Next Article in Journal
Long-Term Projection of Species-Specific Responses to Chronic Additions of Nitrogen, Sulfur, and Lime
Previous Article in Journal
Tree-Ring Width Data of Tsuga longibracteata Reveal Growing Season Temperature Signals in the North-Central Pearl River Basin since 1824 AD
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Forest Harvesting Impacts on the Structure and Composition of Coniferous Forests in Mexico

by
Giovanni Estrada Valdés
1,
Angel Rolando Endara Agramont
1,*,
Santiago Vazquez-Lozada
1 and
Fredericksen S. Todd
2
1
Col. Centro, Instituto de Ciencias Agropecuarias y Rurales, Campus el Cerrillo Piedras Blancas, Instituto Literario No. 100, Universidad Autónoma del Estado de México (UAEMex), Toluca CP 50000, Mexico
2
School of Arts and Sciences, Ferrum College, Ferrum, VA 24088, USA
*
Author to whom correspondence should be addressed.
Forests 2021, 12(8), 1068; https://doi.org/10.3390/f12081068
Submission received: 11 May 2021 / Revised: 24 July 2021 / Accepted: 6 August 2021 / Published: 10 August 2021
(This article belongs to the Section Forest Ecology and Management)

Abstract

:
The effect of forest harvesting on the composition and structure of a temperate coniferous forest in Mexico was evaluated after three harvesting periods from 2007–2015. In this forest, we identified seven families and eight tree species. The dominant species is Pinus pseudostrobus Lindl. which is also the most important commercial species. Harvesting was oriented towards increasing the abundance of the dominant pine species, resulting in a decrease in forest diversity and favoring a transition to a monospecific forest. The tree canopy structure following harvesting showed a gradual recovery in the number of individuals in each diameter class, but the diameter increment may not necessarily guarantee a sustainable harvest because cutting cycles appear to be too short. The size of harvesting gaps and overall forest cover determine the presence and/or abundance of regeneration (small seedlings, seedlings, saplings, large saplings, and young trees). The establishment of Pinus pseudostrobus and Ilex discolor Hemsl. differed according to their ecological groups.

1. Introduction

Sustainable forest management involves decisions and activities about harvesting forest resources according to best management practices integrated with forest conservation and economic development and social needs, both direct (wood products) and indirect (carbon fixation, aesthetics, and soil protection) [1,2,3,4].
Sustainable forest management is important in temperate and tropical forests [5,6] to conserve biodiversity and maintain forest composition and structure as well as ecosystem function [7]. Forest harvesting can degrade forest structure [8,9], cause soil erosion [10] and negatively alter forest composition [11,12]. It may also, however, be fundamental for the conservation of forest ecosystems [13,14] by increasing tree growth rates and the recruitment of regeneration through gap dynamics [9,15].
The forest ecosystem structure is described by tree distribution by age and size [16,17,18]. The vertical forest structure describes the distribution of forest biomass stratified by tree height and is often defined by functional ecological groups [19], while horizontal stratification is determined by the number of individuals by diameter class and spatial arrangement [20].
Forest composition is determined by environmental factors including geographic position, climate, soils, topography and forest dynamics [21,22], as well as the ecological traits of tree species [23]. The goal of forest management is to manage forests for forest products while optimizing forest species composition [1,18,24].
In Mexico, forest ecosystems occupy a large land area (65 million ha) [25], approximately half of which are temperate forests [26]. These forests are characterized by pines [27], firs, oaks and other broadleaved species [28], the composition of which is determined by climate and soil type [29,30,31]. These forests are part of the trans-Mexican volcanic system [32,33].
These forests have long been subjected to a variety of human disturbances, such as logging and fire, causing changes to forest structure and species composition [5,25,34,35,36,37]. In addition, forest harvesting under the concept of common property land management (agrarian centers) has been typical, with the main management objective of providing timber and firewood for local communities. Land use practices and natural resource management have been regulated by these agrarian centers under their rules and traditions [38], but this has also led to a reduction of species of economic importance [7,39,40]. Community forest management aims to achieve forest sustainability, ensuring the well-being of the rural population, alongside the conservation of forest systems [41].
In the State of Mexico, one of the most widely used species is Pinus pseudostrobus due to the quality of its wood and resin; however, the species has experienced a reduction in its range as a result of climate change [42]. Likewise, the demand for raw materials is reducing the state’s oak forests [43]. Particularly, in Nevado de Toluca, the role of local communities has a direct influence on the conservation of their forests [44].
The objective of this study was to evaluate the effect of timber harvesting on the tree canopy structure and composition of temperate forests in Central Mexico, as well as their capacity for recovery, under the current management system with agrarian centers.

2. Materials and Methods

2.1. Study Site

The Nevado de Toluca (4690 masl) is located in the State of Mexico with multiple human settlements around it, characterized by a temperature of 14 °C and an average annual rainfall of 1212 mm [45]. Andisols are the predominant soil type, covering 90% of this area [46]. Stands include conifer forest species such as Pinus spp. and Abies religiosa (Kunth) Schltdl. & Cham. and deciduous forest species including Alnus jorullensis Kunth and Quercus laurina Humb. & Bonpl. [35]. The study area was in the Ejido Palo Seco Municipio of Coatepec Harinas in the state of Mexico covering an area of 578 ha, of which 436 ha is subjected to forest harvesting (Figure 1).

Experimental Design

We compared forest stands at three sites that were similar in site and stand characteristics and where tree harvesting was carried out during three different years: 2007, 2010 and 2015. The three harvest areas serve as a space for time chronosequences to examine the effects of harvesting on forest structure and composition.
At all sites, harvesting was carried out by selecting individual trees in all categories (>7.5 cm DBH) and using directional felling with a chainsaw. The extraction rates were similar: 2007 (2736.3 m3 in 27.02 ha), 2010 (2539.9 m3 in 53.3 ha) and 2015 (2662.7 m3 in 30.39 ha). The focus of harvesting was Pinus pseudostrobus, the most important commercial species in these forests.

2.2. Sampling Plots

The sampling of the forest composition and tree canopy structure was conducted in a 1 ha plot at each harvested site based on the methodology of Valdez [47] and Lamprecht [48] (Figure 2). The location of the plot was selected using a random walk to select the mooring point for the plot. The average altitude and slope of the plots were 2970 masl and 3°, respectively.

2.3. Species Composition and Diversity

An importance value index (IVI) was calculated based on the values of relative abundance, dominance, and frequency for each species [48].
Species diversity was estimated using Simpson, Margalef and Shannon–Wiener indices [17,49]. The Sorensen index of similarity was also used to compare forest communities in different years following harvesting.

2.4. Tree Canopy Structure

Vertical structure was determined using counts of trees of the dominant species for each harvesting year, and a one-way analysis of variance was carried out to test for differences among harvesting years. Horizontal structure was evaluated based on the spatial distribution of trees and the abundance of individuals by diameter class.

3. Results

3.1. Species Composition and Diversity

The sampling plot contained eight species of commercial tree species in seven families: Aquifoliaceae (Ilex discolor), Betulaceae (Alnus jorullensis Kunth), Clethraceae (Clethra mexicana), Cupressaceae (Cupressus lindleyi Klotzsch ex Endl.), Fagaceae (Quercus laurina Bonpl.), Pinaceae (Abies religiosa Flora. and Pinus pseudostrobus) and Salicaceae (Salix sp.). Trees of the Pinaceae species were the most dominant.
P. pseudostrobus was the most dominant species and had the highest IVI in each harvest sampling year, with different codominant species in each of the three years: A. religiosa (2015), A. jorullensis (2010) and Salix sp. (2007). In each sampling year, Q. laurina only occurred in the understory (Table 1).
Species diversity estimated using the Simpson index (Table 2) showed that the 2007 harvest area had the lowest diversity. The abundance of P. pseudostrobus was higher in the 2007 harvest area compared to the areas harvested in 2010 or 2015.
The Margalef index (DMg) showed a relatively low diversity of species, perhaps because of human disturbance, with values of 0.602 in 2007, 0.97 in 2010 and 0.71 in 2015, with a dominance of P. pseudostrobus in all harvest areas.
Trends over the sampling years in the Shannon–Wiener index (H’) were as follows: 2007 (0.48), 2010 (0.82) and 2015 (0.65). These values coincided with the results from the Margalef and Simpson indices. Likewise, the Sorensen index had values for (1) 2007–2010 (0.83), (2) 2007–2015 (0.97) and (3) 2010–2015 (0.71).

3.2. Tree Canopy Structure

3.2.1. Horizontal Structure

Based on the abundance of individuals by diameter class, the horizontal structure increased in the first two diameter categories for 2007 compared to 2010 and 2015, which resulted in a gradual recovery of P. pseudostrobus (Figure 3).
Harvesting intensities relative to the original stand volume increased over the three years—2007 (17.63%), 2010 (29.17%) and 2015 (30.76%)—with a direct impact on horizontal structure (Figure 4). The total removal of some deciduous species (C. mexicana, A. jorullensis) in lower diameter classes favored the growth increments of dominant species but reduced species diversity (Table 3). The smaller diameter trees (<25 DBH) are used by local people for handicrafts, construction and firewood.

3.2.2. Vertical Structure

Harvest years (Figure 5) differed significantly in the lower canopy (p < 0.05); data from 2007 and 2015 revealed a dominance of P. pseudostrobus (p < 0.05), and 2010 showed a codominance (p > 0.05) among P. pseudostrobus, A. jorullensis and C. lindleyi, with the 2015 data reflecting reforestation efforts. The abundance of small trees of A. religiosa (an intermediate shade-tolerant species) in 2015 decreased as the number of canopy gaps increased.
The intermediate strata also showed significant differences among species (p < 0.05) in the three-harvest year, with a dominance of P. pseudostrobus in 2010, 2015 and a codominance with A. religiosa in 2007. The canopy stratum was dominated by P. pseudostrobus (p < 0.05).

3.3. Forest Regeneration

Canopy gaps created by harvesting allowed for the growth of shade-intolerant species, while shade-tolerant species are favored by a closed canopy [50]. The establishment patterns of the species in this forest are listed in Table 4. The most abundant species (other than P. pseudostrobus) were Ilex discolor, Abies religiosa, Salix sp. and Alnus jorullensis (Table 5). For Clethra mexicana, its absence is attributable to its establishment being restricted to riverine areas and ravines with slopes greater than 45°.
The type of forest regeneration in harvested forests depends on the canopy gap size and the ecological group [9,50] and tends to promote pioneer species [52,53]. Justiniano and Fredericksen [54] highlighted the need to understand the phenology of tree species in order to manage timber cutting with periods of seed dispersal to promote regeneration.

4. Discussion

4.1. Species Composition

In this study, indices of species diversity and similarity in composition show a decrease in diversity with forest harvesting, which coincides with the resuts reported by Endara et al. [35], who affirm that the extraction of individuals of pine trees results in a considerable reduction in their population density. This confirms that harvesting in temperate forests can reduce broadleaved species diversity in genera such as Quercus, Alnus, Clethra and Salix. The results show that in 2015, compared to 2007 and 2010, trees in smaller diameter categories (10 and 15 cm) had a lower density due to selective extraction because pine species in these forests are shade-intolerant and disturbance-adapted [27] and occupy early successional stages that are eventually replaced by Quercus species [55,56]. Jiménez et al. [57] noted that management needs to be based on the biological requirements of species, the spatial distribution of trees and their growth and size.
The removal of less valuable species (Alnus jorullensis, Clethra mexicana, Cupressus lindleyi, Ilex discolor, Quercus laurina and Salix sp.) favors the development of high-value species such as Pinus pseudostrobus. The Margalef index (Dmg) showed a low diversity of species with a dominance of P. pseudostrobus. Furthermore, according to the IVI, the P. pseudostrobus forests had different codominant tree species in each year: A. religiosa (2015), A. jorullensis (2010) and Salix sp. (2007). The economic value of P. pseudostrobus is attributed to its rapid growth, straight stem and high wood quality [58,59,60].

4.2. Tree Canopy Structure

Forest regeneration is associated with the creation of canopy gaps and the degree of shade tolerance among species. In the forests of this study, Alnus jorullensis and Salix sp. are indicators of disturbance because of their response to forest harvesting, corresponding to ecological groups of species that are shade-intolerant and regenerate in areas disturbed by tree harvesting [51,61]. The removal of understory species may have increased the growth of P. pseudostrobus (Figure 5) and less abundant species, such as A. jorullensis, which is used for firewood and fences [62], as well as Salix sp., which is used for handicrafts [63].
Forest harvesting modifies the site conditions for the establishment of many commercial tree species [64], but selective harvesting tends to decrease tree species diversity [39]. Mostacedo et al. [65] note that establishing minimum cutting diameters allows for species to reach the age for seed production before harvesting, which may improve regeneration.
The recommended time for the economic recovery of forests following harvesting is determined by cutting cycles and in Mexico is 10 years; in [66,67,68], this is noted to be shorter compared to other countries such as Bolivia (20 years) [69,70] and Costa Rica (15 years) [71]. It is notable in this study that, according to the forest structure following harvesting in 2007 and 2015, the cutting cycle is too short to allow for sustainable harvests.
From a study in Bolivia, Dauber et al. [72] found that a cutting cycle of 20–35 years could allow for the recovery of timber stocks in tropical forests, which may be necessary for forests in Mexico, depending on forest type, to improve the sustainability of forest harvesting.

5. Conclusions

The abundance and size-class distribution of Pinus pseudostrobus allows for the selective harvesting of this species across different diameter classes. The tree canopy structure following harvesting displays a trend of gradual recovery, but lengthening the cutting cycle with appropriate minimum diameters can help to increase chances for sustainability. The size of canopy gaps and degree of forest cover determine the growth and abundance of species and the dominance of different ecological groups. Harvesting forests decreased species diversity, stimulating the growth of P. pseudostrobus, which displaces species of the same ecological group, particularly broadleaf species, due to competition.

Author Contributions

G.E.V., field work, writing and data analysis; A.R.E.A., conceptualization and methodology; S.V.-L., mapping and field work; F.S.T., formal analysis. All authors have read and agreed to the published version of the manuscript.

Funding

This article was funding by CONAFOR-UAEM project 3668/2014E.

Data Availability Statement

The datasets in this study are available within this article.

Acknowledgments

We thank the personnel of Ejido Palo Seco, Juan Alvarado and José Luis Hernández, for permission to work, as well as the high mountain forests team of ICAR for the field work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Aguirre, C.O.A. Manejo Forestal en el Siglo XXI. For. Ambiente 2015, 21, 17–28. [Google Scholar]
  2. MacDicken, K.G. Global Forest Resources Assessment 2015: What, why and how? For. Ecol. Manag. 2015, 352, 3–8. [Google Scholar] [CrossRef] [Green Version]
  3. Cubbage, F.; Diaz, D.; Yapura, P.; Dube, F. Impacts of forest management certification in Argentina and Chile. For. Policy Econ. 2010, 12, 497–504. [Google Scholar] [CrossRef]
  4. Wunder, S.; Wertz-Kanounnikoff, S.; Moreno-Sánchez, R. Pago por servicios ambientales: Una nueva forma de conservar la biodiversidad. Gaceta Ecológica 2007, 84–85, 39–52. [Google Scholar]
  5. Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Lindquist, G.E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
  6. Villegas, Z.; Peña-Claros, M.; Mostacedo, B.; Alarcón, A.; Licona, J.C.; Leaño, C.; Pariona, W.; Choque, U. Silvicultural treatments enhance growth rates of future crop trees in a tropical dry forest. For. Ecol. Manag. 2009, 258, 971–977. [Google Scholar] [CrossRef]
  7. Hernández-Salas, J.; Aguirre, O.; Alanís, E.; Jiménez, J.; González, M.A. Efecto del manejo forestal en la diversidad y composición arbórea de un bosque templado del noroeste de México. Rev. Chapingo Ser. Cienc. For. Ambiente 2013, 19, 189–199. [Google Scholar] [CrossRef]
  8. Hernández, L.I. Cambios en la Estructura y Composición del Bosque bajo dos Tratamientos Silviculturales en la Comunidad de Capulálpan de Méndez, Ixtlán, Oaxaca, México. Master‘s Thesis, CATIE, Turrialba, Costa Rica, 2007; p. 100. [Google Scholar]
  9. Kuuluvainen, T. Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forests in Finland: A review. Ann. Zool. Fennici. 1994, 31, 35–51. [Google Scholar]
  10. Chediack, S.E. Efecto de la explotación forestal sobre la estructura, diversidad y composición florística de los palmitales de la Selva Atlántica en Misiones, Argentina. Rev. Biol. Trop. 2008, 56, 721–738. [Google Scholar]
  11. Bonilla-Luna, N.; Cuesta-Córdova, H.; Valois-Cuesta, H. Efectos de la extracción forestal sobre la estructura y composición de un bosque pluvial del Pacífico colombiano. Rev. Biodivers. Neotrop. 2011, 1, 48–54. [Google Scholar] [CrossRef] [Green Version]
  12. Fredericksen, T.S.; Putz, F.E. Silvicultural intensification for tropical forest conservation. Biodivers. Conserv. 2003, 12, 1445–1453. [Google Scholar] [CrossRef]
  13. Corral, R.J.J.; Aguirre, O.A.; Jiménez, P.J.; Corral, R.S. Un análisis del efecto del aprovechamiento forestal sobre la diversidad estructural en el bosque mesófilo de montaña “El Cielo”, Tamaulipas, México. Investig. Agrícola Sist. Recur. For. 2005, 14, 217–228. [Google Scholar]
  14. Gadow, K.; Sánchez, O.S.; Aguirre, C.O.A. Manejo forestal con bases científicas. Madera Bosques 2004, 10, 3–16. [Google Scholar] [CrossRef] [Green Version]
  15. Barrette, M.; Bélanger, L.; De Grandpré, L.; Royo, A.A. Demographic disequilibrium caused by canopy gap expansion and recruitment failure triggers forest cover loss. For. Ecol. Manag. 2017, 401, 117–124. [Google Scholar] [CrossRef]
  16. Veblen, T.T.; Kitzberger, T.; Lara, A. Disturbance and forests dynamics along a transect from Andean rain forest to Patagonian shrubland. J. Veg. Sci. 1992, 3, 507–520. [Google Scholar] [CrossRef]
  17. López-Hernández, J.A.; Aguirre-Calderón, O.A.; Alanís-Rodríguez, E.; Monarrez-González, J.C.; González-Tagle, M.A.; Jimenéz-Pérez, J. Composición y diversidad de especies forestales en bosques templados de Puebla, México. For. Ambiente 2017, 23, 39–51. [Google Scholar] [CrossRef] [Green Version]
  18. Motz, K.; Sterba, H.; Pommerening, A. Sampling measures of tree diversity. For. Ecol. Manag. 2010, 260, 1985–1996. [Google Scholar] [CrossRef]
  19. Guzmán-Gutiérrez, R.A. Caracterización y Clasificación de Especies Forestales en Gremios Ecológicos en el Bosque Sub-Húmedo Estacional de la Región de Lomerío, Santa Cruz, Bolivia. Master’s Thesis, CATIE, Turrialba, Costa Rica, 1997; p. 59. [Google Scholar]
  20. Ramos, B.Z.S. Estructura y Composición de un Paisaje Boscoso Fragmentado: Herramienta Para el Diseño de Estrategias de Conservación de la Biodiversidad. Master’s Thesis, CATIE, Turrialba, Costa Rica, 2004; p. 114. [Google Scholar]
  21. Rozas, V. Dinámica forestal y tendencias sucesionales en un bosque maduro de roble y haya de la zona Central de la Cornisa Cantábrica. Ecología 2001, 15, 179–211. [Google Scholar]
  22. Bergeron, Y.; Harvey, B. Basing silviculture on natural ecosystem dynamics: An approach applied to the southern boreal mixed forest of Quebec. For. Ecol. Manag. 1997, 92, 235–242. [Google Scholar] [CrossRef]
  23. Louman, B.; Quirós, D.; Nilsson, M. Silvicultura de Boques Latifoliados Húmedos con Énfasis en América Central; Turrialba, C.R., Ed.; CATIE: Turrialba, Costa Rica, 2001; p. 269. [Google Scholar]
  24. Del Río, M.; Montes, F.; Cañellas, I.; Montero, G. Revisión: Índices de diversidad estructural en masas forestales. Investig. Agrar. Sist. Recur. For. 2003, 12, 159–176. [Google Scholar]
  25. Challenger, A.; Soberón, J. Los Ecosistemas Terrestres, En Capital Natural de México, Vol I: Conocimiento Actual de la Biodiversidad; CONABIO: México City, México, 2008; pp. 87–108. [Google Scholar]
  26. Torres-Rojo, J.M.; Moreno-Sánchez, R.; Mendoza-Briseño, M.A. Sustainable Forest Management in México. Curr. For. Rep. 2016, 2, 93–105. [Google Scholar] [CrossRef] [Green Version]
  27. Figueroa-Rangel, B.L.; Willis, J.K.; Olvera-Vargas, M. 4200 years of pine-dominated upland forest dynamics in west-central Mexico: Human or natural legacy? Ecology 2008, 89, 1893–1907. [Google Scholar] [CrossRef]
  28. Merino, L.; Martínez, A.E. A Vuelo de Pájaro: Las Condiciones de las Comunidades con Bosques Templados en México; CONABIO: México City, México, 2014; p. 247. [Google Scholar]
  29. Endara, A.A.R.; Aguirre, N.A.; López, J.L.; Franco, M.S. Manejo Adaptativo en Bosques de alta Montaña, México; Congreso Forestal Latinoamericano: Lima, Perú, 2011. [Google Scholar]
  30. Endara-Agramont, A.R.; Calderón-Contreras, R.; Nava-Bernal, G.; Franco-Maass, S. Analysis of Fragmentation Processes in High-Mountain Forests of the Centre of Mexico. Am. J. Plant Sci. 2013, 4, 607–704. [Google Scholar] [CrossRef] [Green Version]
  31. Granados-Sánchez, D.; López-Ríos, G.F.; Hernández-García, M.A. Ecología y Silvicultura en bosques templados. Rev. Chapingo Ser. Cienc. For. Ambiente 2007, 13, 67–83. [Google Scholar]
  32. Bocco, G.; Velázquez, A.; Torres, A. Ciencia, comunidades indígenas y manejo de recursos naturales. Caso Investig. Particip. México Interciencia 2000, 25, 64–70. [Google Scholar]
  33. Demant, A. Características del Eje Neovolcánico Transmexicano y sus Problemas de Interpretación; Universidad Nacional Autónoma de México, Instituto de Geología: México City, México, 1978; Volume 2, pp. 172–187. [Google Scholar]
  34. Sola, G.; El Mujtar, V.; Tsuda, Y.; Vendramin, G.G.; Gallo, L. The effect of silvicultural management on the genetic diversity of mixed Nothofagus forest in Lanin Natural Reserve, Argentina. For. Ecol. Manag. 2016, 363, 11–20. [Google Scholar] [CrossRef]
  35. Endara, A.A.R.; Franco, M.S.; Nava, B.G.; Valdez, H.J.I.; Fredericksen, T.S. Effect of human disturbance on the structure and regeneration of forests in the Nevado de Toluca National Park, Mexico. J. For. Res. 2012, 23, 39–44. [Google Scholar] [CrossRef]
  36. Ramos, C.; Simonetti, J.A.; Flores, J.D.; Ramos-Jiliberto, R. Modeling the management of fragmented forests: Is it possible to recover the original tree composition? The case of the Mauilino forest in Central Chile. For. Ecol. Manag. 2008, 255, 2236–2243. [Google Scholar] [CrossRef]
  37. Onaindia, M.; Dominguez, I.; Albizu, I.; Garbisu, C.; Amezaga, I. Vegetation diversity and vertical structure as indicators of forest disturbance. For. Ecol. Manag. 2004, 195, 34–354. [Google Scholar] [CrossRef]
  38. Dalle, S.P.; de Blois, S.; Caballero, J.; Johns, T. Integrating analyses of local land-use regulations, cultural perceptions and land-use/land-cover data for assessing the success of community-based conservation. For. Ecol. Manag. 2006, 222, 370–383. [Google Scholar] [CrossRef]
  39. Solis, M.R.; Aguirre, C.O.A.; Treviño, G.E.J.; Jiménez, P.J.; Jurado, Y.E.; Corral-Rivas, J. Efecto de dos tratamientos silvícolas en la estructura de ecosistemas forestales en Durango, México. Madera Bosques 2006, 12, 49–64. [Google Scholar] [CrossRef] [Green Version]
  40. Bauhus, J.; Puettmann, K.; Messier, C. Silviculture for old-growth attributes. For. Ecol. Manag. 2009, 258, 525–537. [Google Scholar] [CrossRef] [Green Version]
  41. Pagdee, A.; Kim, Y.; Daugherty, P. What makes community forest management successful: A meta-study from community forests throughout the world. Soc. Nat. Resour. 2006, 19, 33–52. [Google Scholar] [CrossRef]
  42. Pérez, M.R.; Moreno, S.F.; González, H.A.; Arreola, P.V. Escenarios de la distribución potencial de Pinus patula Schltdl. et Cham. y Pinus pseudostrobus Lindl. con modelos de cambio climático en el Estado de México. Rev. Mex. Cienc. For. 2013, 4, 73–86. [Google Scholar]
  43. Ignacio-Ruiz, N.; Rangel-Villafranco, M.; Cárdenas-Camargo, I. Estructura del bosque y propagación de dos especies de encinos con micorrizas en el Estado de México. Rev. Iberoam. Cienc. 2014, 1, 136–144. [Google Scholar]
  44. Endara, A.A.R.; Herrera, T.F. Deterioro y conservación de los bosques del Nevado de Toluca y el rol de los actores locales. Cienc. Ergo-Sum. 2016, 23, 247–254. [Google Scholar]
  45. Arce, J.L.; Macías, J.L.; Vázquez-Selem, L. The 10.5 ka Plinian eruption of Nevado de Toluca volcano, Mexico: Stratigraphy and hazard implications. Geol. Soc. Am. Bull. 2003, 115, 230–248. [Google Scholar] [CrossRef]
  46. Sotelo, E.G.E.; Cruz, G.M.F.; Ochoa, S. La Clasificación FAO-WRB y los Suelos del Estado de México; Instituto Nacional de Investigaciones Forestales: Agrícolas y Pecuarias, México, 2010. [Google Scholar]
  47. Valdez, H.J.I. Aprovechamiento forestal de manglares en el estado de Nayarit Costa Pacífica de México. Madera Bosques 2002, 1, 129–145. [Google Scholar]
  48. Lampretch, H. Silvicultura en los Trópicos: Dinámica de los Bosques Tropicales Húmedos. Deutsche Gesellschaft für Technische Zusammernarbeit; Instituto de Silvicultura de la Universidad de Gottingen: Gottingen, Germany, 1990. [Google Scholar]
  49. Magurran, A.E. Measuring Biological Diversity; Blackwell Science Ltd.: Victoria, Australia, 2004; p. 215. [Google Scholar]
  50. Danková, L.; Saniga, M. Canopy gaps and tree regeneration patterns in multi-species unmanaged natural forest Sitno (Preliminary results). Beskydy 2013, 6, 17–26. [Google Scholar] [CrossRef]
  51. Fredericksen, T.; Contreras, F.; Pariona, W. Guía de Silvicultura Para Bosques Tropicales de Bolivia; Proyecto de Manejo Forestal Sostenible BOLFOR: Santa Cruz, Bolivia, 2001; p. 82. [Google Scholar]
  52. Torras, O.; Saura, S. Effects of silvicultural treatments on forest biodiversity indicators in the Mediterranean. For. Ecol. Manag. 2008, 255, 3322–3330. [Google Scholar] [CrossRef]
  53. Torras, O.; Gil-Tena, A.; Saura, S. Changes in biodiversity indicators in managed and unmanaged forest in NE Spain. J. For. Res. 2012, 17, 19–29. [Google Scholar] [CrossRef]
  54. Justiniano, M.J.; Fredericksen, T.S. Phenology of Tree Species in Bolivian dry Forests. Biotropica 2000, 32, 276–281. [Google Scholar] [CrossRef]
  55. Perry, J.P.; Graham, A.; Richardson, D.M. The history of pines in Mexico and Central America. In Ecology and Biogeography of Pinus; Richardson, D.M., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 137–149. [Google Scholar]
  56. Weber, T.A.; Hart, J.L.; Schweitzer, C.J.; Dey, D.C. Influence of gap-scale disturbance on developmental and successional pathways in Quercus-Pinus stands. For. Ecol. Manag. 2014, 331, 60–70. [Google Scholar] [CrossRef]
  57. Jiménez, J.; Aguirre, O.; Kramer, H. Análisis de la estructura horizontal y vertical en un ecosistema multicohortal de pino-encino en el norte de México. Sist. Recur. For. 2001, 10, 355–366. [Google Scholar]
  58. Sáenz-Romero, C.; Rehfeldt, G.E.; Duval, P.; Linding-Cisneros, R.A. Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. For. Ecol. Manag. 2012, 275, 98–106. [Google Scholar] [CrossRef]
  59. Sáenz-Romero, C.; Rehfeldt, G.E.; Soto-Correa, J.C.; Aguilar-Aguilar, S. Zamarripa-Morales, V.; López-Upton, J. Altitudinal Genetic variation among Pinus pseudostrobus populations from Michoacán, Mexico. Two locations shadehouse test results. Rev. Fitotec. Mex. 2012, 35, 111–120. [Google Scholar]
  60. López-Upton, J. Pinus pseudostrobus Lindl. In Tropical Tree Seed Manual; Vozzo, J.A., Ed.; USDA Forest Service: St. Paul, MN, USA, 2002; p. 889. [Google Scholar]
  61. López-Sánchez, C.L.; Bolívar-Cimé, B.; Aparicio-Rentería, A.; Viveros-Viveros, H. Population structure of Alnus jorullensis, a species used as firewood by five rural communities in a natural protected area of Mexico. Bot. Sci. 2020, 98, 238–247. [Google Scholar] [CrossRef]
  62. Villas, S.A.; Alonso, R.M. Una contribución al conocimiento de los sauces en México. Rev. Mex. Cienc. For. 1995, 20, 35–65. [Google Scholar]
  63. Castellanos-Bolaños, J.F.; Treviño-Garza, E.J.; Aguirre-Calderón, O.A.; Jiménez-Pérez, J.; Musálem-Santiago, M.; López-Aguillón, R. Estructura de bosques de Pinus patula bajo manejo en Ixtlán de Juárez, Oaxaca, México. Madera Bosques 2008, 14, 51–63. [Google Scholar] [CrossRef]
  64. Navarro, F.B.; Jiménez, M.N.; Cañadas, E.M.; Gallego, E.; Terrón, L.; Ripoll, M.A. Effects of different intensities of overstory thinning on tree growth and understory plant-species productivity in a semi-arid Pinus halepensis Mill. afforestation. Forest. Syst. 2010, 19, 410–417. [Google Scholar] [CrossRef]
  65. Mostacedo, B.; Peña, M.; Rumiz, D.; Villegas, Z. Hacia un Modelo de Manejo Sostenible del Bosque Seco Chiquitano; Propuesta de ajustes a ciertas prácticas forestales; FCBC: Santa Cruz de la Sierra, Bolivia, 2010. [Google Scholar]
  66. Diario Oficial de la Federación (DOF). Reglamento de la Ley General de Desarrollo Forestal Sustentable; DOF: México City, México, 2005. [Google Scholar]
  67. Diario Oficial de la Federación (DOF). Norma Oficial Mexicana NOM-152-SEMARNAT-2006, Que Establece los Lineamientos, Criterios y Especificaciones de los Contenidos de los Programas de Manejo Forestal Para el Aprovechamiento de Recursos Forestales Maderables en Bosques, Selvas y Vegetación de Zonas Áridas; DOF: México City, México, 2008. [Google Scholar]
  68. Ramírez, M.J.J. Aprovechamiento y Manejo Silvícola de los Recursos Forestales en Seis Municipios de la Región Oeste del Estado de Jalisco. Bachelor Thesis, Universidad Autónoma Agraria Antonio Narro, Saltillo, México, 1998; p. 34. [Google Scholar]
  69. Fredericksen, T.S. Aprovechamiento Forestal y Conservación de los Bosques Tropicales en Bolivia; Proyecto de Manejo Forestal Sostenible BOLFOR: Santa Cruz, Bolivia, 2000; p. 22. [Google Scholar]
  70. BOLFOR. Normas Técnicas Para la Elaboración de Instrumentos de Manejo Forestal (Inventarios, Planes de Manejo, Planes Operativos, mapas) en Propiedades Privadas o Concesiones con Superficies Mayores a 200 Hectáreas; Resolución Ministerial No. 62/97; BOLFOR: La Paz, Bolivia, 1997. [Google Scholar]
  71. Figueres-Olsen, J.M.; Castro-Salazar, R. Reglamento a la Ley Forestal. Ley Forestal No. 7575. La Gaceta No. 16. 23 de enero de 1997; San José, Costa Rica, 1997; p. 32. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwikwKyk3qXyAhUgyIsBHQuJDRMQFnoECAIQAQ&url=http%3A%2F%2Fwww.da.go.cr%2Fwp-content%2Fuploads%2F2016%2F06%2FDecreto-Reglamento-Ley-Forestal-DE-25721-MINAE.pdf&usg=AOvVaw2NJs1gbl0Rc4W6wV0g7oil (accessed on 11 May 2021).
  72. Dauber, E.; Fredericksen, T.S.; Peña-Claros, M. Sustainability of timber harvesting in Bolivian tropical forests. For. Ecol. Manag. 2005, 214, 294–304. [Google Scholar] [CrossRef]
Figure 1. Study area—Ejido Palo Seco, Coatepec Harinas in the state of Mexico and map of harvested areas in 2007, 2010 and 2015.
Figure 1. Study area—Ejido Palo Seco, Coatepec Harinas in the state of Mexico and map of harvested areas in 2007, 2010 and 2015.
Forests 12 01068 g001
Figure 2. Sampling design with a 1 ha plot with 25 subplots sampled during each harvest year. Tree measurements for height and DBH. Sampling plots were distributed based on tree size classes.
Figure 2. Sampling design with a 1 ha plot with 25 subplots sampled during each harvest year. Tree measurements for height and DBH. Sampling plots were distributed based on tree size classes.
Forests 12 01068 g002
Figure 3. Horizontal structure of Pinus pseudostrobus in three different harvest years based on diameter distribution.
Figure 3. Horizontal structure of Pinus pseudostrobus in three different harvest years based on diameter distribution.
Forests 12 01068 g003
Figure 4. Horizontal structure characterized by diameter distribution in three years of harvesting (Ejido de Palo Seco, Coatepec Harinas).
Figure 4. Horizontal structure characterized by diameter distribution in three years of harvesting (Ejido de Palo Seco, Coatepec Harinas).
Forests 12 01068 g004
Figure 5. Vertical structure following harvesting in three different years; (a) Abies religiosa, (b) Salix sp., (c) Pinus pseudostrobus, (d) stump, (e) Alnus jorullensis, (f) Cupressus lindleyi. Strata-Un: lower canopy; Mi: intermediate canopy, Up: canopy stratum; mean height and DBH by species, year and stratum; median height by year and stratum.
Figure 5. Vertical structure following harvesting in three different years; (a) Abies religiosa, (b) Salix sp., (c) Pinus pseudostrobus, (d) stump, (e) Alnus jorullensis, (f) Cupressus lindleyi. Strata-Un: lower canopy; Mi: intermediate canopy, Up: canopy stratum; mean height and DBH by species, year and stratum; median height by year and stratum.
Forests 12 01068 g005
Table 1. Importance value index calculations for commercial tree species Palo Seco, Coatepec Harinas, Estado de México for three harvesting periods. Relative abundance (Ar), relative dominance (Dr), relative frequency (Fr), importance value index (IVI).
Table 1. Importance value index calculations for commercial tree species Palo Seco, Coatepec Harinas, Estado de México for three harvesting periods. Relative abundance (Ar), relative dominance (Dr), relative frequency (Fr), importance value index (IVI).
Management Years
200720102015IVI
SpeciesArDrFrArDrFrArDrFr200720102015
Pinus pseudostrobus88.193.41007688.51008293.4100281.5264.5275.4
Abies religiosa5.652.12521.10.2820104.346459.7721.3878.34
Alnus jorullensis1.540.8516126.63802.61.171610.3898.6319.77
Salix sp.4.451.24521.10.1584.10.931657.699.2521.03
Quercus laurina0.170.0640.90.0840.70.1584.234.988.85
Cupressus lindleyi---8.14.328----20.42-
Table 2. Simpson index of diversity before forest harvesting: n = tree density; pi2 = square of proportional abundance; N = overall tree abundance; D = Simpson’s D; 1-D = Simpson diversity index.
Table 2. Simpson index of diversity before forest harvesting: n = tree density; pi2 = square of proportional abundance; N = overall tree abundance; D = Simpson’s D; 1-D = Simpson diversity index.
Simpson Index Before Forest Harvesting
Year 2007
npi2ND1-D
A. jorullensis90.0002055930.785720.2142849
A. religiosa330.003008
P. pseudostrobus5240.78065
Q. laurina10
Salix sp.260.001852
Year 2010
A. jorullensis590.0157924660.608670.3913332
A. religiosa50.0000923
C. lindleyi370.0061470
I. discolor20.0000092
P. pseudostrobus3570.5865153
Q. laurina40.0000554
Salix sp.40.0000554
Year 2015
A. jorullensis70.0005782700.688040.3119648
A. religiosa280.010409
P. pseudostrobus2220.675506
Q. laurina20.0000275
Salix sp.110.0015145
Table 3. Harvesting intensity by species and diameter class.
Table 3. Harvesting intensity by species and diameter class.
P. pseudostrobusSalix sp.C. mexicanaA. jorullensisA. religiosaC. lindleyi
Diametric Category200720102015201020152015201520152010
(cm)Harvesting Per Category (%)
102.6869.239.0933.3314.29100.00100.006.6711.11
1511.5854.3512.5050.0075.00100.0033.330.000.00
2026.6751.0919.050.000.00100.0095.240.000.00
2512.2018.8712.90-100.00-33.33-0.00
3024.4425.6433.33-0.00-0.000.000.00
3531.257.6936.00-33.33--0.000.00
4033.3324.3950.00-100.00--0.000.00
4520.0010.3430.00-100.00-0.00--
5028.5730.7742.31----0.00-
5542.8617.6547.83----0.00-
6045.4541.1842.86------
6518.7533.3314.29---100.000.00-
7031.2587.5042.86-100.00----
750.000.0037.50-----0.00
8033.3375.000.00------
850.000.00--- ---
90100.00100.00-------
950.000.00-------
1000.000.00100.00------
Table 4. Ecological groups following descriptions by Fredericksen et al. [51].
Table 4. Ecological groups following descriptions by Fredericksen et al. [51].
Ecological GroupDescriptionSpecies
Long-lived
shade-intolerant
Shade-intolerant, regenerate in disturbed areas and are long-lived and occupy the canopy.Aile (Alnus jorullensis)
Cedro blanco (Cupressus lindleyi)
Partial shade-tolerantPartially tolerant of shade, but depend on gap formation for growth and occupy the canopy.Oyamel (Abies religiosa)
Cucharillo (Clethra mexicana)
Capulincillo (Ilex discolor)
Encino (Quercus laurina)
Pino (Pinus pseudostrobus)
Guajote (Salix sp.)
Table 5. Natural regeneration of tree species (Ejido Palo Seco, Coatepec Harinas, México) in a harvested forest.
Table 5. Natural regeneration of tree species (Ejido Palo Seco, Coatepec Harinas, México) in a harvested forest.
SpeciesSmall SeedlingsSeedlingsSaplingsLarge SaplingsSmall Trees
Relative Abundance (%)
P. pseudostrobus94.9678.9572.4138.6447.19
I. discolor4.3221.053.4513.645.62
A. religiosa0.72-13.794.5515.73
Salix sp.--10.3418.1815.73
Q. laurina---13.646.74
A. jorullensis---11.366.74
C. mexicana----2.25
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Estrada Valdés, G.; Endara Agramont, A.R.; Vazquez-Lozada, S.; Todd, F.S. Forest Harvesting Impacts on the Structure and Composition of Coniferous Forests in Mexico. Forests 2021, 12, 1068. https://doi.org/10.3390/f12081068

AMA Style

Estrada Valdés G, Endara Agramont AR, Vazquez-Lozada S, Todd FS. Forest Harvesting Impacts on the Structure and Composition of Coniferous Forests in Mexico. Forests. 2021; 12(8):1068. https://doi.org/10.3390/f12081068

Chicago/Turabian Style

Estrada Valdés, Giovanni, Angel Rolando Endara Agramont, Santiago Vazquez-Lozada, and Fredericksen S. Todd. 2021. "Forest Harvesting Impacts on the Structure and Composition of Coniferous Forests in Mexico" Forests 12, no. 8: 1068. https://doi.org/10.3390/f12081068

APA Style

Estrada Valdés, G., Endara Agramont, A. R., Vazquez-Lozada, S., & Todd, F. S. (2021). Forest Harvesting Impacts on the Structure and Composition of Coniferous Forests in Mexico. Forests, 12(8), 1068. https://doi.org/10.3390/f12081068

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop