A Comparison of an Adaptive Neuro-Fuzzy and Frequency Ratio Model to Landslide-Susceptibility Mapping along Forest Road Networks
Abstract
:1. Introduction
2. Materials and Methods
- First, we characterize the study area;
- Secondly, we present data production and landslide-triggering factors;
- Thirdly, we describe our methods, of development and training of ANFIS algorithms; and application of ANFIS for LS mapping in the study area;
- Fourthly, we perform the validation of the LS maps, using the receiver operating characteristics-based area under curve method.
2.1. Study Area
2.2. Data Collection
2.3. Spatial Database Construction
2.3.1. Preparing Landslides Inventory Map
2.3.2. Landslide Causal Factors
2.4. Adaptive Neuro-Fuzzy Inference System
2.4.1. Application of Frequency Ratio for ANFIS
- Npix(SXi): number of pixels with landslides within class i of factor variable X,
- Npix(Xj): number of pixels within factor variable Xj,
- m: number of classes in the parameter variable Xi,
- n: number of factors in the study area.
2.4.2. Preview of ANFIS
- x, y are inputs,
- A, B corresponding term set,
- output,
- p, q, r constant.
2.4.3. Preparation of the Training and Testing Data Set
2.4.4. Validation of the Landslide Susceptibility Maps
3. Results
3.1. The Application of Frequency Ratio
3.2. The Application of ANFIS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gumus, S.; Acar, H.H.; Toksoy, D. Functional forest road network planning by consideration of environmental impact assessment for wood harvesting. Environ. Monit. Assess. 2008, 142, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Abdi, E.; Majnounian, B.; Darvishsefat, A.; Mashayekhi, Z.; Sessions, J. A GIS-MCE based model for forest road planning. J. For. Sci. 2009, 55, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Deljouei, A.; Abdi, E.; Marcantonio, M.; Majnounian, B.; Amici, V.; Sohrabi, H. The impact of forest roads on understory plant diversity in temperate hornbeam-beech forests of Northern Iran. Environ. Monit. Assess. 2017, 189, 392. [Google Scholar] [CrossRef] [PubMed]
- Deljouei, A.; Sadeghi, S.M.M.; Abdi, E.; Bernhardt-Römermann, M.; Pascoe, E.L.; Marcantonio, M. The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian forest. Eur. J. For. Res. 2018, 137, 759–770. [Google Scholar] [CrossRef]
- Swanson, F.J.; Dyrness, C.T. Impact of clear-cutting and road construction on soil erosion by landslides in the western Cascade Range, Oregon. Geology 1975, 3, 393–396. [Google Scholar] [CrossRef]
- Montgomery, D.R. Road surface drainage, channel initiation, and slope instability. Water Resour. Res. 1994, 30, 1925–1932. [Google Scholar] [CrossRef]
- Borga, M.; Tonelli, F.; dalla Fontana, G.; Cazorzi, F. Evaluating the influence of forest roads on shallow landsliding. Ecol. Model. 2005, 187, 85–98. [Google Scholar] [CrossRef]
- Gorsevski, P.V.; Gessler, P.E.; Foltz, R.B.; Elliot, W.J. Spatial prediction of landslide hazard using logistic regression and ROC analysis. Trans. GIS 2006, 10, 395–415. [Google Scholar] [CrossRef]
- Imaizumi, F.; Sidle, R.C.; Kamei, R. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surf. Process. Landf. 2008, 33, 827–840. [Google Scholar] [CrossRef]
- Geertsema, M.; Schwab, J.; Jordan, P.; Millard, T.; Rollerson, T. Chapter 8—Hillslope processes. In Compendium of Forest Hydrology and Geomorphology in British Columbia; British Columbia: Victoria, BC, Canada, 2010; Volume 66, pp. 213–273. Available online: https://www.for.gov.bc.ca/hfd/pubs/Docs/Lmh/Lmh66/Lmh66_ch08.pdf (accessed on 1 March 2010).
- Jordan, P.; Millard, T.; Campbell, T.; Schwab, J.; Wilford, D.; Nicol, D.; Collins, D. Chapter 9—Forest Management effects on hillslope processes. In Compendium of Forest Hydrology and Geomorphology in British Columbia; British Columbia: Victoria, BC, Canada, 2010; Volume 66, pp. 275–329. Available online: https://www.for.gov.bc.ca/hfd/pubs/Docs/Lmh/Lmh66/Lmh66_ch09.pdf (accessed on 1 March 2010).
- Jaafari, A.; Rezaeian, J.; Shafipour Omrani, M. Spatial prediction of slope failures in support of forestry operations safety. Croat. J. For. Eng. 2017, 38, 107–118. [Google Scholar]
- Deljouei, A.; Abdi, E. Seasonal and spatial variability of root reinforcement in three pioneer species of the Hyrcanian forest. Austrian J. For. Sci. 2019, 136, 175–198. [Google Scholar]
- Schwab, J.W.; Geertsema, M. Terrain stability mapping on British Columbia forest lands: An historical perspective. Nat. Hazards 2010, 53, 63–75. [Google Scholar] [CrossRef]
- Schuster, R.L.; Highland, L.M. The Third Hans Cloos Lecture. Urban landslides: Socioeconomic impacts and overview of mitigative strategies. Bull. Eng. Geol. Environ. 2007, 66, 1–27. [Google Scholar] [CrossRef]
- Geertsema, M.; Highland, L.; Vaugeouis, L. Environmental impact of landslides. In Landslides—Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2009; pp. 589–607. [Google Scholar]
- Kjekstad, O.; Highland, L. Economic and social impacts of landslides. In Landslides—Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2009; pp. 573–587. [Google Scholar]
- Geertsema, M.; Pojar, J.J. Influence of landslides on biophysical diversity—A perspective from British Columbia. Geomorphology 2017, 89, 55–69. [Google Scholar] [CrossRef]
- Walker, L.R.; Shiels, A.B. Landslide Ecology; Cambridge University Press: New York, NY, USA, 2012; 300p. [Google Scholar]
- Moosavi, V.; Niazi, Y. Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping. Landslides 2016, 13, 97–114. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ. Earth Sci. 2010, 60, 1037–1054. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Back-propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Ment. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Brabb, E.E. Innovative approaches to landslide hazard mapping. In Proceedings of the IV International Symposium of Landslides, Canadian Geotechnical Society, Toronto, ON, Canada, 16–21 September 1984. [Google Scholar]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro fuzzy inference system and GIS. Comput. Geosci. 2012, 45, 199–211. [Google Scholar]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Polykretis, C.; Chalkias, C.; Ferentinou, M. Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area. Bull. Eng. Geol. Environ. 2019, 78, 1173–1187. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, I.; Lee, S. Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: A case study of Seorak mountain area in Korea. Environ. Earth Sci. 2015, 74, 413–429. [Google Scholar] [CrossRef]
- Lepore, C.; Kamal, S.A.; Shanahan, P.; Bras, R.L. Rainfall-induced landslide susceptibility zonation of Puerto Rico. Environ. Earth Sci. 2012, 66, 1667–1681. [Google Scholar] [CrossRef]
- Oh, H.J.; Park, N.W.; Lee, S.S.; Lee, S. Extraction of landslide related factors from ASTER imagery and its application to landslide susceptibility mapping. Int. J. Remote Sens. 2012, 33, 3211–3231. [Google Scholar] [CrossRef]
- Neuhauser, B.; Damm, B.; Terhorst, B. GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model. Landslides 2012, 9, 511–528. [Google Scholar] [CrossRef]
- Schicker, R.; Moon, V. Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology 2012, 161–162, 40–57. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, J.; Park, I. Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. Catena 2013, 100, 15–30. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T.; Nazmfar, H. GIS-based ordered weighted averaging and Dempster-Shafer methods for landslide susceptibility mapping in the Urmia Lake Basin, Iran. Int. J. Digit. Earth 2014, 7, 688–708. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat. Hazard. 2013, 65, 135–165. [Google Scholar] [CrossRef]
- Li, Y.; Chen, G.; Tang, C.; Zhou, G.; Zheng, L. Rainfall and Earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural Network. Nat. Hazard. Earth Syst. Sci. 2012, 12, 2719–2729. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; Singh, T.N.; Verma, A.K.; Gulati, A.; Tiwari, K.C. Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India. Nat. Hazards 2013, 65, 315–330. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Nat. Hazards. 2013, 66, 707–730. [Google Scholar]
- Yilmaz, I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ. Earth Sci. 2010, 61, 821–836. [Google Scholar] [CrossRef]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef]
- Wan, S.; Lei, T.C.; Chou, T.Y. A novel data mining technique of analysis and classification for landslide problems. Nat. Hazards 2010, 52, 211–230. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J.; Oh, H. Landslide susceptibility mapping using a neuro-fuzzy. In Proceedings of the Abstract Presented at the American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 13–17 December 2009. [Google Scholar]
- Pradhan, B.; Sezer, E.A.; Gokceoglu, C.; Buchroithner, M.F. Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Trans. Geosci. Remote Sens. 2010, 48, 4164–4177. [Google Scholar] [CrossRef]
- Vahidnia, M.H.; Alesheikh, A.A.; Alimohammadi, A.; Hosseinali, F. A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput. Geosci. 2010, 36, 1101–1114. [Google Scholar] [CrossRef]
- Oh, H.J.; Pradhan, B. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput. Geosci. 2011, 37, 1264–1276. [Google Scholar] [CrossRef]
- Hosseini, S.A. Cognition, Usage and Management of Forest Machinery; Ghalam Emamat Press: Tehran, Iran, 2017; 189p. [Google Scholar]
- Rasai, A.; Khosravi, K.; Habibnejad Roshan, M.; Heidari, A.; Mashayekh Khan, A. Lnadslide Hazard Zonation using Multivariate Regression in GIS Environment (Case Study: Aghmashhad Watershed, Mazandaran). J. Watershed Manag. Res. 2015, 6, 205–215. [Google Scholar]
- Moradi, H.R. Landslide hazard Susceptibility Mapping and its Evaluation Using the Statistics Analysis logistic Regression. J. Range Watershed Manag. 2015, 67, 617–629. [Google Scholar]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Lee, C.W. Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR–RF integrated model and multiresolution DEMs. Remote Sens. 2019, 11, 999. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Pradhan, B.; Rezaei, K.L.; Sohrabi, M. An ensemble model for landslide susceptibility mapping in a forested area. Geocarto Int. 2020, 35, 1680–1705. [Google Scholar] [CrossRef]
- Arabameri, A.; Karimi-Sangchini, E.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Lee, S.; Tien Bui, D. Novel Credal Decision Tree-Based Ensemble Approaches for Predicting the Landslide Susceptibility. Remote Sens. 2020, 12, 3389. [Google Scholar] [CrossRef]
- Memarian, H. Engineering Geology and Geotechnics, 6th ed.; University of Tehran Press: Tehran, Iran, 2013; 992p. [Google Scholar]
- Cruden, D.M. Estimating the risks from landslides using historical data. In Landslide Risk Assessment; Cruden, D.M., Fell, R., Eds.; Balkema Pub.: Rotterdam, The Netherlands, 1997; pp. 177–184. [Google Scholar]
- Lee, S.; Thalib, J.A. Probabilistic landslide susceptibility and factor effect analysis. Environ. Geol. 2005, 47, 982–990. [Google Scholar] [CrossRef]
- Brardinoni, F.; Slaymaker, O.; Hassan, M.A. Landslide inventory in a rugged forested watershed: A comparison between air-photo and field survey data. Geomorphology 2003, 54, 179–196. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Rasyid, A.R.; Bhand, N.P.; Yatabe, R. Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron. Disasters 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Jaafari, A.; Najafi, A.; Pourghasemi, H.R.; Rezaeian, J.; Sattarian, A. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int. J. Environ. Sci. Technol. 2014, 11, 909–926. [Google Scholar] [CrossRef] [Green Version]
- Ghajar, I.; Najafi, A.; Torabi, S.A.; Khamehchiyan, M.; Boston, K. An Adaptive Network based Fuzzy Inference System for Rock Share Estimation in Forest Road Construction. Croat. J. For. Eng. 2012, 33, 313–328. [Google Scholar]
- Hosseini, S.A.; Savadkuhi, N.M. Assessment and Studying Landslide, its type and displacement along Forest Road Edge (Case study: Tajan Watershed-Mazandaran). Res. J. For. Sci. Eng. 2011, 1, 1–11. [Google Scholar]
- Ghajar, I.; Najafi, A. Modeling landslide susceptibility of a mountain forests using Adaptive Neuro-Fuzzy Inference System (ANFIS) for forest road planning. Iran. J. For. Pop. Res. 2014, 22, 509–526. [Google Scholar]
- Jaafari, A.; Najafi, A.; Rezaeian, J.; Sattarian, A.; Ghajar, E. Planning road networks in Landslide-prone areas: A case study from the northern forest of Iran. Land Use Policy 2015, 47, 198–208. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Mohammady, M.; Pradhan, B. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 2012, 97, 71–84. [Google Scholar] [CrossRef]
- Budimir, M.E.; Atkinson, P.M.; Lewis, H.G. A systematic review of landslide probability mapping using logistic regression. Landslides 2015, 12, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Dewitte, O.; Chung, C.J.; Cornet, Y.; Daoudi, M.; Demoulin, A. Combining spatial data in landslide reactivation susceptibility mapping: A likelihood ratio-based approach in W Belgium. Geomorphology 2010, 122, 153–166. [Google Scholar] [CrossRef]
- Ozdemir, A. Landslide susceptibility mapping of vicinity of Yaka landslide (Gelendost, Turkey) using conditional probability approach in GIS. Environ. Geol. 2009, 57, 1675–1686. [Google Scholar] [CrossRef]
- Yilmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Comput. Geosci. 2009, 35, 1125–1138. [Google Scholar] [CrossRef]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S. GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling. Catena 2021, 203, 15344. [Google Scholar] [CrossRef]
- Regmi, A.D.; Devkota, K.C.; Yoshida, K.; Pradhan, B.; Pourghasemi, H.R.; Kumamoto, T.; Akgun, A. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab. J. Geosci. 2014, 7, 725–742. [Google Scholar] [CrossRef]
- Mohammady, M.; Pourghasemi, H.R.; Pradhan, B. Landslide susceptibility mapping at Golestan Province Iran: A comparison between frequency ratio, Dempster–Shafer, and weights-of evidence models. J. Asian Earth Sci. 2012, 61, 221–236. [Google Scholar] [CrossRef]
- Ozdemir, A.; Altural, T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J. Asian Earth Sci. 2013, 64, 180–197. [Google Scholar] [CrossRef]
- Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Akib, S.; Mohammadhassani, M.; Jahangirzadeh, A. Application of ANFIS and LR in prediction of scour depth in bridges. Comput. Fluids 2014, 91, 77–86. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Derivation of fuzzy control rules from human operator’s control actions. In Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, Marseille, France, 19–21 July 1983; pp. 55–60. [Google Scholar]
- Dixon, B. Applicability of neuro-fuzzy techniques in predicting groundwater vulnerability: A GIS-based sensitivity analysis. J. Hydrol. 2005, 309, 17–38. [Google Scholar] [CrossRef]
- Chen, W.; Chen, X.; Peng, J.; Panahi, M.; Lee, S. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci. Front. 2021, 12, 93–107. [Google Scholar] [CrossRef]
- Dehnavi, A.; Nasiri Aghdam, I.; Pradhan, B.; Morshed Varzandeh, M.H. A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena 2015, 135, 122–148. [Google Scholar] [CrossRef]
- Hong, H.; Pradhan, B.; Xu, C.; Bui, D.T. Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 2015, 133, 266–281. [Google Scholar] [CrossRef]
- Farahnak, M.; Mitsuyasu, K.; Jeong, S.; Otsuki, K.; Chiwa, M.; Sadeghi, S.M.M.; Kume, A. Soil hydraulic conductivity differences between upslope and downslope of two coniferous trees on a hillslope. J. For. Res. 2019, 24, 143–152. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult. Bull. Eng. Geol. Environ. 2006, 65, 67–184. [Google Scholar] [CrossRef]
Factor | Class | Landslide | Landslide (%) | Domain | Domain (%) | Frequency Ratio |
---|---|---|---|---|---|---|
Slope (%) | 0–10 | 32 | 4.67 | 34,780 | 11.96 | 0.39 |
10–20 | 194 | 28.32 | 123,512 | 42.46 | 0.67 | |
20–30 | 217 | 31.68 | 77,526 | 26.65 | 1.19 | |
30–40 | 129 | 18.83 | 35,372 | 12.16 | 1.55 | |
40–50 | 64 | 9.34 | 13,178 | 4.53 | 2.06 | |
50–60 | 48 | 7.01 | 4867 | 1.67 | 4.19 | |
60–70 | 1 | 0.15 | 1452 | 0.5 | 0.29 | |
>70 | 0 | 0 | 195 | 0.07 | 0 | |
Aspect | N | 172 | 25.15 | 65,080 | 22.37 | 1.12 |
NE | 192 | 28.07 | 39,423 | 13.55 | 2.07 | |
E | 84 | 12.28 | 37,376 | 12.85 | 0.96 | |
SE | 50 | 7.31 | 30,595 | 10.52 | 0.7 | |
S | 22 | 3.22 | 21,996 | 7.56 | 0.43 | |
SW | 15 | 2.19 | 15,284 | 5.25 | 0.42 | |
W | 55 | 8.04 | 29,530 | 10.15 | 0.79 | |
NW | 94 | 13.74 | 51,613 | 17.74 | 0.77 | |
Altitude (m) | <300 | 54 | 7.91 | 28,058 | 9.67 | 0.82 |
300–600 | 387 | 56.66 | 176,522 | 60.87 | 0.93 | |
600–900 | 242 | 35.43 | 84,007 | 28.97 | 1.22 | |
>900 | 0 | 0 | 1435 | 0.49 | 0 | |
Rainfall (mm) | <650 | 87 | 12.70 | 37,702 | 12.93 | 0.31 |
650–750 | 535 | 78.10 | 237,134 | 81.32 | 0 | |
>750 | 63 | 9.19 | 16,748 | 5.74 | 1 | |
Landslide position | Fill slope | 404 | 66.12 | 30 | 61.22 | 1.28 |
Cut slope | 177 | 28.96 | 17 | 34.69 | 0.83 | |
Both | 30 | 4.9 | 2 | 4.08 | 1.20 | |
Road age | <20 | 141 | 23.19 | 10 | 20.83 | 1.11 |
20–40 | 453 | 74.5 | 34 | 70.83 | 1.05 | |
>40 | 14 | 2.3 | 4 | 8.33 | 0.28 | |
Soil properties | 2.2.1 | 73 | 10.76 | 21,430 | 7.4 | 1.45 |
2.2.4 | 140 | 20.64 | 100,264 | 34.65 | 0.60 | |
2.2.2 | 4 | 0.58 | 16,458 | 5.68 | 0.10 | |
2.2.3 | 461 | 67.99 | 151,179 | 52.25 | 1.30 | |
Geology | L-ml2 | 8 | 1.17 | 20,023 | 6.86 | 0.17 |
L-ml3 | 7 | 1.02 | 25,934 | 8.89 | 0.11 | |
L-PLL2 | 347 | 50.66 | 104,339 | 35.77 | 1.42 | |
L-PLL3 | 203 | 29.64 | 100,577 | 34.48 | 0.86 | |
L-PLL4 | 0 | 0 | 3452 | 1.18 | 0 | |
L-PLL1 | 42 | 6.13 | 19,968 | 6.84 | 0.90 | |
L-R | 17 | 2.48 | 5441 | 1.87 | 1.33 | |
L-K2l2 | 2 | 0.29 | 4358 | 1.49 | 0.20 | |
L-Pel1 | 59 | 8.61 | 7629 | 2.62 | 3.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zare, N.; Hosseini, S.A.O.; Hafizi, M.K.; Najafi, A.; Majnounian, B.; Geertsema, M. A Comparison of an Adaptive Neuro-Fuzzy and Frequency Ratio Model to Landslide-Susceptibility Mapping along Forest Road Networks. Forests 2021, 12, 1087. https://doi.org/10.3390/f12081087
Zare N, Hosseini SAO, Hafizi MK, Najafi A, Majnounian B, Geertsema M. A Comparison of an Adaptive Neuro-Fuzzy and Frequency Ratio Model to Landslide-Susceptibility Mapping along Forest Road Networks. Forests. 2021; 12(8):1087. https://doi.org/10.3390/f12081087
Chicago/Turabian StyleZare, Nastaran, Seyed Ata Ollah Hosseini, Mohammad Kazem Hafizi, Akbar Najafi, Baris Majnounian, and Marten Geertsema. 2021. "A Comparison of an Adaptive Neuro-Fuzzy and Frequency Ratio Model to Landslide-Susceptibility Mapping along Forest Road Networks" Forests 12, no. 8: 1087. https://doi.org/10.3390/f12081087
APA StyleZare, N., Hosseini, S. A. O., Hafizi, M. K., Najafi, A., Majnounian, B., & Geertsema, M. (2021). A Comparison of an Adaptive Neuro-Fuzzy and Frequency Ratio Model to Landslide-Susceptibility Mapping along Forest Road Networks. Forests, 12(8), 1087. https://doi.org/10.3390/f12081087