A Novel Plant Resistance Inducer for the Protection of European Ash (Fraxinus excelsior L.) against Hymenoscyphus fraxineus—Preliminary Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection
2.2. Experimental Design of BTHWA Treatment
2.3. Saplings Inoculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dukes, J.S.; Pontius, J.; Orwig, D.; Garnas, J.R.; Rodgers, V.L.; Brazee, N.; Cooke, B.; Theoharides, K.A.; Strange, E.E.; Harrington, R.; et al. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? Can. J. For. Res. 2009, 39, 231–248. [Google Scholar] [CrossRef]
- Baral, H.O.; Queloz, V.; Hosoya, T. Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe. IMA Fungus 2014, 5, 79–80. [Google Scholar] [CrossRef]
- Timmermann, V.; Børja, I.; Hietala, A.M.; Kirisits, T.; Solheim, H. Ash dieback: Pathogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway. EPPO Bull. 2011, 41, 14–20. [Google Scholar] [CrossRef]
- Coker, T.; Rozsypálek, J.; Edwards, A.; Harwood, T.; Butfoy, L.; Buggs, R. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 2019, 1, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Turczański, K.; Rutkowski, P.; Nowiński, M.; Zawieja, B. Health status of European ash (Fraxinus excelsior L.) in relation to the moisture of selected forest sites. Sylwan 2020, 164, 133–141. [Google Scholar] [CrossRef]
- Koltay, A.; Szabó, I.; Janik, G. Chalara fraxinea incidence in Hungarian ash (Fraxinus excelsior) forest. J. Agric. Ext. Rural Dev. 2012, 4, 236–238. [Google Scholar] [CrossRef]
- Turczański, K.; Dyderski, M.; Rutkowski, P. Ash dieback, soil, and deer browsing influence natural regeneration of European ash (Fraxinus excelsior L.). Sci. Total Environ. 2021, 752, 141787. [Google Scholar] [CrossRef]
- Pušpure, I.; Matisons, R.; Laiviņš, M.; Gaitnieks, T.; Jansons, J. Natural regeneration of common ash in young stands in Latvia. Balt. For. 2017, 23, 209–217. [Google Scholar]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, L.R.; McKinney, L.V.; Kjær, E.D. Host phenological stage potentially affects dieback severity after Hymenoscyphus fraxineus infection in Fraxinus excelsior seedlings. Balt. For. 2017, 23, 229–232. [Google Scholar]
- Cavers, S. Evolution, ecology, and tree health: Finding ways to prepare Britain’s forests for future threats. Forestry 2015, 88, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Oostendorp, M.; Kunz, W.; Dietrich, B.; Staub, T. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 2001, 107, 19–28. [Google Scholar] [CrossRef]
- Wani, M.Y.; Mehraj, S.; Rather, R.A.; Rani, S.; Hajam, O.A.; Ganie, N.A.; Mir, M.R.; Baqual, M.F.; Kamili, A.S. Systemic acquired resistance (SAR): A novel strategy for plant protection with reference to mulberry. Int. J. Chem. Stud. 2018, 6, 1184–1192. [Google Scholar]
- Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004, 42, 185–209. [Google Scholar] [CrossRef]
- Eyles, A.; Bonello, P.; Ganley, R.; Mohammed, C. Induced resistance to pests and pathogens in trees. New Phytol. 2010, 185, 893–908. [Google Scholar] [CrossRef] [PubMed]
- Klessig, D.F.; Choi, H.W.; Dempsey, D.M.A. Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Mol Plant Microbe Interact 2018, 9, 871–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, L.; Lawton, K.; Ruess, W.; Masner, P.; Specker, N.; Gut Rella, M.; Meier, B.; Dincher, S.; Staub, T.; Uknes, S.; et al. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 1996, 10, 61–70. [Google Scholar] [CrossRef]
- Smiglak, M.; Kukawka, R.; Lewandowski, P.; Pospieszny, H. Cationic derivatives of the plant resistance inducer benzo[1,2,3]thiadiazole-7-carbothioic acid S-methyl ester (BTH) as bifunctional ionic liquids. Tetrahedron Lett. 2014, 55, 3565–3568. [Google Scholar] [CrossRef]
- Kukawka, R.; Czerwoniec, P.; Lewandowski, P.; Pospieszny, H.; Smiglak, M. New ionic liquids based on systemic acquired resistance inducers combined with the phytotoxicity reducing cholinium cation. New J. Chem. 2018, 42, 11984–11990. [Google Scholar] [CrossRef]
- Feder-Kubis, J.; Czerwoniec, P.; Lewandowski, P.; Pospieszny, H.; Smiglak, M. Ionic Liquids with Natural Origin Component: A Path to New Plant Protection Products. ACS Sustain. Chem. Eng. 2020, 8, 842–852. [Google Scholar] [CrossRef]
- Zajac, A.; Kukawka, R.; Pawlowska-Zygarowicz, A.; Stolarska, O.; Smiglak, M. Ionic liquids as bioactive chemical tools for use in agriculture and the preservation of agricultural products. Green Chem. 2018, 20, 4764–4789. [Google Scholar] [CrossRef]
- Smiglak, M.; Kukawka, R.; Lewandowski, P.; Budziszewska, M.; Obrępalska-Stęplowska, A.; Krawczyk, K.; Zwolińska, A.; Pospieszny, H. New Dual Functional Salts Based on Cationic Derivative of Plant Resistance Inducer Benzo [1.2.3] thiadiazole-7-carbothioic Acid, S-Methyl Ester. ACS Sustain. Chem. Eng. 2016, 4, 3344–3351. [Google Scholar] [CrossRef]
- Smiglak, M.; Lewandowski, P.; Kukawka, R.; Budziszewska, M.; Krawczyk, K.; Obrępalska-Stęplowska, A.; Pospieszny, H. Dual functional salts of benzo [1.2.3] thiadiazole-7-carboxylates as a highly efficient weapon against viral plant diseases. ACS Sustain. Chem. Eng. 2017, 5, 4197–4204. [Google Scholar] [CrossRef]
- Markiewicz, M.; Lewandowski, P.; Spychalski, M.; Kukawka, R.; Feder-Kubis, J.; Beil, S.; Smiglak, M.; Stolte, S. New bifunctional ionic liquid-based plant systemic acquired resistance (SAR) inducers with improved environmental hazard profile. Green Chem. 2021, 23, 5138–5149. [Google Scholar] [CrossRef]
- Spychalski, M.; Kukawka, R.; Krzesiński, W.; Spiżewski, T.; Michalecka, M.; Poniatowska, A.; Puławska, J.; Mieszczakowska-Frąc, M.; Panasiewicz, K.; Kocira, A.; et al. Use of New BTH Derivative as Supplement or Substitute of Standard Fungicidal Program in Strawberry Cultivation. Agronomy 2021, 11, 1031. [Google Scholar] [CrossRef]
- Smiglak, M.; Pospieszny, H.; Kukawka, R.; Lewandowski, P.; Stolarska, O.; Maciejewski, H. Application of 7-Carboxybenzo(1,2,3)ThiadiazoleAmides as Plant Stimulants. Patent Application No. WO/2017/017626, 2 February 2017. [Google Scholar]
- Frackowiak, P.; Pospieszny, H.; Smiglak, M.; Obrępalska-Stęplowska, A. Assessment of the Efficacy and Mode of Action of Benzo(1,2,3)-Thiadiazole-7-Carbothioic Acid S-Methyl Ester (BTH) and Its Derivatives in Plant Protection Against Viral Disease. Int. J. Mol. Sci. 2019, 20, 1598. [Google Scholar] [CrossRef] [Green Version]
- Dal Maso, E.; Cocking, J.; Montecchio, L. Efficacy tests on commercial fungicides against ash dieback in vitro and by trunk injection. Urban For. Urban Green. 2014, 13, 697–703. [Google Scholar] [CrossRef]
- Keča, N.; Tkaczyk, M.; Żółciak, A.; Stocki, M.; Kalaji, H.M.; Nowakowska, J.A.; Oszako, T. Survival of European Ash Seedlings Treated with Phosphite after Infection with the Hymenoscyphus fraxineus and Phytophthora Species. Forests 2018, 9, 442. [Google Scholar] [CrossRef] [Green Version]
- Madigan, A.; Bełka, M.; Taylor, A.F.S.; Kirisits, T.; Cleary, M.; Nguyen, D.; Elfstrand, M.; Woodward, S. Can Hymenoscyphus fraxineus infect hardy members of the Oleaceae other than ash species? For. Path. 2015, 45, 426–429. [Google Scholar] [CrossRef]
- Kjaer, E.D.; McKinney, L.V.; Nielsen, L.R.; Hansen, L.N.; Hansen, J.K. Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evol. Appl. 2012, 5, 219–228. [Google Scholar] [CrossRef]
- Cooke, L.; Fleming, C.; McCracken, A. Sustainable Agri-Food Sciences Division, AFBI, 2013. DARD E&I Project 12/3/S7: Efficacy of Biocides, Disinfectants and Other Treatments to Limit the Spread of Ash Dieback Caused by Chalara fraxinea. AgriFood and Biosciences Institute. Available online: www.afbini.gov.uk (accessed on 30 March 2021).
- Turczański, K.; Rutkowski, P.; Dyderski, M.K.; Wrońska-Pilarek, D.; Nowiński, M. Soil pH and organic matter content affects European ash (Fraxinus excelsior L.) crown defoliation and its impact on understory vegetation. Forests 2020, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Hauptman, T.; Piskur, B.; de Groot, M.; Ogris, N.; Ferlan, M.; Jurc, D. Temperature effect on Chalara fraxinea: Heat treatment of saplings as a possible disease control method. For. Pathol. 2013, 43, 360–370. [Google Scholar] [CrossRef]
- Przybylski, P.; Sikora, K.; Mohytyh, V.; Włostowski, M. Effect of agrotechnical treatment on the health condition of the clonal seed ash plantation (Fraxinus excelsior L.) in the context of its infection by Hymenoscyphus fraxineus (T. Kowalski). Sylwan 2020, 164, 404–413. [Google Scholar] [CrossRef]
- Tkaczyk, M.; Nowakowska, J.A.; Oszako, T. Phytopthora species isolated from ash stands in Białowieża Forest nature reserve. For. Pathol. 2016, 46, 660–662. [Google Scholar] [CrossRef]
Variant of Treatment | Treatment Prior to Inoculation | Fungus Inoculation | Treatment Post Inoculation |
---|---|---|---|
10 Treatments | 4 Treatments | ||
W1 | ✓ | ✓ | ✓ |
W2 | ✓ | ✓ | |
S1 | ✓ | ✓ | ✓ |
S2 | ✓ | ✓ | |
C (+) | ✓ | ||
C (−) |
Treatment | W1 (cm) | W2 (cm) | S1 (cm) | S2 (cm) | C+ (cm) | C− (cm) |
---|---|---|---|---|---|---|
No. of plants | 8 | 8 | 8 | 8 | 5 | 4 |
No. of plants with lesions | 0 | 2 | 2 | 4 | 5 | 0 |
Average length of lesion | 0 | 0.42 × 0.32 | 0.33 × 0.26 | 0.5 × 0.35 | 2.3 × 1.9 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turczański, K.; Bełka, M.; Kukawka, R.; Spychalski, M.; Smiglak, M. A Novel Plant Resistance Inducer for the Protection of European Ash (Fraxinus excelsior L.) against Hymenoscyphus fraxineus—Preliminary Studies. Forests 2021, 12, 1072. https://doi.org/10.3390/f12081072
Turczański K, Bełka M, Kukawka R, Spychalski M, Smiglak M. A Novel Plant Resistance Inducer for the Protection of European Ash (Fraxinus excelsior L.) against Hymenoscyphus fraxineus—Preliminary Studies. Forests. 2021; 12(8):1072. https://doi.org/10.3390/f12081072
Chicago/Turabian StyleTurczański, Krzysztof, Marta Bełka, Rafal Kukawka, Maciej Spychalski, and Marcin Smiglak. 2021. "A Novel Plant Resistance Inducer for the Protection of European Ash (Fraxinus excelsior L.) against Hymenoscyphus fraxineus—Preliminary Studies" Forests 12, no. 8: 1072. https://doi.org/10.3390/f12081072
APA StyleTurczański, K., Bełka, M., Kukawka, R., Spychalski, M., & Smiglak, M. (2021). A Novel Plant Resistance Inducer for the Protection of European Ash (Fraxinus excelsior L.) against Hymenoscyphus fraxineus—Preliminary Studies. Forests, 12(8), 1072. https://doi.org/10.3390/f12081072