Evaluation of Discoloration and Subterranean Termite Resistance of Four Furfurylated Tropical Wood Species after One-Year Outdoor Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Discoloration Determination of the Samples
2.3. Termite Resistance of the Samples
2.4. Analysis of the Data
3. Results and Discussion
3.1. Furfurylation of the Samples
3.2. Discoloration of Wood Specimens
3.3. Weight Loss
3.4. Protection Level
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Indonesian Statistics Center Agency. Statistics of Forestry Production 2019; Publication number 05230.2003, Catalog: 5601005; Indonesian Statistics Center Agency: Jakarta, Indonesia, 2020.
- Hadi, Y.S.; Rahayu, I.S.; Danu, S. Termite resistance of jabon wood impregnated with methyl methacrylate. J. Trop. For. Sci. 2015, 27, 25–29. [Google Scholar]
- Nandika, D. Termite Attack in the Whole Country; Termite National Seminar: Jakarta, Indonesia, 2015. [Google Scholar]
- Li, W.; Zhang, X.X.; Yu, Z.; Yu, Y.S.; Yu, Y. Determining the curing parameters of furfuryl alcohol for wood modification by nanoindentation. Eur. J. Wood Wood Prod. 2016, 75, 81–87. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, Y.; Zhang, S.; Li, J. Wood/polymer nanocomposites prepared by impregnation with furfuryl alcohol and nano-SiO2. BioResources 2014, 9, 6028–6040. [Google Scholar] [CrossRef] [Green Version]
- Lande, S.; Westin, M.; Schneider, M. Properties of furfurylated wood. Scand. J. For. Res. 2014, 19, 22–30. [Google Scholar] [CrossRef]
- Sejati, P.S.; Imbert, A.; Charbonnier, C.G.; Dumarcay, S.; Fredon, E.; Masson, E.; Nandika, D.; Priadi, T.; Gérardin, P. Tartaric acid catalyzed furfurylation of beech wood. Wood Sci. Technol. 2017, 51, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Hadi, Y.S.; Westin, M.; Rasyid, E. Resistance of furfurylated wood to termite attack. For. Prod. J. 2005, 55, 85–88. [Google Scholar]
- Acosta, A.P.; de Avila Delucis, R.; Labidi, J.; Barbosa, K.T.; Cruz, N.; Gatto, D.A. Termite resistance of a fast-growing pine wood treated by in situ polymerization of three different precursors. Forests 2020, 11, 865. [Google Scholar] [CrossRef]
- Hadi, Y.S.; Herliyana, E.N.; Mulyosari, D.; Abdillah, I.B.; Pari, R.; Hiziroglu, S. Termite resistance of furfuryl alcohol and imidacloprid treated fast-growing tropical wood species as function of field test. Appl. Sci. 2020, 10, 6101. [Google Scholar] [CrossRef]
- Hadi, Y.S.; Mulyosari, D.; Herliyana, E.N.; Pari, G.; Arsyad, W.O.M.; Abdillah, I.B.; Gérardin, P. Furfurylation of wood from fast-growing tropical species to enhance their resistance to subterranean termite. Eur. J. Wood Wood Prod. 2021. [Google Scholar] [CrossRef]
- Westin, M.; Larsson-Brelid, P.; Nilsson, T.; Rapp, A.; Dickerson, J.; Lande, S.; Cragg, S. Marine borer resistance of acetylated and furfurylated wood—Results from up to 16 years of field exposure. In Proceedings of the 47th Annual Meeting of the International Research Group (IRG) on Wood Protection, Lisbon, Portugal, 15–19 May 2016. [Google Scholar]
- Rowell, R.M.; Dawson, B.S.; Hadi, Y.S.; Nicholas, D.D.; Nilsson, T.; Placket, D.V.; Simonson, R.; Westin, M. Worldwide in-ground stake test of acetylated composite boards. In Proceedings of the 28th Annual Meeting of International Research Group (IRG) on Wood Protection, Whistler, BC, Canada, 25–30 May 1997. [Google Scholar]
- Mantanis, G.I.; Lykidis, C.; Papadopoulos, A.N. Durability of accoya wood in ground stake testing after 10 years of exposure in Greece. Polymers 2020, 12, 1638. [Google Scholar] [CrossRef]
- Papadopoulos, A.N. Natural durability of acetylated OSB in ground stake test: Total decay after 102 months of testing. Eur. J. Wood Wood Prod. 2012, 70, 397. [Google Scholar] [CrossRef] [Green Version]
- Kymäläinen, M.; Turunen, H.; Rautkari, L. Effect of weathering on surface functional groups of charred Norway spruce cladding panels. Forests 2020, 11, 1373. [Google Scholar] [CrossRef]
- Brischke, C.; Meyer-Veltrup, L.; Bornemann, T. Moisture performance and durability of wooden façades and decking during six years of outdoor exposure. J. Build. Eng. 2017, 13, 207–215. [Google Scholar] [CrossRef]
- Mubarok, M.; Militz, H.; Dumarcay, S.; Darmawan, W.; Hadi, Y.S.; Gérardin, P. Mechanical properties and biological durability in soil contact of chemically modified wood treated in an open or in a closed system using glycerol/maleic anhydride systems. Wood Mater. Sci. Eng. 2021. [Google Scholar] [CrossRef]
- Sedliaciková, M.; Moresová, M.; Alác, P.; Malá, D. What is the supply and demand for coloured wood products? An empirical study in Slovakian practice. Forests 2021, 12, 530. [Google Scholar] [CrossRef]
- Sivrikaya, H.; Tesařová, D.; Jeřábková, E.; Cana, A. Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. J. Build. Eng. 2019, 26, 100918. [Google Scholar] [CrossRef]
- Hadi, Y.S.; Massijaya, M.Y.; Nandika, D.; Arsyad, W.O.M.; Abdillah, I.B.; Setiono, L.; Amin, Y. Color change and termite resistance of fast-growing tropical woods treated with kesambi (Schleichera oleosa) smoke. J. Wood Sci. 2020, 66, 61. [Google Scholar] [CrossRef]
- Hadi, Y.S.; Massijaya, M.Y.; Abdillah, I.B.; Pari, G.; Arsyad, W.O.M. Color change and resistance to subterranean termite attack of mangium (Acacia mangium) and sengon (Falcataria moluccana) smoked wood. J. Korean Wood Sci. Technol. 2020, 48, 1–11. [Google Scholar] [CrossRef]
- Suhasman, S.; Hadi, Y.S.; Massijaya, M.Y.; Santoso, A. Binderless particleboard resistance to termite attack. For. Prod. J. 2012, 62, 412–415. [Google Scholar] [CrossRef]
- Thybring, E.E. The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. Int. Biodeterior. Biodegrad. 2013, 82, 87–95. [Google Scholar] [CrossRef]
- Christie, R.M. Colour Chemistry; The Royal Society of Chemistry: Cambridge, UK, 2007. [Google Scholar]
- Hunter Lab. Application Note: Hunter Color Scale. Insight on Color 1996, 8. Available online: https://support.hunterlab.com/hc/en-us/articles/203997095-Hunter-Lab-Color-Scale-an08-96a2 (accessed on 9 July 2021).
- Hrčková, M.; Koleda, P.; Koleda, P.; Barcík, S.; Štefková, L. Color change of selected wood species affected by thermal treatment and sanding. BioResources 2018, 13, 8956–8975. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Climatology and Geophysics; Pusat data online (Center of online data), Central database; BMKG: Jakarta, Indonesia, 2021.
- SNI 7207-2014. Wood and Wood Products Resistance Test to Wood-Destroying Organism; Indonesian National Standard Bureau: Jakarta, Indonesia, 2014.
- ASTM D 1758-06. Standard Test Method of Evaluating Wood Preservatives by Field Test with Stakes; American Society for Testing and Material; ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Gérardin, P. New alternatives for wood preservation based on thermal and chemical modification of wood—A review. Ann. For. Sci. 2016, 73, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Hadi, Y.S.; Massijaya, M.Y.; Hermawan, D.; Arinana, A. Feeding rate of termites in wood treated with borax, acetylation, polystyrene, and smoke. J. Ind. Acad. Wood Sci. 2015, 12, 74–80. [Google Scholar] [CrossRef]
- SNI 03-5010.1-1999. Wood Preservation Standard for Housing and Building; Indonesian National Standard Bureau: Jakarta, Indonesia, 1999.
- Martawijaya, A.; Kartasujana, I.; Kadir, K.; Prawira, S.A. Atlas Kayu Indonesia Jilid II (Indonesian Wood Atlas Volume II), 3rd ed.; Forest Products Research Institute, Forestry Department: Bogor, Indonesia, 2014. [Google Scholar]
- Pari, G. Zat Ekstraktif Kayu Sengon (Extractive of Sengon Wood); Duta Rimba, 218/XXIII; Perum Perhutani: Jakarta, Indonesia, 1998. [Google Scholar]
- Esteves, B.; Nunes, L.; Pereira, H. Properties of furfurylated wood (Pinus pinaster). Eur. J. Wood Wood Prod. 2011, 69, 521–525. [Google Scholar] [CrossRef]
- ColorHexa. Color Encyclopedia: Information and Conversion. 2012. Available online: https://www.colorhexa.com/ (accessed on 20 March 2021).
Peak no. | Retention Time (min) | Conc.% rel | Name | Chemical American Standard |
---|---|---|---|---|
1 | 4.011 | 8.72 | Carbamic acid, monoammonium salt | Ammonium carbamate |
2 | 5.465 | 0.53 | 2,3-Pentanedione | 2,3-Pentadione |
3 | 6.049 | 11.70 | Acetic acid | Ethylic acid |
4 | 6.669 | 3.74 | 2-Propanone, 1-hydroxy- | Acetol |
5 | 8.584 | 2.84 | 2-Propanone, 1-hydroxy- | Acetol |
6 | 9.007 | 2.76 | 2-Propanone | Acetone |
7 | 11.954 | 4.36 | Cyclohexanone | Hexanon |
8 | 13.521 | 1.31 | 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- | Corylone (Hydroxy methyl furfural) |
9 | 14.045 | 2.13 | Phenol, 2-methoxy- | Guaiacol |
10 | 14.158 | 2.06 | n-Valeric anhydride | Pentanoic anhydride |
11 | 14.400 | 9.71 | Cyclopropyl carbinol | |
12 | 15.190 | 2.12 | 2-Methoxy-4-methylphenol | 4-Methyl guaiacol |
13 | 15.824 | 1.18 | 2-(2’-Nitro-2’-propenyl)-1-cyclohexanone | |
15 | 16.450 | 6.32 | 3-Methoxyacetophenone | |
16 | 16.802 | 5.22 | Phenol, 2,6-dimethoxy- | 2,6-Dimethoxyphenol |
17 | 17.279 | 1.08 | Phenol, 2-methoxy-4-(1-propenyl)- | Isoeugenol |
18 | 17.659 | 5.39 | 3-Acetylpyridine-N-oxide | |
20 | 18.241 | 0.93 | Benzene, 1,2,3-trimethoxy-5-methyl- | Toluene, 3,4,5-trimethoxy- |
21 | 18.518 | 0.72 | 2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- | 1-(4-hydroxy-3-methoxy-phenyl) |
22 | 18.607 | 6.74 | Phenol, (1,1-dimethylethyl)-4-methoxy- | Butylated hydroxyanisole |
23 | 18.834 | 3.39 | Phenol, 2,6-dimethoxy-4-(2-propenyl)- | 4-Allyl-2,6-dimethoxyphenol |
24 | 19.274 | 0.42 | Phenol, 2,6-dimethoxy-4-(2-propenyl)- | 4-Allyl-2,6-dimethoxyphenol |
25 | 19.658 | 5.84 | Phenol, 2,6-dimethoxy-4-(2-propenyl)- | 4-Allyl-2,6-dimethoxyphenol |
26 | 20.119 | 0.90 | Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- | Acetosyringone |
27 | 20.296 | 1.59 | 2,4-Hexadienedioic acid, 3,4-diethyl-, dimethyl ester | |
28 | 20.363 | 3.30 | 3-(p-hydroxy-m-methoxyphenyl)-2-propenal | |
29 | 21.199 | 0.66 | Hexadecanoic acid | Palmitic acid |
30 | 22.061 | 1.50 | 3-(3’,5’-dimethoxy-4’-hydroxyphenyl)-E-2-propenal |
Peak# | Retention Time (min) | Conc.% rel | Name | Chemical American Standard |
---|---|---|---|---|
1 | 5.862 | 2.69 | Acetic acid | Ethylic acid |
2 | 11.910 | 3.87 | Cyclohexanone | Hexanon |
4 | 13.453 | 1.41 | 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- | Corylone (Hydroxy methyl furfural) |
5 | 13.628 | 1.25 | Furan, 2,2’-methylenebis- | 2-Furfurylfuran |
6 | 14.008 | 1.00 | Phenol, 2-methoxy- | Guaiacol |
8 | 14.713 | 7.20 | Furan, 2-(2-furanylmethyl)-5-methyl- | 5-METHYL-2-FURFURYLFURAN |
9 | 15.142 | 2.54 | 2-Methoxy-4-methylphenol | 5-METHYL-2-(5’-METHYL-2’-URFURYLFURAN |
10 | 15.688 | 3.67 | Furan, 2,2’-methylenebis [5-methyl- | 5-METHYL-2-(5’-METHYL-2’-FURFURYL)FURAN |
11 | 16.009 | 0.91 | Phenol, 4-ethyl-2-methoxy- | p-Ethylguaiacol |
12 | 16.100 | 1.57 | Furan, 2,2’-[oxybis(methylene)]bis- | Difurfuryl ether |
13 | 16.433 | 4.19 | Phenol, 2-methyl-5-(1-methylethyl)- | Carvacrol |
14 | 16.781 | 4.41 | Phenol, 2,6-dimethoxy- | 2,6-Dimethoxyphenol |
15 | 17.206 | 2.78 | 2(5H)-Furanone, 5-(2-furanylmethyl)-5-methyl- | 4-FURFURYL-2- PENTENOIC ACID- γ-lactone |
16 | 17.484 | 0.89 | 2-Furanmethanol, acetate | Furfuryl acetate |
17 | 17.579 | 2.48 | Benzene, 1,2,3-trimethoxy- | 1,2,3-Trimethoxybenzene (CAS) Methylsyri |
18 | 17.634 | 3.08 | Phenol, 2-methoxy-4-(2-propenyl)- | Eugenol |
19 | 18.075 | 0.58 | Cyclohexanone, 6-furfurylidene-2,2-dimethyl- | 2-FURFURYLIDENE-6,6-DIMETHYLCYCLOHEXANONE |
20 | 18.213 | 2.35 | Benzene, 1,2,3-trimethoxy-5-methyl- | Toluene, 3,4,5-trimethoxy- |
22 | 18.604 | 3.60 | Phenol, (1,1-dimethylethyl)-4-methoxy- | Butylated hydroxyanisole |
23 | 18.717 | 0.70 | Furan, 2,2’-methylenebis[5 -methyl- | 5-METHYL-2-(5’-METHYL-2’- FURFURYLFURAN |
24 | 18.829 | 5.06 | 1-(P-TOLUIDINO)-1-DEOXY-B-D-IDOPYRANOSE | |
25 | 19.082 | 2.04 | Furan, 2,5-bis(2-furanylmethyl)- | 2,5-Difurfurylfuran |
26 | 19.638 | 4.00 | Phenol, 2,6-dimethoxy-4-(2-propenyl)- | 4-Allyl-2,6-dimethoxyphenol |
27 | 19.721 | 5.50 | Furan, 2-(2-furanylmethyl)-5-methyl- | 5-METHYL-2-FURFURYLFURAN |
28 | 20.095 | 0.86 | Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- | Acetosyringone |
29 | 20.313 | 4.09 | Furan, 2,2’-methylenebis[5-methyl- | 5-METHYL-2-(5’-METHYL-2’- FURFURYLFURAN |
30 | 20.694 | 1.27 | Cyclohexene, 3-(2-propynyl)- ( | 3-(2-PROPYNYL)CYCLOHEXENE |
31 | 21.182 | 0.73 | Octadecanoic acid | Stearic acid |
33 | 22.032 | 1.83 | 3-(3’,5’-dimethoxy-4’-hydroxyphenyl)-E-2-propenal | |
34 | 22.232 | 0.75 | 1-Acetyl-3-methylenecyclopentane | |
35 | 23.232 | 4.77 | Furan, 2,5-bis(2-furanylmethyl)- | 2,5-Difurfurylfuran |
36 | 23.881 | 3.40 | Furan, 2-(2-furanylmethyl)-5-methyl- | 5-METHYL-2-FURFURYLFURAN |
37 | 24.584 | 0.71 | Furan, 2,2’-methylenebis[5-methyl- | 5-METHYL-2-(5’-METHYL-2’- FURFURYLFURAN |
38 | 24.964 | 0.77 | BENZENEMETHANOL, α-1-PENTYNYL- | |
39 | 25.260 | 0.64 | CYCLOHEXENE, 1-BROMO- |
Parameter | Density | Retention | WPG | MC |
---|---|---|---|---|
Wood species | ** | ** | ** | ** |
Treatment | ** | - | - | ** |
Parameter | Sengon | Jabon | Mangium | Pine | Untreated | Imidacloprid | FA |
---|---|---|---|---|---|---|---|
Density | a | b | c | d | e | e | f |
Retention | b | c | a | a | — | — | — |
Weight% gain | c | d | a | b | — | — | — |
MC | a | b | ab | a | f | f | e |
Wood sp. | Treatment | Color | ∆E | ||
---|---|---|---|---|---|
L* | a* | b* | |||
Sengon | Untreated | 81.2 (0.8) | 5.8 (0.8) | 18.2 (1.8) | |
Imidacloprid | 90.7 (2.2) | 3.7 (0.6) | 9.0 (1.2) | 13.5 (3.3) | |
Furfurylated | 56.2 (2.2) | 8.5 (0.9) | 11.1 (2.2) | 26.2 (2.5) | |
Jabon | Untreated | 82.4 (1.4) | 1.6 (0.5) | 24.2 (2.3) | |
Imidacloprid | 87.4 (3.4) | 4.3 (0.7) | 15.6 (2.8) | 10.7 (4.3) | |
Furfurylated | 54.3 (2.2) | 7.7 (0.9) | 6.8 (1.6) | 33.7 (2.9) | |
Mangium | Untreated | 50.8 (3.7) | 5.6 (0.8) | 26.4 (2.7) | |
Imidacloprid | 73.9 (3.2) | 6.0 (1.0) | 16.8 (1.7) | 25.3 (4.7) | |
Furfurylated | 60.0 (3.0) | 7.8 (1.6) | 11.8 (4.5) | 18.5 (3.1) | |
Pine | Untreated | 77.4 (3.6) | 7.0 (0.9) | 33.2 (2.4) | |
Imidacloprid | 86.4 (1.6) | 5.8 (0.7) | 16.8 (2.4) | 18.9 (4.3) | |
Furfurylated | 59.1 (1.6) | 7.3 (1.2) | 6.9 (2.2) | 32.3 (3.6) | |
Total | Untreated | 72.9 (13.3) | 5.0 (2.1) | 25.5 (5.8) | |
Imidacloprid | 84.6 (6.9) | 4.9 (1.2) | 14.5 (3.9) | 17.1 (6.9) | |
Furfurylated | 57.4 (3.2) | 7.8 (1.2) | 9.2 (3.5) | 27.7 (6.7) |
Factor | L* | a* | b* | ∆E |
---|---|---|---|---|
Wood species | ** | ** | ** | ns |
Treatment | ** | ** | ** | ** |
Parameter | Sengon | Jabon | Mangium | Pine | Untreated | Imidacloprid | FA |
---|---|---|---|---|---|---|---|
L* | b | b | a | b | d | e | c |
a* | a | b | b | b | c | c | d |
b* | a | b | c | c | f | e | d |
∆E | a | a | a | a | — | b | c |
Peak no. | Retention Time (min) | Conc.%rel | Name | Chemical American Standard |
---|---|---|---|---|
1 | 3.900 | 3.62 | Cyclopropane, 1,1-dibromo-2-chloro-2-fluoro- | 1,1-DIBROMO-2-CHLOR-2-FLUORO |
2 | 5.477 | 1.29 | 4H-Pyran-4-one, 2,6-dimethyl- | 2,6-Dimethyl-4-pyrone |
3 | 6.248 | 1.12 | Acetic acid | Ethylic acid |
4 | 8.692 | 0.83 | 2-Propanone, 1-hydroxy- | Acetol |
5 | 9.036 | 1.09 | Propanoic acid, 2-oxo-, methyl ester | Methyl pyruvate |
6 | 9.442 | 1.37 | 3-METHOXYBUTA-1,2-DIENE | 3-Methoxy-1,2-butadiene |
7 | 11.831 | 2.50 | 2-Furanmethanol | Furfuryl alcohol |
8 | 12.375 | 1.03 | Pyrazine, methoxy- | 2-Methoxypyrazine |
9 | 12.742 | 0.81 | 3-Cyclobutene-1,2-dione, 3,4-dihydroxy- | Squaric acid |
10 | 13.092 | 0.47 | 3-Acetoxypyridine | 3-Pyridinol,acetate |
11 | 13.246 | 0.82 | 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- | Corylon |
12 | 13.416 | 1.21 | Furan, 2,2’-methylenebis- | 2-Furfurylfuran |
13 | 13.777 | 1.42 | 1,5-Hexadiene-3,4-diol, 3,4-dimethyl- | |
14 | 13.947 | 0.98 | Oxirane, (2-methylpropyl)- | 1,2-Epoxy-4-methylpentane |
15 | 14.225 | 3.31 | Acetic acid, heptyl ester | n-Heptyl acetate |
16 | 14.475 | 3.63 | Furan, 2-(2-furanylmethyl)-5-methyl- | 5-METHYL-2-FURFURYLFURAN |
17 | 14.748 | 0.82 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl | 3,5-DIHYDROXY-2-METHYL-5,6 PYRAN |
18 | 14.878 | 2.51 | 2-Methoxy-4-methylphenol | |
19 | 15.121 | 2.73 | 1-Octene | Caprylene |
20 | 15.440 | 4.50 | Furan, 2,2’-methylenebis[5-methyl- | (5-METHYL-2-(5’-METHYL-2’- FURFURYL)FURAN |
21 | 15.749 | 1.60 | Phenol, 4-ethyl-2-methoxy- | p-Ethylguaiacol |
22 | 15.873 | 2.13 | 2-Furancarboxaldehyde, 5-(hydroxymethyl)- | 5-Oxymethylfurfurol |
23 | 16.177 | 2.97 | Ethanone, 1-(2-hydroxy-5-methylphenyl)- | 1-Hydroxy-2-acetyl-4-methyl |
24 | 16.545 | 2.11 | Phenol, 2,6-dimethoxy- | 2,6-Dimethoxyphenol |
25 | 16.675 | 1.98 | 3-Heptanol | 3-Hydroxyheptane |
26 | 16.937 | 1.24 | Ethanone, 1-[5-[(5-methyl-2-furanyl)methyl]-2-furanyl]- | 5-ACETYL-2-FURFURYL-(5’METHYL |
27 | 17.321 | 5.98 | 4-Methoxy-3-(methoxymethyl)phenol | |
28 | 17.691 | 1.15 | 4,5-Heptadien-2-one, 3,3,6-trimethyl- | |
29 | 17.817 | 1.10 | GERMACRENE-D | |
30 | 17.962 | 2.13 | Benzene, 1,2,3-trimethoxy-5-methyl- | Toluene, 3,4,5-trimethoxy- |
31 | 18.232 | 1.59 | 2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- | 1-4-HYDROXY-3-METHOXY-PHENYL |
32 | 18.361 | 2.26 | 4-METHYL-2,5-DIMETHOXYBENZALDEHYDE | |
33 | 18.593 | 6.51 | CYCLOPROPANEMETHANOL, DIMETHYL-2-METHYLEN α. | |
34 | 18.825 | 7.57 | Furan, 2,5-bis(2-furanylmethyl)- | 2,5-Difurfurylfuran |
35 | 18.994 | 10.14 | 1,6-ANHYDRO-β-D-GLUCOPYRANOSE (LEVOGLUCOSAN) | |
36 | 19.408 | 3.98 | Phenol, 2,6-dimethoxy-4-(2-propenyl)- | 4-Allyl-2,6-dimethoxyphenol |
37 | 19.525 | 0.88 | Androst-5-ene-3,19-diol, 3-acetate, (3. β.)- | |
38 | 19.846 | 1.71 | Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- | Acetosyringone |
39 | 20.058 | 2.02 | 2H-FURAN-2-ON, 3-CYCLOHEXYLIDEN-5-(4-HEPTANOYLOXYPHENYL) | |
40 | 20.173 | 0.67 | (+,−)-9-(3,5-dinitrobenzoyloxy)-2,3,6,7-tetramethyl-1,4,4.alpha.,5,8,8a. α.9. | |
41 | 20.414 | 0.68 | Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- | Acetosyringone |
42 | 20.608 | 0.26 | Androst-5-en-7-one, 3-(acetyloxy)-, (3. β.)- | Androst-5-en-7-one |
43 | 20.930 | 0.98 | Hexadecanoic acid | Palmitic acid |
44 | 21.389 | 0.40 | SPIRO[7H-BENZ[E]INDENE-7,1’-[2]CYCLOPENTENE]-4’,9(8H)-DIONE, 1,2,3 | |
45 | 21.558 | 0.32 | 5,9-Dimethyl-2-(1-methylethyl)-1-cyclodecanone | |
46 | 21.780 | 0.48 | 3-(3’,5’-dimethoxy-4’-hydroxyphenyl)-E-2-propenal | |
47 | 21.958 | 0.22 | Estra-1,3,5(10)-trien-17-one, 3-methoxy- | Estrone methyl ether |
48 | 22.924 | 0.26 | N’-[1-(4-AMINOPHENYL)ETHYLIDENE]-2-(2-CYANOPHENOXY)ACETHYDR | |
49 | 23.938 | 0.18 | Murrialongin | |
50 | 24.154 | 0.46 | 9-Octadecenamide, (Z)- | OLEOAMIDE |
Chemical Content | Before Exposure | After Exposure | ||||
---|---|---|---|---|---|---|
Untreated | Imidacloprid | FA | Untreated | Imidacloprid | FA | |
Oxygen | 55.26 | 44.72 | 47.48 | 47.79 | 47.90 | 47.26 |
Carbon | 43.27 | 33.95 | 46.92 | 48.40 | 28.43 | 46.78 |
Nitrogen | 1.48 | 16.73 | 2.94 | 1.90 | 2.91 | |
Aluminum | 1.95 | 1.90 | 7.90 | 1.49 | ||
Bromine | 0.70 | 1.55 | ||||
Chlorine | 3.01 | |||||
Silicon | 5.94 | |||||
Fluorine | 9.82 | |||||
Sodium | 1.58 |
Treatment | Wood Species | |||
---|---|---|---|---|
Sengon | Jabon | Mangium | Pine | |
Untreated | 62.6 (30.3) | 96.3 (6.9) | 47.8 (28.0) | 54.9 (23.2) |
Imidacloprid | 47.6 (30.3) | 57.5 (21.0) | 25.2 (11.3) | 22.5 (16.9) |
Furfurylated | 2.6 (0.7) | 2.8 (0.9) | 9.9 (3.6) | 5.5 (1.1) |
Source | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Corrected Model | 88,210.23 | 5 | 17,642.05 | 39.66 | 0.000 |
Intercept | 163,297.27 | 1 | 163,297.27 | 367.13 | 0.000 |
Wood species | 10,938.58 | 3 | 3646.19 | 8.20 | 0.000 |
Treatment | 77,271.65 | 2 | 38,635.83 | 86.86 | 0.000 |
Error | 50,706.78 | 114 | 444.80 | ||
Total | 302,214.29 | 120 |
Parameter | Weight Loss | Protection Level | |
---|---|---|---|
Wood species | Sengon | 37.6 a | 6.0 ab |
Jabon | 52.2 b | 5.4 a | |
Mangium | 27.6 a | 7.1 bc | |
Pine | 30.2 a | 7.7 c | |
Treatment | Untreated | 67.3 c | 3.1 d |
Imidacloprid | 38.2 d | 7.2 e | |
FA | 5.2 e | 9.3 f |
Treatment | Wood Species | |||
---|---|---|---|---|
Sengon | Jabon | Mangium | Pine | |
Untreated | 2.3 (3.2) | 0.0 (0.0) | 5.4 (3.1) | 4.7 (2.0) |
Imidacloprid | 5.8 (3.3) | 6.6 (2.8) | 7.7 (0.5) | 8.8 (0.6) |
Furfurylated | 9.9 (0.3) | 9.6 (0.5) | 8.2 (3.2) | 9.6 (0.5) |
Source | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Corrected Model | 899.85 | 5 | 179.97 | 32.47 | 0.000 |
Intercept | 5148.30 | 1 | 5148.30 | 928.87 | 0.000 |
Wood species | 97.50 | 3 | 32.50 | 5.86 | 0.001 |
Treatment | 802.35 | 2 | 401.18 | 72.38 | 0.000 |
Error | 631.85 | 114 | 5.54 | ||
Total | 6680.00 | 120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadi, Y.S.; Nawawi, D.S.; Abdillah, I.B.; Pari, G.; Pari, R. Evaluation of Discoloration and Subterranean Termite Resistance of Four Furfurylated Tropical Wood Species after One-Year Outdoor Exposure. Forests 2021, 12, 900. https://doi.org/10.3390/f12070900
Hadi YS, Nawawi DS, Abdillah IB, Pari G, Pari R. Evaluation of Discoloration and Subterranean Termite Resistance of Four Furfurylated Tropical Wood Species after One-Year Outdoor Exposure. Forests. 2021; 12(7):900. https://doi.org/10.3390/f12070900
Chicago/Turabian StyleHadi, Yusuf Sudo, Deded Sarip Nawawi, Imam Busyra Abdillah, Gustan Pari, and Rohmah Pari. 2021. "Evaluation of Discoloration and Subterranean Termite Resistance of Four Furfurylated Tropical Wood Species after One-Year Outdoor Exposure" Forests 12, no. 7: 900. https://doi.org/10.3390/f12070900
APA StyleHadi, Y. S., Nawawi, D. S., Abdillah, I. B., Pari, G., & Pari, R. (2021). Evaluation of Discoloration and Subterranean Termite Resistance of Four Furfurylated Tropical Wood Species after One-Year Outdoor Exposure. Forests, 12(7), 900. https://doi.org/10.3390/f12070900