.; Dwivedi, P. Technical, allocative, and total profit efficiency of loblolly pine forests under changing climatic conditions. For. Policy Econ. 2016, 72, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Routa, J.; Kilpeläinen, A.; Ikonen, V.P.; Asikainen, A.; Venäläinen, A.; Peltola, H. Effects of intensified silviculture on timber production and its economic profitability in boreal Norway spruce and Scots pine stands under changing climatic conditions. For. Int. J. For. Res. 2019, 92, 648–658. [Google Scholar] [CrossRef] [Green Version]
- Serrano-León, H.; Ahtikoski, A.; Sonesson, J.; Fady, B.; Lindner, M.; Meredieu, C.; Raffin, A.; Perret, S.; Perot, T.; Orazio, C. From genetic gain to economic gain: Simulated growth and financial performance of genetically improved Pinus sylvestris and Pinus pinaster planted stands in France, Finland and Sweden. For. Int. J. For. Res. 2021. [Google Scholar] [CrossRef]
- ALRahahleh, L.; Kilpeläinen, A.; Ikonen, V.P.; Strandman, H.; Venäläinen, A.; Peltola, H. Effects of CMIP5 Projections on Volume Growth, Carbon Stock and Timber Yield in Managed Scots Pine, Norway Spruce and Silver Birch Stands under Southern and Northern Boreal Conditions. Forests 2018, 9, 208. [Google Scholar] [CrossRef] [Green Version]
- Capellán-Pérez, I.; Arto, I.; Polanco-Martínez, J.M.; González-Eguino, M.; Neumann, M.B. Likelihood of climate change pathways under uncertainty on fossil fuel resource availability. Energy Environ. Sci. 2016, 9, 2482–2496. [Google Scholar] [CrossRef] [Green Version]
- Palahí, M.; Pukkala, T. Optimising the management of Scots pine (Pinus sylvestris L.) stands in Spain based on individual-tree models. Ann. For. Sci. 2003, 60, 105–114. [Google Scholar] [CrossRef]
- Pukkala, T. Instructions for optimal any-aged forestry. For. Int. J. For. Res. 2018, 91, 563–574. [Google Scholar] [CrossRef]
- Kirilenko, A.P.; Sedjo, R.A. Climate change impacts on forestry. Proc. Natl. Acad. Sci. USA 2007, 104, 19697–19702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susaeta, A.; Carter, D.R.; Chang, S.J.; Adams, D.C. A generalized Reed model with application to wildfire risk in even-aged Southern United States pine plantations. For. Policy Econ. 2016, 67, 60–69. [Google Scholar] [CrossRef] [Green Version]
Description | Value | |
---|---|---|
Costs | Plantation () | 1300 €/ha |
Scrub clearing () | 450 €/ha | |
Scrub clearing () | 450 €/ha | |
Low pruning () | 750 €/ha | |
Prices | Chip and pulpwood ( = 7 cm) | 16 €/m |
Sawlog ( = 16 cm) | 24 €/m | |
Rotary veneer ( = 25 cm) | 30 €/m | |
Stumpage price depreciation parameter in thinnings | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rodríguez, M.A.; Vázquez-Méndez, M.E.; Diéguez-Aranda, U. Forecasting Variations in Profitability and Silviculture under Climate Change of Radiata Pine Plantations through Differentiable Optimization. Forests 2021, 12, 899. https://doi.org/10.3390/f12070899
González-Rodríguez MA, Vázquez-Méndez ME, Diéguez-Aranda U. Forecasting Variations in Profitability and Silviculture under Climate Change of Radiata Pine Plantations through Differentiable Optimization. Forests. 2021; 12(7):899. https://doi.org/10.3390/f12070899
Chicago/Turabian StyleGonzález-Rodríguez, Miguel A., Miguel E. Vázquez-Méndez, and Ulises Diéguez-Aranda. 2021. "Forecasting Variations in Profitability and Silviculture under Climate Change of Radiata Pine Plantations through Differentiable Optimization" Forests 12, no. 7: 899. https://doi.org/10.3390/f12070899
APA StyleGonzález-Rodríguez, M. A., Vázquez-Méndez, M. E., & Diéguez-Aranda, U. (2021). Forecasting Variations in Profitability and Silviculture under Climate Change of Radiata Pine Plantations through Differentiable Optimization. Forests, 12(7), 899. https://doi.org/10.3390/f12070899