Fragmentation and Connectivity of Island Forests in Agricultural Mediterranean Environments: A Comparative Study between the Guadalquivir Valley (Spain) and the Apulia Region (Italy)
Abstract
:1. Introduction
- They favour the maintenance of biological richness and biodiversity. They contribute to the knowledge and characterization of the potential vegetation in those territories with a marked alteration [15].
- IFs are an important core for ecological succession in the recovery of some areas of abandoned cultivation, and/or the creation of ecological corridors allowing species flow through the landscape [16].
2. Materials and Methods
2.1. Study Area
2.2. Reference Cartography
2.3. Fragmentation and Connectivity Analysis
- n is the total number of patches or nodes in the landscape,
- a are the attributes of the patches (area in our study),
- Pij is the product of the maximum probability, i.e., the probability of direct and indirect dispersion between patches i to j,
- AL is the maximum landscape attribute, i.e., summation of the attributes of all the patches in the landscape (total area in our study).
- dij is the distance between nodes i to j,
- α is the dispersion distance of the species,
- dPCintra or intrapatch: This refers to connections between the resources available within the same patch, i.e., the internal connectivity of each patch. When the attribute used is its area, this factor depends on the patch size, which means that the larger the size, the greater the dPCintra, regardless of the space it occupies in the set of patches. A patch with a high dPCintra value could be considered as a core habitat.
- dPCflux or interpach: This represents the direct dispersion flow to the other patches, that is, the flow that occurs between two patches without the need for a third to act as a bridge.
- dPCconnector or stepping stone: This measures how a patch facilitates dispersion without being the origin or destination of the connection. It is the contribution of each patch as a connecting element or bridge to the other patches of the study area. These elements are known as stepping stones in landscape ecology [66]. Stepping stones are patches of habitat that are smaller than the core habitat patches. The value of dPCconnector fluctuates in relation to the position it occupies with respect to the rest of the patches.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Crooks, K.R.; Sanjayan, M.A. Connectivity Conservation: Maintaining Connections for Nature. In Connectivity Conservation; Crooks, K.R., Sanjayan, M., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 1–20. [Google Scholar]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- Rands, M.R.W.; Adams, W.M.; Bennun, L.; Butchart, S.H.M.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P.W.; et al. Biodiversity Conservation: Challenges Beyond 2010. Science 2010, 239, 1298–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crutzen, P.J.; Stoermer, E.F. The ‘Anthropocene’. Glob. Chang. Newsl. 2000, 41, 17–18. [Google Scholar]
- Forman, R.T. Land Mosaics, The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Jongman, R.H.G. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan 2002, 58, 211–221. [Google Scholar] [CrossRef]
- Didham, R.K. Ecological Consequences of Habitat Fragmentation. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2010. [Google Scholar] [CrossRef]
- Fuchs, R.; Herold, M.; Verburg, P.H.; Clevers, J.G.P.W. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 2013, 10, 1543–1559. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.; Herold, M.; Verburg, P.H.; Clevers, J.G.P.W.; Eberle, J. Gross changes in reconstructions of historic land cover/use for Europe between 1900–2010. Glob. Chang. Biol. 2015, 21, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.A.; Hobbs, R.J.; Margules, C.R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 1991, 5, 18–32. [Google Scholar] [CrossRef]
- Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. Oikos 1994, 71, 355–366. [Google Scholar] [CrossRef] [Green Version]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Diamond, J.M. The island dilemma: Lessons of modern biogeographical studies for the design of natural reserves. Biol. Conserv. 1975, 7, 129–146. [Google Scholar] [CrossRef]
- Blanco, E.; Casado, M.A.; Costa, M.; Escribano, R.; García, M.; Génova, M.; Gómez, A.; Gómez, F.; Moreno, J.C.; Morla, C.; et al. Los Bosques Ibéricos; Editorial Planeta: Barcelona, Spain, 1997. [Google Scholar]
- Grande, T.O.; Aguiar, L.M.S.; Machado, R.B. Heating a biodiversity hotspot: Connectivity is more important than remaining habitat. Landsc. Ecol. 2020, 35, 639–657. [Google Scholar] [CrossRef]
- Pino, J.; Rodà, J.; Ribas, J.; Pons, X. Landscape structure and bird species richness: Implications for conservation in rural areas between natural parks. Landsc. Urban Plan. 2000, 49, 35–48. [Google Scholar] [CrossRef]
- Atauri, J.A.; de Lucio, J.V. The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landsc. Ecol. 2001, 16, 147–159. [Google Scholar] [CrossRef]
- Kemp, J.C.; Barret, G.W. Spatial patterning: Impact of uncultivated corridors on arthropod populations within soybean agroecosystems. Ecology 1989, 70, 114–128. [Google Scholar] [CrossRef]
- Vessella, F.; López-Tirado, J.; Simeone, M.C.; Schirone, B.; Hidalgo, P.J. A tree species range in the face of climate change: Cork oak as a study case for the Mediterranean biome. Eur. J. For. Res. 2017, 136, 555–569. [Google Scholar] [CrossRef]
- López-Tirado, J.; Vessella, F.; Stephan, J.; Ayan, S.; Schirone, B.; Hidalgo, P.J. Effect of climate change on potential distribution of Cedrus libani A. Rich in the twenty-first century: An Ecological Niche Modeling assessment. New For. 2021, 52, 363–376. [Google Scholar] [CrossRef]
- López-Tirado, J.; Hidalgo, P.J. A high resolution predictive model for relict trees in the Mediterranean-mountain forests (Pinus sylvestris L., P. nigra Arnold and Abies pinsapo Boiss.) from the south of Spain: A reliable management tool for reforestation. For. Ecol. Manag. 2014, 330, 105–114. [Google Scholar] [CrossRef]
- Aussenac, G. Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann. For. Sci. 2002, 59, 823–832. [Google Scholar] [CrossRef]
- IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations; Version 1.0. Gland; IUCN Species Survival Commission: Gland, Switzerland, 2013; pp. 1–57. [Google Scholar]
- Anderson, A.B.; Jenkins, C.N. Applying Nature’s Design Corridors as a Strategy for Biodiversity Conservation; Columbia University Press: New York, NY, USA, 2006. [Google Scholar]
- Habitats Directive. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Off. J. Eur. Union 1992, 206, 7–50. [Google Scholar]
- Rivas-Martínez, S.; Penas, A.; Díaz, T.E. Biogeographic Map of Europe. 2004. Available online: www.globalbioclimatics.org (accessed on 15 November 2018).
- González, F. Ecología y Paisaje; Blume: Madrid, Spain, 1981. [Google Scholar]
- Farina, A. Principles and Methods in Landscape Ecology; Chapman and Hall: London, UK, 1998. [Google Scholar]
- Blondel, J.; Aronson, J. Biology and Wildlife of the Mediterranean Region; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853. [Google Scholar] [CrossRef] [PubMed]
- Médail, F.; Quézel, P. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann. Mo. Bot. Gard. 1997, 84, 112–127. [Google Scholar] [CrossRef]
- Cuttelod, A.; García, N.; Abdul Malak, D.; Temple, H.; Katariya, V. The Mediterranean: A biodiversity hotspot under threat. In Review of the IUCN Red List of Threatened Species; Vié, J.-C., Hilton-Taylor, C., Stuart, S.N., Eds.; IUCN: Gland, Switzerland, 2008. [Google Scholar]
- Acácio, V.; Dias, F.S.; Catry, F.X.; Rocha, M.; Moreira, F. Landscape dynamics in Mediterranean oak forests under global change: Understanding the role of anthropogenic and environmental drivers across forest types. Glob. Chang. Biol. 2017, 23, 1199–1217. [Google Scholar] [CrossRef]
- Trabaud, L. Recovery following fire of woody plant communities in Alberes (western Pyrenees, France). Vie Milieu 1993, 43, 43–51. [Google Scholar]
- IPCC Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.
- Adame, J.A.; Lope, L.; Hidalgo, P.J.; Sorribas, M.; Gutiérrez-Álvarez, I.; del Águila, A.; Saiz-López, A.; Yela, M. Study of the exceptional meteorological conditions, trace gases and particulate matter measured during the 2017 forest fire in Doñana Natural Park, Spain. Sci. Total Environ. 2018, 45, 710–720. [Google Scholar] [CrossRef]
- Hidalgo, P.J.; Porras, R.; López-Tirado, J.; Sánchez, A. Localización y Caracterización de Bosques Islas en la Campiña del Guadalquivir y Corrección de la Cartografía 1:10.000. Proyecto Motriz de Excelencia (P10-RNM-6013); EXP SE-09-14; Universidad de Huelva: Huelva, Spain, 2013. [Google Scholar]
- REDIAM. Red de Información Ambiental de la Junta de Andalucía. 2018. Available online: http://www.juntadeandalucia.es/medioambiente/site/rediam (accessed on 15 November 2018).
- PNOA. Plan Nacional de Ortofotografía Aérea (PNOA). Available online: https://pnoa.ign.es/ (accessed on 15 November 2018).
- Brunori, A. Bosco, cultura e tradizione in Puglia. Alberie Territ. 2005, 12, 7–11. [Google Scholar]
- Campanile, G.; Cocca, C. I boschi della Puglia: Caratteristiche e problematiche. Edizioni For. 2005, 2, 172–177. [Google Scholar] [CrossRef]
- Lavarra, P.; Angelini, P.; Augello, R.; Bianco, P.M.; Capogrossi, R.; Gennaio, R.; La Ghezza, V.; Marrese, M. Il Sistema Carta della Natura della Regione Puglia; Serie Rapporti 204/2014; ISPRA: Rome, Italy, 2014. [Google Scholar]
- Martín, J.; Fernández, L.; Urios, G. Los Bosques Isla en Andalucía. Consejería de Medio Ambiente y Ordenación del Territorio; Junta de Andalucía: Sevilla, Spain, 2013; p. 192. [Google Scholar]
- Harary, F. Graph Theory; Addison-Wesley: Reading, MA, USA, 1969. [Google Scholar]
- Ricotta, C.; Stanisci, A.; Avena, G.C.; Blasi, C. Connectivity of landscape mosaics: A graph-theoretical approach. Community Ecol. 2000, 1, 89–94. [Google Scholar] [CrossRef]
- Machado, R.; Godinho, S.; Guiomar, N.; Gil, A.; Pirnat, J. Using graph theory to analyse and assess changes in Mediterranean woodland connectivity. Landsc. Ecol. 2020, 35, 1291–1308. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in the landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Saura, S.; Rubio, L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 2010, 33, 523–537. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Modell. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Bossema, I. Jays and oaks: An eco-ethological study of a symbiosis. Behaviour 1979, 70, 1–117. [Google Scholar] [CrossRef] [Green Version]
- Díaz, M.; Alonso, C.L. Wood mouse Apodemus sylvaticus winter food supply: Density, condition, breeding, and parasites. Ecology 2003, 84, 2680–2691. [Google Scholar] [CrossRef]
- Gómez, J.M. Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography 2003, 26, 573–584. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.M.; Puerta-Piñeiro, C.; Schupp, E.W. Effectiveness of rodents as local seed dispersers of Holm oaks. Oecologia 2008, 155, 529–537. [Google Scholar] [CrossRef]
- Pons, J.; Pausas, J.G. Modelling jay (Garrulus glandarius) abundance and distribution for oak regeneration assessment in Mediterranean landscapes. For. Ecol. Manag. 2008, 256, 578–584. [Google Scholar] [CrossRef]
- Perea, R.; Miguel, A.; Gil, L.; Perea, R.; San Miguel, A.; Gil, A. Interacciones planta-animal en la regeneración de Quercus pyrenaica: Ecología y gestión. Ecosistemas 2014, 23, 18–26. [Google Scholar]
- Broughton, R.K.; Bullock, J.M.; George, C.; Hill, R.A.; Hinsley, S.A.; Maziarz, M. Long-term woodland restoration on lowland farmland through passive rewilding. PLoS ONE 2021, 16, e0252466. [Google Scholar] [CrossRef]
- Lambert, J.E. Seed Dispersal and Frugivory: Ecology, Evolution and Conservation; CAB International: Wallingford, UK, 2002. [Google Scholar]
- Pulido, F.J.; Díaz, M. Regeneration of a Mediterranean oak: A whole-cycle approach. Ecoscience 2005, 12, 92–102. [Google Scholar] [CrossRef]
- Perea, R.; San Miguel, A.; Gil, L. Leftovers in seed dispersal: Ecological implications of partial seed consumption for oak regeneration. J. Ecol. 2011, 99, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.; Puerta-Piñero, C.; Leverkus, A.B.; Moreno-Rueda, G.; Sánchez-Miranda, A. Post-fire salvage logging alters a key plant-animal interaction for forest regeneration. Ecosphere 2012, 3, 1–12. [Google Scholar] [CrossRef]
- Santos, T.; Tellería, J.L.; Carbonell, R. Bird conservation in fragmented Mediterranean forests of Spain: Effects of geographical location, habitat and landscape degradation. Biol. Conserv. 2002, 105, 113–125. [Google Scholar] [CrossRef]
- Cagnin, M.; Moreno, S.; Aloise, G.; Garofalo, G.; Villafuerte, R.; Gaona, P.; Cristaldi, M. Comparative study of Spanish and Italian terrestrial small mammal coenoses from different biotopes in Mediterranean peninsular tip regions. J. Biogeogr. 1998, 25, 1105–1113. [Google Scholar] [CrossRef]
- Fitzgibbon, C.D. Small mammals in farm woodlands: The effects of habitat, isolation and surrounding land-use patterns. J. Appl. Ecol. 1997, 34, 530–539. [Google Scholar] [CrossRef]
- Perea, R. Dispersión y predación de semillas por fauna: Implicaciones en la regeneración forestal de bosques templados. Ecosistemas 2012, 21, 224–229. [Google Scholar]
- Saura, S.; Bodin, Ö.; Fortin, M.J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 2014, 51, 171–182. [Google Scholar] [CrossRef]
- Liu, W.; Hughes, A.C.; Bai, Y.; Li, Z.; Mei, C.; Ma, Y. Using landscape connectivity tools to identify conservation priorities in forested areas and potential restoration priorities in rubber plantation in Xishuangbanna, Southwest China. Landsc. Ecol. 2020, 35, 389–402. [Google Scholar] [CrossRef]
- Pascual-Hortal, L.; Saura, S. Integrating landscape connectivity in broad-scale forest planning through a new graph-based habitat availability methodology: Application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). Eur. J. For. Res. 2008, 127, 23–31. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Hu, M.; Fan, C.; Wang, T.; Xia, B. Promoting landscape connectivity of highly urbanized area: An ecological network approach. Ecol. Indic. 2021, 125, 107487. [Google Scholar] [CrossRef]
- Uezu, A.; Beyer, D.D.; Metzger, J.P. Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region? Biodivers. Conserv. 2008, 17, 1907–1922. [Google Scholar] [CrossRef]
- Fahrig, L. Habitat fragmentation: A long and tangled tale. Glob. Ecol. Biogeogr. 2019, 28, 33–41. [Google Scholar] [CrossRef]
- Bermejo, D.; Cáceres, F.; Moreira, J.M. Medio siglo de cambios en la evolución del suelo en Andalucía 1956–2007; Consejería de Medio Ambiente, Junta de Andalucía: Seville, Spain, 2011. [Google Scholar]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity is a vital element of landscape structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Hortal, L.; Saura, S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Sánchez-Almendro, A.J.; Hidalgo, P.J.; Galán, R.; Carrasco, J.M.; López-Tirado, J. Assessment and Monitoring Protocols to Guarantee the Maintenance of Biodiversity in Certified Forests: A Case Study for FSC (Forest Stewardship Council) Forests in Southwestern Spain. Forests 2018, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography; Oxford University Press: Oxford, UK, 1934. [Google Scholar]
Intervals | dPC Values | Colour Scale | Connectivity | |
---|---|---|---|---|
1 | 0.0001–0.009 | low | ||
2 | 0.01–0.099 | medium low | ||
3 | 0.1–0.999 | medium | ||
4 | 1–9.999 | medium high | ||
5 | >10 | high |
Study Area/Time Slice | Total Area (km2) | nº Polygons | Total IF Area (ha) | Mean Area (ha) | Total Perimeter (m) | Mean Perimeter (m) |
---|---|---|---|---|---|---|
Guadalquivir 1956 | 17,188 | 975 | 27,832.82 | 28.55 | 2,681,335 | 2311 |
Guadalquivir (present) | 17,188 | 706 | 11,622.49 | 16.04 | 1,789,746 | 2535 |
Apulia (present) | 19,345 | 1046 | 13,327.64 | 13.07 | 2,527,263 | 2416 |
Area/Time Slice | PC | Σ dPC/Mean dPC | Σ dPCintra/Mean dPCintra | Σ dPCflux/Mean dPCflux | Σ dPCconnect/Mean dPCconnect |
---|---|---|---|---|---|
Guadalquivir 1956 | 4670.62 | 192.29/0.19 | 40.17/0.04 | 119.65/0.12 | 32.46/0.03 |
Guadalquivir (present) | 1987.64 | 176.42/0.24 | 45.84/0.06 | 108.30/0.15 | 21.89/0.03 |
Apulia (present) | 2470.88 | 193.12/0.18 | 39.56/0.03 | 120.87/0.12 | 33.49/0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, P.J.; Hernández, H.; Sánchez-Almendro, A.J.; López-Tirado, J.; Vessella, F.; Porras, R. Fragmentation and Connectivity of Island Forests in Agricultural Mediterranean Environments: A Comparative Study between the Guadalquivir Valley (Spain) and the Apulia Region (Italy). Forests 2021, 12, 1201. https://doi.org/10.3390/f12091201
Hidalgo PJ, Hernández H, Sánchez-Almendro AJ, López-Tirado J, Vessella F, Porras R. Fragmentation and Connectivity of Island Forests in Agricultural Mediterranean Environments: A Comparative Study between the Guadalquivir Valley (Spain) and the Apulia Region (Italy). Forests. 2021; 12(9):1201. https://doi.org/10.3390/f12091201
Chicago/Turabian StyleHidalgo, Pablo J., Helena Hernández, Antonio J. Sánchez-Almendro, Javier López-Tirado, Federico Vessella, and Rafael Porras. 2021. "Fragmentation and Connectivity of Island Forests in Agricultural Mediterranean Environments: A Comparative Study between the Guadalquivir Valley (Spain) and the Apulia Region (Italy)" Forests 12, no. 9: 1201. https://doi.org/10.3390/f12091201
APA StyleHidalgo, P. J., Hernández, H., Sánchez-Almendro, A. J., López-Tirado, J., Vessella, F., & Porras, R. (2021). Fragmentation and Connectivity of Island Forests in Agricultural Mediterranean Environments: A Comparative Study between the Guadalquivir Valley (Spain) and the Apulia Region (Italy). Forests, 12(9), 1201. https://doi.org/10.3390/f12091201