South-Eastern Baltic Provenances of Scots Pine Show Heritable Weather-Growth Relationships
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trials and Provenances
2.2. Sampling and Measurements
2.3. Data Analysis
3. Results
3.1. Datasets
3.2. Linear Weather-Growth Relationships
3.3. Genetic Parameters of Weather-Growth Responses
4. Discussion
4.1. Weather-Growth Relationships
4.2. Local Specialization and Provenance Variation of Growth Sensitivity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buras, A.; Menzel, A. Projecting tree species composition changes of European forests for 2061–2090 under RCP 4.5 and RCP 8.5 Scenarios. Front. Plant Sci. 2019, 9, 1986. [Google Scholar] [CrossRef] [Green Version]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Aitken, S.N.; Bemmels, J.B. Time to get moving: Assisted gene flow of forest trees. Evol. Appl. 2016, 9, 271–290. [Google Scholar] [CrossRef]
- Nabuurs, G.-J.; Verkerk, P.J.; Schelhaas, M.-J.; Ramón González Olabarria, J.; Trasobares, A.; Cienciala, E. Climate-Smart Forestry: Mitigation impacts in three European regions. In Science to Policy 6; European Forest Institute: Sarnjar, Finland, 2018; p. 32. [Google Scholar]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.-J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Grattapaglia, D.; Silva-Junior, O.B.; Resende, R.T.; Cappa, E.P.; Müller, B.S.F.; Tan, B.; Isik, F.; Ratcliffe, B.; El-Kassaby, Y.A. Quantitative genetics and genomics converge to accelerate forest tree breeding. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Jansson, G.; Hansen, J.K.; Haapanen, M.; Kvaalen, H.; Steffenrem, A. The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland. Scand. J. For. Res. 2017, 32, 273–286. [Google Scholar] [CrossRef]
- Breed, M.F.; Harrison, P.A.; Bischoff, A.; Durruty, P.; Gellie, N.J.C.; Gonzales, E.K.; Havens, K.; Karmann, M.; Kilkenny, F.F.; Krauss, S.L.; et al. Priority actions to improve provenance decision-making. Bioscience 2018, 68, 510–516. [Google Scholar] [CrossRef]
- Breed, M.F.; Stead, M.G.; Ottewell, K.M.; Gardner, M.G.; Lowe, A.J. Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conserv. Genet. 2013, 14, 1–10. [Google Scholar] [CrossRef]
- MacLachlan, I.R.; Wang, T.; Hamann, A.; Smets, P.; Aitken, S.N. Selective breeding of lodgepole pine increases growth and maintains climatic adaptation. For. Ecol. Manag. 2017, 391, 404–416. [Google Scholar] [CrossRef]
- Leites, L.P.; Rehfeldt, G.E.; Robinson, A.P.; Crookston, N.L.; Jaquish, B. Possibilities and limitations of using historic provenance tests to infer forest species growth responses to climate change. Nat. Resour. Model. 2012, 25, 409–433. [Google Scholar] [CrossRef]
- Sáenz-Romero, C.; Guzmán-Reyna, R.R.; Rehfeldt, G.E. Altitudinal genetic variation among Pinus oocarpa populations in Michoacán, Mexico. Implications for seed zoning, conservation, tree breeding and global warming. For. Ecol. Manag. 2006, 229, 340–350. [Google Scholar] [CrossRef]
- Ahrens, C.W.; Andrew, M.E.; Mazanec, R.A.; Ruthrof, K.X.; Challis, A.; Hardy, G.; Byrne, M.; Tissue, D.T.; Rymer, P.D. Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecol. Evol. 2020, 10, 232–248. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Suontama, M.; Burdon, R.D.; Dungey, H.S. Genotype by environment interactions in forest tree breeding: Review of methodology and perspectives on research and application. Tree Genet. Genomes 2017, 13, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Namkoong, G.; Kang, H.C.; Brouard, J.S. Tree Breeding: Principles and Strategies; Monographs on Theoretical and Applied Genetics; Springer: New York, NY, USA, 1988; Volume 11. [Google Scholar]
- Chauvin, T.; Cochard, H.; Segura, V.; Rozenberg, P. Native-source climate determines the Douglas-fir potential of adaptation to drought. For. Ecol. Manag. 2019, 444, 9–20. [Google Scholar] [CrossRef]
- Li, X.; Blackman, C.J.; Choat, B.; Duursma, R.A.; Rymer, P.D.; Medlyn, B.E.; Tissue, D.T. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant Cell Environ. 2018, 41, 646–660. [Google Scholar] [CrossRef]
- Moran, E.; Lauder, J.; Musser, C.; Stathos, A.; Shu, M. The genetics of drought tolerance in conifers. New Phytol. 2017, 216, 1034–1048. [Google Scholar] [CrossRef] [Green Version]
- Klisz, M.; Buras, A.; Sass-Klaassen, U.; Puchałka, R.; Koprowski, M.; Ukalska, J. Limitations at the limit? Diminishing of Genetic effects in Norway spruce provenance trials. Front. Plant Sci. 2019, 10, 306. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Fries, A.; Wu, H.X. Age trend of heritability, genetic correlation, and efficiency of early selection for wood quality traits in Scots pine. Can. J. For. Res. 2015, 45, 817–825. [Google Scholar] [CrossRef]
- Hong, Z.; Fries, A.; Wu, H.X. High negative genetic correlations between growth traits and wood properties suggest incorporating multiple traits selection including economic weights for the future Scots pine breeding programs. Ann. For. Sci. 2014, 71, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Haapanen, M.; Velling, P.; Annala, M.L. Progeny trial estimates of genetic parameters for growth and quality traits in Scots pine. Silva Fenn. 1997, 31, 3–12. [Google Scholar] [CrossRef]
- Martín, J.A.; Esteban, L.G.; de Palacios, P.; Fernández, F.G. Variation in wood anatomical traits of Pinus sylvestris L. between Spanish regions of provenance. Trees Struct. Funct. 2010, 24, 1017–1028. [Google Scholar] [CrossRef]
- Nabais, C.; Hansen, J.K.; David-Schwartz, R.; Klisz, M.; López, R.; Rozenberg, P. The effect of climate on wood density: What provenance trials tell us? For. Ecol. Manag. 2018, 408, 148–156. [Google Scholar] [CrossRef]
- Hayatgheibi, H.; Fries, A.; Kroon, J.; Wu, H.X. Estimation of genetic parameters, provenance performances, and genotype by environment interactions for growth and stiffness in lodgepole pine (Pinus contorta). Scand. J. For. Res. 2019, 34, 1–11. [Google Scholar] [CrossRef]
- Krakau, U.-K.; Liesebach, M.; Aronen, T.; Lelu-Walter, M.-A.; Schneck, V. Scots Pine (Pinus sylvestris L.). In Forest Tree Breeding in Europe; Paques, L., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 267–323. [Google Scholar]
- Lenz, P.R.N.; Nadeau, S.; Mottet, M.-J.; Perron, M.; Isabel, N.; Beaulieu, J.; Bousquet, J. Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evol. Appl. 2020, 13, 76–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdon, R.D.; Klápště, J. Alternative selection methods and explicit or implied economic-worth functions for different traits in tree breeding. Tree Genet. Genomes 2019, 15, 1–15. [Google Scholar] [CrossRef]
- Magnussen, S. Selection index: Economic weights for maximum simultaneous genetic gain. Theor. Appl. Genet. 1990, 79, 289–293. [Google Scholar] [CrossRef]
- Housset, J.M.; Nadeau, S.; Isabel, N.; Depardieu, C.; Duchesne, I.; Lenz, P.; Girardin, M.P. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. New Phytol. 2018, 218, 630–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Babst, F.; Bellassen, V.; Frank, D.; Launois, T.; Tan, K.; Ciais, P.; Poulter, B. Converging climate sensitivities of European forests between observed radial tree growth and vegetation models. Ecosystems 2018, 21, 410–425. [Google Scholar] [CrossRef] [Green Version]
- Matías, L.; Linares, J.C.; Sánchez-Miranda, Á.; Jump, A.S. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity. Glob. Chang. Biol. 2017, 23, 4106–4116. [Google Scholar] [CrossRef]
- McCullough, I.M.; Davis, F.W.; Williams, A.P. A range of possibilities: Assessing geographic variation in climate sensitivity of ponderosa pine using tree rings. For. Ecol. Manag. 2017, 402, 223–233. [Google Scholar] [CrossRef]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010; ISBN 0816526850. [Google Scholar]
- Cook, E.R. The decomposition of tree-ring series for environmental studies. Tree Ring Bull. 1987, 47, 37–59. [Google Scholar]
- Cook, E.R.; Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 1997, 7, 361–370. [Google Scholar] [CrossRef]
- Matisons, R.; Elferts, D.; Krišāns, O.; Schneck, V.; Gärtner, H.; Bast, A.; Wojda, T.; Kowalczyk, J.; Jansons, Ā. Non-linear regional weather-growth relationships indicate limited adaptability of the eastern Baltic Scots pine. For. Ecol. Manag. 2021, 479, 118600. [Google Scholar] [CrossRef]
- Wilmking, M.; Maaten-Theunissen, M.; Maaten, E.; Scharnweber, T.; Buras, A.; Biermann, C.; Gurskaya, M.; Hallinger, M.; Lange, J.; Shetti, R.; et al. Global assessment of relationships between climate and tree growth. Glob. Chang. Biol. 2020, 26, 3212–3220. [Google Scholar] [CrossRef] [Green Version]
- Fei, S.; Desprez, J.M.; Potter, K.M.; Jo, I.; Knott, J.A.; Oswalt, C.M. Divergence of species responses to climate change. Sci. Adv. 2017, 3, e1603055. [Google Scholar] [CrossRef] [Green Version]
- Way, D.A.; Oren, R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data. Tree Physiol. 2010, 30, 669–688. [Google Scholar] [CrossRef] [Green Version]
- Hytteborn, H.; Maslov, A.; Nazimova, D.; Rysin, L.P. Boreal forests of Eurasia. In Coniferous Forests, Ecosystems of the World; Elsevier: Amsterdam, The Netherlands, 2005; pp. 23–99. [Google Scholar]
- Reich, P.B.; Oleksyn, J. Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol. Lett. 2008, 11, 588–597. [Google Scholar] [CrossRef]
- Loehle, C. Height growth rate tradeoffs determine northern and southern range limits for trees. J. Biogeogr. 1998, 25, 735–742. [Google Scholar] [CrossRef]
- Jansons, Ā.; Matisons, R.; Šēnhofa, S.; Katrevičs, J.; Jansons, J. High-frequency variation of tree-ring width of some native and alien tree species in Latvia during the period 1965–2009. Dendrochronologia 2016, 40, 151–158. [Google Scholar] [CrossRef]
- Salminen, H.; Jalkanen, R. Modelling the effect of temperature on height increment of Scots pine at high latitudes. Silva Fenn. 2005, 39, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Jansons, Ā.; Matisons, R.; Baumanis, I.; Puriņa, L. Effect of climatic factors on height increment of Scots pine in experimental plantation in Kalsnava, Latvia. For. Ecol. Manag. 2013, 306, 185–191. [Google Scholar] [CrossRef]
- Matisons, R.; Jansone, D.; Elferts, D.; Adamovičs, A.; Schneck, V.; Jansons, Ā. Plasticity of response of tree-ring width of Scots pine provenances to weather extremes in Latvia. Dendrochronologia 2019, 54, 1–10. [Google Scholar] [CrossRef]
- Xu, K.; Wang, X.; Liang, P.; An, H.; Sun, H.; Han, W.; Li, Q. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cavin, L.; Jump, A.S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 2017, 23, 362–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansons, Ā.; Baumanis, I. Growth dynamics of scots pine geographical provenances in Latvia. Balt. For. 2005, 11, 29–37. [Google Scholar]
- Kohlstock, N.; Schneck, H. Scots pine breeding (Pinus sylvestris L.) at Waldsieversdorf and its impact on pine management in the north eastern German lowland. Silvae Genet. 1992, 41, 174–180. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, D.L.; Klein Tank, A.M.G.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.R.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and surface. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 159–254. ISBN 9781107415324. [Google Scholar]
- Avotniece, Z.; Klavins, M.; Rodinovs, V. Changes of extreme climate events in Latvia. Environ. Clim. Technol. 2012, 9, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Berlin, M.; Persson, T.; Jansson, G.; Haapanen, M.; Ruotsalainen, S.; Bärring, L.; Gull, B.A. Scots pine transfer effect models for growth and survival in Sweden and Finland. Silva Fenn. 2016, 50. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, S.G.; Ding, C.; Hamann, A.; Hacke, U.G.; Thomas, B.R.; Brouard, J.S. Frost hardiness vs. growth performance in trembling aspen: An experimental test of assisted migration. J. Appl. Ecol. 2013, 50, 939–949. [Google Scholar] [CrossRef] [Green Version]
- Taeger, S.; Zang, C.; Liesebach, M.; Schneck, V.; Menzel, A. Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For. Ecol. Manag. 2013, 307, 30–42. [Google Scholar] [CrossRef]
- Gärtner, H.; Nievergelt, D. The core-microtome: A new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 2010, 28, 85–92. [Google Scholar] [CrossRef]
- Holmes, R. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Zang, C.; Biondi, F. Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia 2013, 31, 68–74. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Alberto, F.J.; Derory, J.; Boury, C.; Frigerio, J.-M.; Zimmermann, N.E.; Kremer, A. Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea. Genetics 2013, 195, 495–512. [Google Scholar] [CrossRef] [Green Version]
- Loha, A.; Tigabu, M.; Teketay, D.; Lundkvist, K.; Fries, A. Provenance variation in seed morphometric traits, germination, and seedling growth of Cordia africana Lam. New For. 2006, 32, 71–86. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longmans Green: Harlow, UK, 1996. [Google Scholar]
- Dickerson, G.E. Techniques for research in quantitative animal genetics. In Techniques and Procedures in Animal Science Research; American Society of Animal Science: Albany, NY, USA, 1969; pp. 36–79. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available online: http://www.r-project.org/ (accessed on 5 December 2019).
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Harvey, J.E.; Smiljanić, M.; Scharnweber, T.; Buras, A.; Cedro, A.; Cruz-García, R.; Drobyshev, I.; Janecka, K.; Jansons, Ā.; Kaczka, R.; et al. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Glob. Chang. Biol. 2020, 26, 2505–2518. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trajkovic, S. Temperature-based approaches for estimating reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 316–323. [Google Scholar] [CrossRef]
- Lanner, R.M. Patterns of shoot development in Pinus and their relationship to growth potential. In Tree Physiology and Yield Improvement; Cannell, M.G.R., Last, F.T., Eds.; Academic Press: London, UK, 1976; pp. 223–243. [Google Scholar]
- Hacket-Pain, A.J.; Ascoli, D.; Vacchiano, G.; Biondi, F.; Cavin, L.; Conedera, M.; Drobyshev, I.; Liñán, I.D.; Friend, A.D.; Grabner, M.; et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 2018, 21, 1833–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jyske, T.; Mäkinen, H.; Kalliokoski, T.; Nöjd, P. Intra-annual tracheid production of Norway spruce and Scots pine across a latitudinal gradient in Finland. Agric. For. Meteorol. 2014, 194, 241–254. [Google Scholar] [CrossRef]
- Strand, M.; Löfvenius, M.O.; Bergsten, U.; Lundmark, T.; Rosvall, O. Height growth of planted conifer seedlings in relation to solar radiation and position in Scots pine shelterwood. For. Ecol. Manag. 2006, 224, 258–265. [Google Scholar] [CrossRef]
- Sass-Klaassen, U.; Fonti, P.; Cherubini, P.; Gričar, J.; Robert, E.M.R.; Steppe, K.; Bräuning, A. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 2016, 7, 1069. [Google Scholar] [CrossRef] [Green Version]
- Tierney, G.L.; Fahey, T.J.; Groffman, P.M.; Hardy, J.P.; Fitzhugh, R.D.; Driscoll, C.T. Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochemistry 2001, 56, 175–190. [Google Scholar] [CrossRef]
- Beck, E.H.; Heim, R.; Hansen, J. Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 2004, 29, 449–459. [Google Scholar] [CrossRef]
- Heer, K.; Behringer, D.; Piermattei, A.; Bässler, C.; Brandl, R.; Fady, B.; Jehl, H.; Liepelt, S.; Lorch, S.; Piotti, A.; et al. Linking dendroecology and association genetics in natural populations: Stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies albaMill.). Mol. Ecol. 2018, 27, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Matisons, R.; Krišāns, O.; Kārkliņa, A.; Adamovičs, A.; Jansons, Ā.; Gärtner, H. Plasticity and climatic sensitivity of wood anatomy contribute to performance of eastern Baltic provenances of Scots pine. For. Ecol. Manag. 2019, 452, 117568. [Google Scholar] [CrossRef]
- Salmela, M.J.; Cavers, S.; Cottrell, J.E.; Iason, G.R.; Ennos, R.A. Seasonal patterns of photochemical capacity and spring phenology reveal genetic differentiation among native Scots pine (Pinus sylvestris L.) populations in Scotland. For. Ecol. Manag. 2011, 262, 1020–1029. [Google Scholar] [CrossRef]
- Gull, B.A.; Persson, T.; Fedorkov, A.; Mullin, T.J. Longitudinal differences in Scots pine shoot elongation. Silva Fenn. 2018, 52. [Google Scholar] [CrossRef]
- Alakärppä, E.; Salo, H.M.; Valledor, L.; Cañal, M.J.; Häggman, H.; Vuosku, J. Natural variation of DNA methylation and gene expression may determine local adaptations of Scots pine populations. J. Exp. Bot. 2018, 69, 5293–5305. [Google Scholar] [CrossRef]
- Jokipii-Lukkari, S.; Delhomme, N.; Schiffthaler, B.; Mannapperuma, C.; Prestele, J.; Nilsson, O.; Street, N.R.; Tuominen, H. Transcriptional roadmap to seasonal variation in wood formation of Norway spruce. Plant Physiol. 2018, 176, 2851–2870. [Google Scholar] [CrossRef] [Green Version]
- Brzeziecki, B.; Kienast, F. Classifying the life-history strategies of trees on the basis of the Grimian model. For. Ecol. Manag. 1994, 69, 167–187. [Google Scholar] [CrossRef]
- Nagavciuc, V.; Roibu, C.C.; Ionita, M.; Mursa, A.; Cotos, M.G.; Popa, I. Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania. Dendrochronologia 2019, 54, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Beck, W.; Heinzig, P. A new tool to discovering realistic climate-growth relationships. For. Res. Eng. Int. J. 2018, 2, 49–52. [Google Scholar] [CrossRef]
- Haapanen, M. Time trends in genetic parameter estimates and selection efficiency for Scots pine in relation to field testing method. For. Genet. 2001, 8, 129–144. [Google Scholar]
- Olsson, T.; Ericsson, T. Genetic parameter estimates of growth and survival of Pinus sylvestris with mixed model multiple-trait restricted maximum likelihood analysis. Scand. J. For. Res. 2002, 17, 103–110. [Google Scholar] [CrossRef]
LI | ZV | KA | WS | NL | |
---|---|---|---|---|---|
Latitude, ° | 56.45 | 56.65 | 56.80 | 52.53 | 52.02 |
Longitude, ° | 21.63 | 24.37 | 25.93 | 14.05 | 12.33 |
Elevation, m | 15 | 50 | 220 | 60 | 125 |
Soil | Oligotrophic sandy (podzol) | Oligotrophic sandy (podzol) | Oligotrophic silty (podzol) | Mesotrophic brown sandy | Mesotrophic brown sandy |
Mean annual temperature, °C | 7.5 ± 0.6 | 7.2 ± 0.7 | 6.4 ± 0.7 | 9.8 ± 0.7 | 10.1 ± 0.7 |
Mean May–September temperature, °C | 15.0 ± 0.7 | 15.2 ± 0.8 | 14.8 ± 0.8 | 16.9 ± 0.7 | 16.9 ± 0.7 |
Mean January temperature, °C | −1.9 ± 2.4 | −3.0 ± 2.6 | −4.2 ± 2.7 | 0.5 ± 2.5 | 1.3 ± 2.4 |
Mean July temperature, °C | 17.8 ± 1.6 | 18.2 ± 1.6 | 17.9 ± 1.6 | 19.4 ± 1.6 | 19.3 ± 1.7 |
Mean annual precipitation sum, mm | 789 ± 91 | 659 ± 75 | 689 ± 81 | 568 ± 80 | 542 ± 73 |
May–September precipitation sum, mm | 353 ± 71 | 333 ± 63 | 349 ± 66 | 290 ± 66 | 274 ± 59 |
DIP | EBN | KAL | NBD | RST | GUS | RYT | |
---|---|---|---|---|---|---|---|
Latitude, ° | 50.54 | 50.30 | 56.47 | 53.52 | 54.15 | 53.51 | 53.44 |
Longitude, ° | 13.58 | 12.29 | 25.60 | 13.26 | 12.16 | 12.16 | 18.01 |
Elevation, m | 590 | 710 | 190 | 40 | 15 | 25 | 130 |
Field performance in trials in Latvia | Low | Low | Moderate (local) | High | High | High | High |
Mean annual temperature, °C | 6.6 ± 0.5 | 5.9 ± 0.7 | 5.5 ± 0.8 | 8.5 ± 0.7 | 8.6 ± 0.7 | 8.5 ± 0.7 | 8.0 ± 0.7 |
Mean May-September temperature, °C | 13.6 ± 0.7 | 12.6 ± 0.8 | 14.4 ± 0.8 | 15.4 ± 0.7 | 15.2 ± 0.7 | 15.2 ± 0.8 | 15.4 ± 0.7 |
Mean January temperature, °C | −2.6 ± 2.4 | −3.0 ± 2.3 | −6.5 ± 3.7 | −0.3 ± 2.3 | 0.2 ± 2.1 | −0.1 ± 2.3 | −2.3 ± 2.6 |
Mean July temperature, °C | 15.3 ± 1.2 | 14.7 ± 1.3 | 17.0 ± 1.2 | 17.7 ± 1.3 | 17.3 ± 1.2 | 17.3 ± 1.3 | 17.7 ± 1.3 |
Mean annual precipitation sum | 804 ± 68 | 994 ± 101 | 624 ± 77 | 577 ± 75 | 570 ± 81 | 599 ± 79 | 546 ± 73 |
May-September precipitation sum | 402 ± 32 | 499 ± 60 | 328 ± 66 | 290 ± 48 | 284 ± 51 | 300 ± 50 | 310 ± 48 |
DIP | EBN | KAL | NBD | RST | GUS | RYT | |
---|---|---|---|---|---|---|---|
Number of cross-dated trees | 9–13 | 9–13 | 10–14 | 14–18 | 14–17 | 10–15 | 10–16 |
Mean series length, years | 33.1–34.6 | 34.0–35.0 | 34.4–34.8 | 34.5–35.0 | 34.2–34.9 | 33.6–34.9 | 34.1–35.0 |
Mean tree-ring width, mm | 2.06–2.65 | 2.10–2.94 | 2.20–3.20 | 2.35–3.53 | 2.34–3.16 | 2.44–3.42 | 2.51–3.50 |
St. dev. tree-ring width, mm | 1.00–1.61 | 0.96–1.36 | 0.95–1.54 | 0.99–1.71 | 0.89–1.64 | 1.01–1.73 | 0.86–1.82 |
r-bar | 0.27–0.41 | 0.32–0.39 | 0.31–0.44 | 0.33–0.51 | 0.37–0.53 | 0.33–0.48 | 0.32–0.42 |
gini | 0.25–0.34 | 0.23–0.32 | 0.22–0.26 | 0.21–0.26 | 0.20–0.28 | 0.22–0.28 | 0.18–0.28 |
AR1 | 0.67–0.82 | 0.66–0.83 | 0.60–0.83 | 0.57–0.82 | 0.58–0.83 | 0.63–0.82 | 0.55–0.83 |
SENS | 0.22–0.28 | 0.19–0.30 | 0.16–0.29 | 0.16–0.30 | 0.18–0.28 | 0.17–0.26 | 0.16–0.26 |
EPS | 0.85–0.89 | 0.85–0.88 | 0.86–0.90 | 0.88–0.94 | 0.90–0.94 | 0.85–0.93 | 0.87–0.92 |
SNR | 4.22–8.38 | 4.68–7.64 | 5.33–9.39 | 7.32–14.76 | 8.63–15.41 | 5.52–13.86 | 4.63–11.68 |
H2 | PCV | |
---|---|---|
Temperature previous July | 0.27 ± 0.17 | 0.60 |
Temperature previous September | 0.25 ± 0.16 | 0.45 |
Temperature January | 0.21 ± 0.11 | 0.65 |
Temperature June | 0.29 ± 0.17 | 0.44 |
Precipitation previous June | 0.32 ± 0.15 | 0.24 |
Precipitation March | 0.23 ± 0.15 | 0.56 |
Precipitation July | 0.26 ± 0.14 | 0.18 |
SPEI previous October | 0.15 ± 0.10 | 0.58 |
SPEI previous November | 0.25 ± 0.17 | 0.47 |
SPEI June | 0.24 ± 0.18 | 0.54 |
SPEI July | 0.17 ± 0.11 | 0.44 |
SPEI August | 0.25 ± 0.17 | 0.50 |
SPEI September | 0.27 ± 0.16 | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matisons, R.; Schneck, V.; Jansone, D.; Bāders, E.; Dubra, S.; Zeltiņš, P.; Jansons, Ā. South-Eastern Baltic Provenances of Scots Pine Show Heritable Weather-Growth Relationships. Forests 2021, 12, 1101. https://doi.org/10.3390/f12081101
Matisons R, Schneck V, Jansone D, Bāders E, Dubra S, Zeltiņš P, Jansons Ā. South-Eastern Baltic Provenances of Scots Pine Show Heritable Weather-Growth Relationships. Forests. 2021; 12(8):1101. https://doi.org/10.3390/f12081101
Chicago/Turabian StyleMatisons, Roberts, Volker Schneck, Diāna Jansone, Endijs Bāders, Stefānija Dubra, Pauls Zeltiņš, and Āris Jansons. 2021. "South-Eastern Baltic Provenances of Scots Pine Show Heritable Weather-Growth Relationships" Forests 12, no. 8: 1101. https://doi.org/10.3390/f12081101
APA StyleMatisons, R., Schneck, V., Jansone, D., Bāders, E., Dubra, S., Zeltiņš, P., & Jansons, Ā. (2021). South-Eastern Baltic Provenances of Scots Pine Show Heritable Weather-Growth Relationships. Forests, 12(8), 1101. https://doi.org/10.3390/f12081101