Holocene Fire Regime Changes in the Southern Lake Baikal Region Influenced by Climate-Vegetation-Anthropogenic Activity Interactions
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sediment Sampling and Datation
2.3. Reconstructing Fire Frequency with Charcoal Particles
2.3.1. Sample Preparation and Charcoal Quantification
2.3.2. Fire Frequency Reconstruction
2.4. Pollen Transfer Functions for Climate Reconstruction
3. Results
3.1. Age-Depth Models
3.2. Fire Activity History
3.3. Mean Annual Temperature and Precipitations at Dulikha
4. Discussion
4.1. Age-Depth Models
4.2. South Lake Baikal Spatial Fire Activity
4.3. Vegetation and Climate Influences on Fire History
4.4. Late Holocene Human Impact on Fire History
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chapin, F.S.; Danell, K. Boreal forest. In Global Biodiversity in a Changing Environment; Springer: Berlin/Heidelberg, Germany, 2001; pp. 101–120. [Google Scholar]
- Chapman, B.R.; Bolen, E.G. Ecology of North America; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Goldammer, J.G.; Furyaev, V.V. Fire in Ecosystems of Boreal Eurasia; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar] [CrossRef]
- Shlisky, A.; Waugh, J.; Gonzalez, P.; Gonzalez, M.; Manta, M.; Santoso, H.; Alvarado, E.; Nuruddin, A.A.; Rodríguez-Trejo, D.A.; Swaty, R.; et al. Fire, ecosystems and people: Threats and strategies for global biodiversity conservation. Arlingt. Nat. Conserv. 2007. Available online: https://www.conservationgateway.org/Files/Pages/Global_Fire_Assessment.aspx (accessed on 22 July 2019).
- De Groot, W.J.; Cantin, A.S.; Flannigan, M.; Soja, A.J.; Gowman, L.M.; Newbery, A. A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manag. 2013, 294, 23–34. [Google Scholar] [CrossRef]
- Macdonald, G.M.; Velichko, A.A.; Kremenetski, C.V.; Borisova, O.K.; Goleva, A.A.; Andreev, A.; Cwynar, L.C.; Riding, R.T.; Forman, S.; Edwards, T.W.; et al. Holocene Treeline History and Climate Change Across Northern Eurasia. Quat. Res. 2000, 53, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Carcaillet, C.; Bergeron, Y.; Richard, P.J.; Fréchette, B.; Gauthier, S.; Prairie, Y.T. Change of fire frequency in the eastern Canadian boreal forests during the Holocene: Does vegetation composition or climate trigger the fire regime? J. Ecol. 2001, 89, 930–946. [Google Scholar] [CrossRef]
- Talon, B.; Payette, S.; Filion, L.; Delwaide, A. Reconstruction of the long-term fire history of an old-growth deciduous forest in Southern Québec, Canada, from charred wood in mineral soils. Quat. Res. 2005, 64, 36–43. [Google Scholar] [CrossRef]
- Hély, C.; Girardin, M.P.; Ali, A.A.; Carcaillet, C.; Brewer, S.; Bergeron, Y. Eastern boreal North American wildfire risk of the past 7000 years: A model-data comparison. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Ali, A.A.; Blarquez, O.; Girardin, M.P.; Hély, C.; Tinquaut, F.; El Guellab, A.; Valsecchi, V.; Terrier, A.; Bremond, L.; Genries, A.; et al. Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proc. Natl. Acad. Sci. USA 2012, 109, 20966–20970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blarquez, O.; Ali, A.A.; Girardin, M.P.; Grondin, P.; Fréchette, B.; Bergeron, Y.; Hély, C. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers. Sci. Rep. 2015, 5, 13356. [Google Scholar] [CrossRef] [PubMed]
- Lankia, H.; Wallenius, T.; Várkonyi, G.; Kouki, J.; Snäll, T. Forest fire history, aspen and goat willow in a Fennoscandian old-growth landscape: Are current population structures a legacy of historical fires? J. Veg. Sci. 2012, 23, 1159–1169. [Google Scholar] [CrossRef]
- Clear, J.L.; Molinari, C.; Bradshaw, R.H.W. Holocene fire in Fennoscandia and Denmark. Int. J. Wildland Fire 2014, 23, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Drobyshev, I.; Bergeron, Y.; Linderholm, H.W.; Granström, A.; Niklasson, M. A 700-year record of large fire years in northern Scandinavia shows large variability and increased frequency during the 1800 s. J. Quat. Sci. 2015, 30, 211–221. [Google Scholar] [CrossRef]
- Magne, G.; Brossier, B.; Gandouin, E.; Paradis, L.; Drobyshev, I.; Kryshen, A.; Hély, C.; Alleaume, S.; Ali, A. Lacustrine charcoal peaks provide an accurate record of surface wildfires in a North European boreal forest. Holocene 2019, 30, 380–388. [Google Scholar] [CrossRef]
- Katamura, F.; Fukuda, M.; Bosikov, N.P.; Desyatkin, R.V. Charcoal records from thermokarst deposits in central Yakutia, eastern Siberia: Implications for forest fire history and thermokarst development. Quat. Res. 2009, 71, 36–40. [Google Scholar] [CrossRef]
- Eichler, A.; Tinner, W.; Brütsch, S.; Olivier, S.; Papina, T.; Schwikowski, M. An ice-core based history of Siberian forest fires since AD 1250. Quat. Sci. Rev. 2011, 30, 1027–1034. [Google Scholar] [CrossRef]
- Barhoumi, C.; Peyron, O.; Joannin, S.; Subetto, D.; Kryshen, A.; Drobyshev, I.; Girardin, M.P.; Brossier, B.; Paradis, L.; Pastor, T.; et al. Gradually increasing forest fire activity during the Holocene in the northern Ural region (Komi Republic, Russia). Holocene 2019, 29, 1906–1920. [Google Scholar] [CrossRef]
- Barhoumi, C.; Ali, A.A.; Peyron, O.; Dugerdil, L.; Borisova, O.; Golubeva, Y.; Subetto, D.; Kryshen, A.; Drobyshev, I.; Ryzhkova, N.; et al. Did long-term fire control the coniferous boreal forest composition of the northern Ural region (Komi Republic, Russia)? J. Biogeogr. 2020, 47, 2426–2441. [Google Scholar] [CrossRef]
- Lamentowicz, M.; Słowiński, M.; Marcisz, K.; Zielińska, M.; Kaliszan, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Fiałkiewicz-Kozieł, B.; Jassey, V.; et al. Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive. Quat. Res. 2015, 84, 312–325. [Google Scholar] [CrossRef] [Green Version]
- Glückler, R.; Herzschuh, U.; Kruse, S.; Andreev, A.; Vyse, S.A.; Winkler, B.; Biskaborn, B.K.; Pestrykova, L.; Dietze, E. Wildfire history of the boreal forest of southwestern Yakutia (Siberia) over the last two millennia documented by a lake-sedimentary charcoal record. Biogeosciences 2021, 18, 4185–4209. [Google Scholar] [CrossRef]
- Safronov, A.N. Effects of Climatic Warming and Wildfires on Recent Vegetation Changes in the Lake Baikal Basin. Climate 2020, 8, 57. [Google Scholar] [CrossRef]
- Mackay, A.W. The paleoclimatology of Lake Baikal: A diatom synthesis and prospectus. Earth-Sci. Rev. 2007, 82, 181–215. [Google Scholar] [CrossRef]
- Sofronova, T.; Volokitina, A.; Sofronov, M. Assessing the fire hazard from weather conditions in mountain forests of the Southern Baikal region. Geogr. Nat. Resour. 2008, 29, 163–168. [Google Scholar] [CrossRef]
- Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; Guiot, J.; et al. Chapter 3: Impacts of 1.5 °C global warming on natural and human systems. In Global Warming of 1.5 °C an IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; Available online: http://pure.iiasa.ac.at/id/eprint/15518/ (accessed on 18 March 2019).
- Mikhailov, T.M. Buryat shamanism. Sov. Anthropol. Archeol. 1989, 28, 9–19. [Google Scholar] [CrossRef]
- Kirillov, S.; Sedova, N.; Vorobyevskaya, E.; Zengina, T. Problems and prospects for tourism development in the Baikal Region, Russia. In Proceedings of the 14th GeoConference on Ecology, Economics, Education and Legislation, Albena, Bulgaria, 17–26 June 2014; Volume 2, pp. 531–538. [Google Scholar]
- Vologzhina, S.Z.; Sutyrina, E.N.; Akhtimankina, A.V. Assessment of Anthropogenic Activities on the Tourism and Recreation Territory of Olkhon Island (Irkutsk Region, Russia). IOP Conf. Ser. Earth Environ. Sci. 2018, 204, 012049. [Google Scholar] [CrossRef]
- Kozhova, O.M.; Silow, E.A. The current problems of Lake Baikal ecosystem conservation. Lakes Reserv. Res. Manag. 1998, 3, 19–33. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Gauthier, S. Young and old forest in the boreal: Critical stages of ecosystem dynamics and management under global change. For. Ecosyst. 2018, 5, 26. [Google Scholar] [CrossRef]
- Kontula, T.; Kirilchik, S.; Väinölä, R. Endemic diversification of the monophyletic cottoid fish species flock in Lake Baikal explored with mtDNA sequencing. Mol. Phylogenetics Evol. 2003, 27, 143–155. [Google Scholar] [CrossRef]
- Peterson, L.; Bergen, K.; Brown, D.; Vashchuk, L.; Blam, Y. Forested land-cover patterns and trends over changing forest management eras in the Siberian Baikal region. For. Ecol. Manag. 2009, 257, 911–922. [Google Scholar] [CrossRef]
- Gustafson, E.J.; Shvidenko, A.Z.; Scheller, R.M. Effectiveness of forest management strategies to mitigate effects of global change in south-central Siberia. Can. J. For. Res. 2011, 41, 1405–1421. [Google Scholar] [CrossRef] [Green Version]
- Bezrukova, E.; Abzaeva, A.; Letunova, P.; Kulagina, N.; Vershinin, K.; Belov, A.; Orlova, L.; Danko, L.; Krapivina, S. Post-glacial history of Siberian spruce (Picea obovata) in the Lake Baikal area and the significance of this species as a paleo-environmental indicator. Quat. Int. 2005, 136, 47–57. [Google Scholar] [CrossRef]
- Bezrukova, E.V.; Hildebrandt, S.; Letunova, P.P.; Ivanov, E.V.; Orlova, L.A.; Müller, S.; Tarasov, P.E. Vegetation dynamics around Lake Baikal since the middle Holocene reconstructed from the pollen and botanical composition analyses of peat sediments: Implications for paleoclimatic and archeological research. Quat. Int. 2013, 290-291, 35–45. [Google Scholar] [CrossRef]
- Fietz, S.; Nicklisch, A.; Oberhänsli, H. Phytoplankton response to climate changes in Lake Baikal during the Holocene and Kazantsevo Interglacials assessed from sedimentary pigments. J. Paleolimnol. 2006, 37, 177–203. [Google Scholar] [CrossRef]
- Shichi, K.; Takahara, H.; Krivonogov, S.K.; Bezrukova, E.V.; Kashiwaya, K.; Takehara, A.; Nakamura, T. Late Pleistocene and Holocene vegetation and climate records from Lake Kotokel, central Baikal region. Quat. Int. 2009, 205, 98–110. [Google Scholar] [CrossRef]
- Dugerdil, L.; Joannin, S.; Peyron, O.; Jouffroy-Bapicot, I.; Vannière, B.; Boldgiv, B.; Unkelbach, J.; Behling, H.; Ménot, G. Climate reconstructions based on GDGT and pollen surface datasets from Mongolia and Siberia: Calibrations and applicability to extremely cold-dry environments over the Late Holocene. Clim. Past Discuss. 2020, 2020, 1–39. [Google Scholar] [CrossRef]
- Schulze, E.-D.; Wirth, C.; Mollicone, D.; Ziegler, W. Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia 2005, 146, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Lapenis, A.; Shvidenko, A.; Shepaschenko, D.; Nilsson, S.; Aiyyer, A.; Schepaschenko, D. Acclimation of Russian forests to recent changes in climate. Glob. Chang. Biol. 2005, 11, 2090–2102. [Google Scholar] [CrossRef]
- Shorohova, E.; Kuuluvainen, T.; Kangur, A.; Jogiste, K. Natural stand structures, disturbance regimes and successional dynamics in the Eurasian boreal forests: A review with special reference to Russian studies. Ann. For. Sci. 2009, 66, 201. [Google Scholar] [CrossRef] [Green Version]
- Tchebakova, N.M.; Parfenova, E.; Soja, A.J. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ. Res. Lett. 2009, 4, 045013. [Google Scholar] [CrossRef]
- Goldammer, J.G. Vegetation Fires and Global Change-Challenges for Concerted International Action: A White Paper Directed to the United Nations and International Organizations; Remagen-Oberwinter: Remagen, Germany, 2015. [Google Scholar]
- Grieser, J.; Gommes, R.; Bernardi, M. New LocClim-the local climate estimator of FAO. Geophys. Res. Abstr. 2006, 8, 2. [Google Scholar]
- Bezrukova, E.V.; Letunova, P.P.; Vershinin, K.E.; Krivonogov, S.K.; Abzaeva, A.A.; Krapivina, S.M.; Khomutova, M.Y. Paleoenvironmental changes in Baikal Basin in the late glacial and Holocene. Berliner Palaeobiologische Abh. 2003, 4, 111–120. [Google Scholar]
- Demske, D.; Heumann, G.; Granoszewski, W.; Nita, M.; Mamakowa, K.; Tarasov, P.E.; Oberhänsli, H. Late glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal. Glob. Planet. Chang. 2005, 46, 255–279. [Google Scholar] [CrossRef] [Green Version]
- Leys, B.; Carcaillet, C.; Dezileau, L.; Ali, A.A.; Bradshaw, R. A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica. Quat. Res. 2013, 79, 337–349. [Google Scholar] [CrossRef]
- Rius, D.; Vannière, B.; Galop, D.; Richard, H. Holocene fire regime changes from multiple-site sedimentary charcoal analyses in the Lourdes basin (Pyrenees, France). Quat. Sci. Rev. 2011, 30, 1696–1709. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Reim Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Grootes, P.M.; Guilderson, T.P.; Haflidason, H.; Hajdas, I.; et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Hua, Q.; Barbetti, M.; Rakowski, A. Atmospheric Radiocarbon for the Period 1950–2010. Radiocarbon 2013, 55, 2059–2072. [Google Scholar] [CrossRef] [Green Version]
- Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 2010, 5, 512–518. [Google Scholar] [CrossRef]
- Mustaphi, C.J.C.; Davis, E.L.; Perreault, J.T.; Pisaric, M.F.J. Spatial variability of recent macroscopic charcoal deposition in a small montane lake and implications for reconstruction of watershed-scale fire regimes. J. Paleolimnol. 2015, 54, 71–86. [Google Scholar] [CrossRef]
- Higuera, P.E.; Peters, M.E.; Brubaker, L.B.; Gavin, D. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 2007, 26, 1790–1809. [Google Scholar] [CrossRef]
- Remy, C.C.; Hély, C.; Blarquez, O.; Magnan, G.; Bergeron, Y.; Lavoie, M.; Ali, A.A. Different regional climatic drivers of Holocene large wildfires in boreal forests of northeastern America. Environ. Res. Lett. 2017, 12, 035005. [Google Scholar] [CrossRef]
- Higuera, P.E.; Brubaker, L.B.; Anderson, P.M.; Brown, T.; Kennedy, A.T.; Hu, F.S. Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change. PLoS ONE 2008, 3, e0001744. [Google Scholar] [CrossRef]
- Ali, A.A.; Higuera, P.; Bergeron, Y.; Carcaillet, C. Comparing fire-history interpretations based on area, number and estimated volume of macroscopic charcoal in lake sediments. Quat. Res. 2009, 72, 462–468. [Google Scholar] [CrossRef]
- Brossier, B.; Oris, F.; Finsinger, W.; Asselin, H.; Bergeron, Y.; Ali, A. Using tree-ring records to calibrate peak detection in fire reconstructions based on sedimentary charcoal records. Holocene 2014, 24, 635–645. [Google Scholar] [CrossRef]
- Higuera, P.E.; Brubaker, L.B.; Anderson, P.M.; Hu, F.S.; Brown, T. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monogr. 2009, 79, 201–219. [Google Scholar] [CrossRef]
- R Core Team—European Environment Agency. 2020. Available online: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed on 2 May 2021).
- Binney, H. Vegetation of Eurasia from the Last Glacial Maximum to the Present: The Pollen Data; University of Southampton: Southampton, UK, 2017. [Google Scholar] [CrossRef]
- Jackson, S.; Williams, J.W. Modern Analogs in Quaternary Paleoecology: Here Today, Gone yesterday, Gone Tomorrow? Annu. Rev. Earth Planet. Sci. 2004, 32, 495–537. [Google Scholar] [CrossRef]
- Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeogr. Palaeoclim. Palaeoecol. 1990, 80, 49–69. [Google Scholar] [CrossRef]
- Prokopenko, A.A.; Khursevich, G.K.; Bezrukova, E.V.; Kuzmin, M.I.; Boes, X.; Williams, D.F.; Fedenya, S.A.; Kulagina, N.V.; Letunova, P.P.; Abzaeva, A.A. Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the Lake Baikal watershed. Quat. Res. 2007, 68, 2–17. [Google Scholar] [CrossRef]
- Bush, A.B. CO2/H2O and orbitally driven climate variability over central Asia through the Holocene. Quat. Int. 2005, 136, 15–23. [Google Scholar] [CrossRef]
- Higuera, P.E.; Sprugel, D.G.; Brubaker, L.B. Reconstructing fire regimes with charcoal from small-hollow sediments: A calibration with tree-ring records of fire. Holocene 2005, 15, 238–251. [Google Scholar] [CrossRef]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.; Flannigan, M.; Shugart, H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.; Chapin, F.S.; Stackhouse, P.W. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Chang. 2007, 56, 274–296. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, S.; Vaillancourt, M.-A. Aménagement Écosystémique en Forêt Boréale; Presses de l’Université du Québec: Québec, QC, Canada, 2008. [Google Scholar]
- Zoltai, S.C.; Morrissey, L.; Livingston, G.P.; Groot, W.J. Effects of fires on carbon cycling in North American boreal peatlands. Environ. Rev. 1998, 6, 13–24. [Google Scholar] [CrossRef]
- Ivanov, A.Y. Unique phenomena in Lake Baikal, Russia, imaged and studied with SAR and multi-sensor images. Int. J. Remote Sens. 2012, 33, 7579–7598. [Google Scholar] [CrossRef]
- Clark, D.; Kneeshaw, D.; Burton, P.; Antos, J. Coarse woody debris in sub-boreal spruce forests of west-central British Columbia. Can. J. For. Res. 1998, 28, 284–290. [Google Scholar] [CrossRef]
- Harper, K.A.; Bergeron, Y.; Drapeau, P.; Gauthier, S.; De Grandpré, L. Structural development following fire in black spruce boreal forest. For. Ecol. Manag. 2005, 206, 293–306. [Google Scholar] [CrossRef]
- Greene, D.F.; Noël, J.; Bergeron, Y.; Rousseau, M.; Gauthier, S. Recruitment of Picea mariana, Pinus banksiana, and Populus tremuloides across a burn severity gradient following wildfire in the southern boreal forest of Quebec. Can. J. For. Res. 2004, 34, 1845–1857. [Google Scholar] [CrossRef]
- Greene, D.; Splawinski, T.; Gauthier, S.; Bergeron, Y. Seed abscission schedules and the timing of post-fire salvage of Picea mariana and Pinus banksiana. For. Ecol. Manag. 2013, 303, 20–24. [Google Scholar] [CrossRef]
- Keeley, J.E.; Pausas, J.; Rundel, P.W.; Bond, W.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreĭ Alekseevich, V.; Wright, H.E.; Barnosky, C.W. Late Quaternary Environments of the Soviet Union; University of Minnesota Press: Minneapolis, MN, USA, 1984. [Google Scholar]
- Blyakharchuk, T. Western Siberia, a review of Holocene climatic changes. J. Sib. Fed. Univ. Biol. 2009, 2, 4–12. [Google Scholar]
- Korovin, G.N. Analysis of the Distribution of Forest Fires in Russia. In Biosafety of Forest Transgenic Trees; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1996; pp. 112–128. [Google Scholar]
- Kobe, F.; Bezrukova, E.V.; Leipe, C.; Shchetnikov, A.A.; Goslar, T.; Wagner, M.; Kostrova, S.S.; Tarasov, P.E. Holocene vegetation and climate history in Baikal Siberia reconstructed from pollen records and its implications for archaeology. Archaeol. Res. Asia 2020, 23, 100209. [Google Scholar] [CrossRef]
- Weber, M.; Scholz, D.; Schröder-Ritzrau, A.; Deininger, M.; Spötl, C.; Lugli, F.; Mertz-Kraus, R.; Jochum, K.P.; Fohlmeister, J.; Stumpf, C.F.; et al. Evidence of warm and humid interstadials in central Europe during early MIS 3 revealed by a multi-proxy speleothem record. Quat. Sci. Rev. 2018, 200, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, P.; Bezrukova, E.; Karabanov, E.; Nakagawa, T.; Wagner, M.; Kulagina, N.; Letunova, P.; Abzaeva, A.; Granoszewski, W.; Riedel, F. Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 252, 440–457. [Google Scholar] [CrossRef]
- Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; et al. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 2008, 30, 887–907. [Google Scholar] [CrossRef]
- Marlon, J.R.; Bartlein, P.; Daniau, A.-L.; Harrison, S.; Maezumi, S.; Power, M.J.; Tinner, W.; Vanniére, B. Global biomass burning: A synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 2013, 65, 5–25. [Google Scholar] [CrossRef]
- Dietze, E.; Mangelsdorf, K.; Andreev, A.; Karger, C.; Hopmans, E.; Schreuder, L.; Sachse, D.; Rach, O.; Nowaczyk, N.; Herzschuh, U. Anhydrosugars in Sediments pf Lake El’gygytgyn—Fire Regime Reconstructions of Ne Siberia During the Last Two Interglacials. In Proceedings of the 29th International Meeting on Organic Geochemistry, Gothenburg, Sweden, 1–6 September 2019. [Google Scholar]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.; Ebert, C.; Goetz, S.; Johnstone, J.; Potter, S.; Rogers, B.M.; Schuur, E.A.G.; et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nat. Cell Biol. 2019, 572, 520–523. [Google Scholar] [CrossRef] [PubMed]
Lake | Latitude | Longitude | Elevation (a. s. l. in m) | Surface (ha) | Sediment Core Length (cm) | Current Local Vegetation |
---|---|---|---|---|---|---|
Ébène | 51°28′57.65″ N | 104°50′12.21″ E | 496 | 0.47 | 177 | Pinus sibirica, Pinus sylvestris, Betula pubescens |
Jarod | 51°26′51″ N | 104°50′25″ E | 515 | 2.55 | 215 | Betula pubescens, Picea obovata, Pinus sibirica, Pinus sylvestris, Abies sibirica |
Lake | Sample Depth (cm) | 14C yr BP | Materials Dated | Lab. Code |
---|---|---|---|---|
Ébène | 15–16 | 1975 ± 15 | Macro-remains | ULA-8344 |
Ébène | 30–31 | 2745 ± 15 | Macro-remains | ULA-8345 |
Ébène | 78–79 | 5880 ± 15 | Macro-remains | ULA-8341 |
Ébène | 111–112 | 6000 ± 20 | Macro-remains | ULA-8342 |
Ébène | 144–145 | 8065 ± 15 | Macro-remains | ULA-8343 |
Jarod | 15–16 | 720 ±15 | Organic sediments | ULA-8346 |
Jarod | 30–31 | 1610 ± 15 | Organic sediments | ULA-8347 |
Jarod a | 58–59 | 1390 ± 15 | Organic sediments | ULA-8348 |
Jarod | 103–104 | 3325 ± 15 | Organic sediments | ULA-8349 |
Jarod | 148–149 | 5860 ± 20 | Organic sediments | ULA-8350 |
Jarod | 181–182 | 8395 ± 20 | Organic sediments | ULA-8351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barhoumi, C.; Vogel, M.; Dugerdil, L.; Limani, H.; Joannin, S.; Peyron, O.; Ali, A.A. Holocene Fire Regime Changes in the Southern Lake Baikal Region Influenced by Climate-Vegetation-Anthropogenic Activity Interactions. Forests 2021, 12, 978. https://doi.org/10.3390/f12080978
Barhoumi C, Vogel M, Dugerdil L, Limani H, Joannin S, Peyron O, Ali AA. Holocene Fire Regime Changes in the Southern Lake Baikal Region Influenced by Climate-Vegetation-Anthropogenic Activity Interactions. Forests. 2021; 12(8):978. https://doi.org/10.3390/f12080978
Chicago/Turabian StyleBarhoumi, Chéïma, Marianne Vogel, Lucas Dugerdil, Hanane Limani, Sébastien Joannin, Odile Peyron, and Ahmed Adam Ali. 2021. "Holocene Fire Regime Changes in the Southern Lake Baikal Region Influenced by Climate-Vegetation-Anthropogenic Activity Interactions" Forests 12, no. 8: 978. https://doi.org/10.3390/f12080978
APA StyleBarhoumi, C., Vogel, M., Dugerdil, L., Limani, H., Joannin, S., Peyron, O., & Ali, A. A. (2021). Holocene Fire Regime Changes in the Southern Lake Baikal Region Influenced by Climate-Vegetation-Anthropogenic Activity Interactions. Forests, 12(8), 978. https://doi.org/10.3390/f12080978