A New Individual Tree Species Classification Method Based on the ResU-Net Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Data
2.3. Experimental Process
2.4. Data Preprocessing
2.5. Sample Dataset Construction
2.5.1. Building the Sample Set
2.5.2. Data Augmentation
2.6. Network Training and Classification
2.6.1. Improved U-Net Model
2.6.2. ResU-Net Model
2.6.3. Experimental Environment
2.6.4. Training and Prediction
3. Results
3.1. Classification Accuracy
3.2. Classification Map
4. Discussion
4.1. The Reliability of the U-Net Model Framework
4.2. The Residual Structure and U-Net Model Framework
4.3. The Separability of Rare Tree Species Samples
4.4. The Selection of Data Sources
4.5. Experimental Errors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hyyppä, J.; Hyyppä, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 2008, 29, 1339–1366. [Google Scholar] [CrossRef]
- Trivino, M.; Pohjanmies, T.; Mazziotta, A.; Juutinen, A.; Podkopaev, D.; Le Tortorec, E.; Monkkonen, M. Optimizing management to enhance multifunctionality in a boreal forest landscape. J. Appl. Ecol. 2017, 54, 61–70. [Google Scholar] [CrossRef]
- Creedy, J.; Wurzbacher, A.D. The economic value of a forested catchment with timber, water and carbon sequestration benefits. Ecol. Econ. 2001, 38, 71–83. [Google Scholar] [CrossRef]
- Yan, S.J.; Jing, L.H.; Wang, H. A New individual tree species recognition method based on a convolutional neural network and high-spatial resolution remote sensing imagery. Remote Sens. 2021, 13, 479. [Google Scholar] [CrossRef]
- Torabzadeh, H.; Leiterer, R.; Hueni, A.; Schaepman, M.E.; Morsdorf, F. Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning. Agric. For. Meteorol. 2019, 279, 107744. [Google Scholar] [CrossRef]
- Mey, R.; Stadelmann, G.; Thurig, E.; Bugmann, H.; Zell, J. From small forest samples to generalised uni- and bimodal stand descriptions. Methods Ecol. Evol. 2021, 12, 634–645. [Google Scholar] [CrossRef]
- Reitberger, J.; Krzystek, P.; Stilla, U. Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int. J. Remote Sens. 2008, 29, 1407–1431. [Google Scholar] [CrossRef]
- Suratno, A.; Seielstad, C.; Queen, L. Tree species identification in mixed coniferous forest using airborne laser scanning. ISPRS J. Photogramm. Remote Sens. 2009, 64, 683–693. [Google Scholar] [CrossRef]
- Yu, X.W.; Litkey, P.; Hyyppa, J.; Holopainen, M.; Vastaranta, M. Assessment of low density full-waveform airborne laser scanning for individual tree detection and tree species classification. Forests 2014, 5, 1011–1031. [Google Scholar] [CrossRef] [Green Version]
- Hovi, A.; Korhonen, L.; Vauhkonen, J.; Korpela, I. LiDAR waveform features for tree species classification and their sensitivity to tree and acquisition related parameters. Remote Sens. Environ. 2016, 173, 224–237. [Google Scholar] [CrossRef]
- Zhang, K.W.; Hu, B.X. Individual urban tree species classification using very high spatial resolution airborne multi-spectral imagery using longitudinal profiles. Remote Sens. 2012, 4, 1741–1757. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xin, Q.C.; Huang, J.F.; Huang, B.; Zhang, H.S. Characterizing tree species of a tropical wetland in southern China at the individual tree level based on convolutional neural network. IEEE J-STARS 2019, 12, 4415–4425. [Google Scholar] [CrossRef]
- Zhao, D.; Pang, Y.; Liu, L.J.; Li, Z.Y. Individual tree classification using airborne LiDAR and hyperspectral data in a natural mixed forest of northeast China. Forests 2020, 11, 303. [Google Scholar] [CrossRef] [Green Version]
- Puttonen, E.; Jaakkola, A.; Litkey, P.; Hyyppa, J. Tree classification with fused mobile laser scanning and hyperspectral data. Sensors 2011, 11, 5158–5182. [Google Scholar] [CrossRef]
- Puttonen, E.; Litkey, P.; Hyyppa, J. Individual tree species classification by illuminated-shaded area separation. Remote Sens. 2010, 2, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Y.; Liu, X.Y. Support vector machines for tree species identification using LiDAR-derived structure and intensity variables. Geocarto Int. 2013, 28, 364–378. [Google Scholar] [CrossRef]
- Guan, H.Y.; Yu, Y.T.; Ji, Z.; Li, J.; Zhang, Q. Deep learning-based tree classification using mobile LiDAR data. Remote Sens. Lett. 2015, 6, 864–873. [Google Scholar] [CrossRef]
- Zou, X.H.; Cheng, M.; Wang, C.; Xia, Y.; Li, J. Tree classification in complex forest point clouds based on deep learning. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2360–2364. [Google Scholar] [CrossRef]
- Wang, Y.T.; Wang, J.; Chang, S.P.; Sun, L.; An, L.K.; Chen, Y.H.; Xu, J.Q. Classification of street tree species using UAV tilt photogrammetry. Remote Sens. 2021, 13, 216. [Google Scholar] [CrossRef]
- Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49–63. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Sterenczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Mayra, J.; Keski-Saari, S.; Kivinen, S.; Tanhuanpaa, T.; Hurskainen, P.; Kullberg, P.; Poikolainen, L.; Viinikka, A.; Tuominen, S.; Kumpula, T.; et al. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sens. Environ. 2021, 256, 112322. [Google Scholar] [CrossRef]
- Korznikov, K.A.; Kislov, D.E.; Altman, J.; Dolezal, J.; Vozmishcheva, A.S.; Krestov, P.V. Using U-Net-like deep convolutional neural networks for precise tree recognition in very high resolution RGB (red, green, blue) satellite images. Forests 2021, 12, 66. [Google Scholar] [CrossRef]
- Roth, S.I.B.; Leiterer, R.; Volpi, M.; Celio, E.; Schaepman, M.E.; Joerg, P.C. Automated detection of individual clove trees for yield quantification in northeastern madagascar based on multi-spectral satellite data. Remote Sens. Environ. 2019, 221, 144–156. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 57–66. [Google Scholar] [CrossRef]
- Lee, J.; Cai, X.H.; Lellmann, J.; Dalponte, M.; Malhi, Y.; Butt, N.; Morecroft, M.; Schonlieb, C.-B.; Coomes, D.A. Individual tree species classification from airborne multisensor imagery using robust PCA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2554–2567. [Google Scholar] [CrossRef] [Green Version]
- Le Louarn, M.; Clergeau, P.; Briche, E.; Deschamps-Cottin, M. “Kill two birds with one stone”: Urban tree species classification using bi-temporal pleiades images to study nesting preferences of an invasive bird. Remote Sens. 2017, 9, 916. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.B.; Mainali, K.P.; Shrestha, B.B.; Radenz, J.; Karki, D. Species-level vegetation mapping in a himalayan treeline ecotone using unmanned aerial system (UAS) imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 445. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef] [Green Version]
- Harikumar, A.; Paris, C.; Bovolo, F.; Bruzzone, L. A crown quantization-based approach to tree-species classification using high-density airborne laser scanning data. IEEE Trans. Geosci Remote Sens. 2021, 59, 4444–4453. [Google Scholar] [CrossRef]
- Kuzmin, A.; Korhonen, L.; Kivinen, S.; Hurskainen, P.; Korpelainen, P.; Tanhuanpaa, T.; Maltamo, M.; Vihervaara, P.; Kumpula, T. Detection of european aspen (Populus tremula L.) based on an unmanned aerial vehicle approach in boreal forests. Remote Sens. 2021, 13, 1723. [Google Scholar] [CrossRef]
- Tang, J.G.; Li, S.B.; Liu, P. A review of lane detection methods based on deep learning. Pattern Recognition. 2021, 111, 107623. [Google Scholar] [CrossRef]
- Wolf, N. Object features for pixel-based classification of urban areas comparing different machine learning algorithms. Photogramm. Fernerkund. Geoinf. 2013, 3, 149–161. [Google Scholar] [CrossRef]
- Zhou, J.H.; Qin, J.; Gao, K.; Leng, H.B. SVM-based soft classification of urban tree species using very high-spatial resolution remote-sensing imagery. Int. J. Remote Sens. 2016, 37, 2541–2559. [Google Scholar] [CrossRef]
- Dalponte, M.; Ene, L.T.; Marconcini, M.; Gobakken, T.; Næsset, E. Semi-supervised SVM for individual tree crown species classification. ISPRS J. Photogramm. Remote Sens. 2015, 110, 77–87. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Liu, B.; Yu, X.C.; Yu, A.Z.; Wan, G. Deep convolutional recurrent neural network with transfer learning for hyperspectral image classification. J. Appl. Remote Sens. 2018, 12, 17. [Google Scholar] [CrossRef]
- Chen, Y.S.; Jiang, H.L.; Li, C.Y.; Jia, X.P.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar]
- Alipourfard, T.; Arefi, H.; Mahmoudi, S. A novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification. In Proceedings of the 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 4780–4783. [Google Scholar]
- Nezami, S.; Khoramshahi, E.; Nevalainen, O.; Pölönen, I.; Honkavaara, E. Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks. Remote Sens. 2020, 12, 1070. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Huang, J.F.; Ao, Z.R.; Lao, D.Z.; Xin, Q.C. Deep Learning approaches for the mapping of tree species diversity in a tropical wetland using airborne LiDAR and high-spatial-resolution remote sensing images. Forests 2019, 10, 1047. [Google Scholar] [CrossRef] [Green Version]
- Fricker, G.A.; Ventura, J.D.; Wolf, J.A.; North, M.P.; Davis, F.W.; Franklin, J. A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery. Remote Sens. 2019, 11, 2326. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.P.; Almeida, D.R.A.D.; Papa, D.D.A.; Minervino, J.B.S.; Veras, H.F.P.; Formighieri, A.; Santos, C.A.N.; Ferreira, M.A.D.; Figueiredo, E.O.; Ferreira, E.J.L. Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. Forest. Ecol. Manag. 2020, 475, 118397. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5 October 2015; pp. 234–241. [Google Scholar]
- Zhang, W.; Tang, P.; Zhao, L.J. Fast and accurate land cover classification on medium resolution remote sensing images using segmentation models. Int. J. Remote Sens. 2021, 42, 3277–3301. [Google Scholar] [CrossRef]
- Giang, T.L.; Dang, K.B.; Le, Q.T.; Nguyen, V.G.; Tong, S.S.; Pham, V. U-Net convolutional networks for mining land cover classification based on high-resolution UAV imagery. IEEE Access 2020, 8, 186257–186273. [Google Scholar] [CrossRef]
- Wagner, F.H.; Sanchez, A.; Tarabalka, Y.; Lotte, R.G.; Ferreira, M.P.; Aidar, M.P.M.; Gloor, E.; Phillips, O.L.; Aragao, L. Using the U-Net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images. Remote. Sens. Ecol. Conserv. 2019, 5, 360–375. [Google Scholar] [CrossRef] [Green Version]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Yang, T.J.; Song, J.K.; Li, L.; Tang, Q. Improving brain tumor segmentation on MRI based on the deep U-Net and residual units. J. X-ray Sci. Technol. 2020, 28, 95–110. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016; pp. 770–778. [Google Scholar]
- Shia, W.C.; Chen, D.R. Classification of malignant tumors in breast ultrasound using a pretrained deep residual network model and support vector machine. Comput. Med. Imag. Grap. 2021, 87, 101829. [Google Scholar] [CrossRef]
- Dutta, D.; Chen, G.; Chen, C.; Gagne, S.A.; Li, C.L.; Rogers, C.; Matthews, C. Detecting plant invasion in urban parks with aerial image time series and residual neural network. Remote Sens. 2020, 12, 3493. [Google Scholar] [CrossRef]
- Jing, L.; Cheng, Q.M. Two improvement schemes of PAN modulation fusion methods for spectral distortion minimization. Int. J. Remote Sens. 2009, 30, 2119–2131. [Google Scholar] [CrossRef]
- Jing, L.; Hu, B.; Li, J.; Noland, T.; Guo, H. Automated tree crown delineation from Imagery based on morphological techniques. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012066. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Xu, J.; Guo, Y.; Hu, Y.; Wang, G. Deep Learning Segmentation and Classification for Urban Village Using a Worldview Satellite Image Based on U-Net. Remote Sens. 2020, 12, 1574. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.F.; Dai, G.M. Classification of high resolution satellite images using improved U-Net. Int. J. Appl. Math. Comput. Sci. 2020, 30, 399–413. [Google Scholar]
- Qi, W.; Wei, M.; Yang, W.; Xu, C.; Ma, C. Automatic Mapping of Landslides by the ResU-Net. Remote Sens. 2020, 12, 2487. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Zhang, C.; Li, W.; Zhao, T. Semantic Segmentation of Urban Buildings from VHR Remote Sensing Imagery Using a Deep Convolutional Neural Network. Remote Sens. 2019, 11, 1774. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Jing, L.; Hu, B.; Li, H.; Tang, Y. A New Individual Tree Crown Delineation Method for High Resolution Multispectral Imagery. Remote Sens. 2020, 12, 585. [Google Scholar] [CrossRef] [Green Version]
- Ghiyamat, A.; Shafri, H.Z.M. A review on hyperspectral remote sensing for homogeneous and heterogeneous forest biodiversity assessment. Int. J. Remote Sens. 2010, 31, 1837–1856. [Google Scholar] [CrossRef]
- Ghiyamat, A.; Shafri, H.Z.M.; Mandiraji, G.A.; Shariff, A.R.M.; Mansor, S. Hyperspectral discrimination of tree species with different classifications using single- and multiple-endmember. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 177–191. [Google Scholar] [CrossRef]
- Yao, W.; Krzystek, P.; Heurich, M. Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens. Environ. 2012, 123, 368–380. [Google Scholar] [CrossRef]
- Wang, G.; Ren, P. Hyperspectral Image Classification with Feature-Oriented Adversarial Active Learning. Remote Sens. 2020, 12, 3879. [Google Scholar] [CrossRef]
- Tao, Y.; Xu, M.; Zhong, Y.; Cheng, Y. GAN-Assisted Two-Stream Neural Network for High-Resolution Remote Sensing Image Classification. Remote Sens. 2017, 9, 1328. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tan, K.; Du, Q.; Chen, Y.; Du, P.J. Caps-TripleGAN: GAN-Assisted CapsNet for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7232–7245. [Google Scholar] [CrossRef]
Band Order | Band Name | Wavelength (nm) |
---|---|---|
Band 1 | coastal band | 400–450 |
Band 2 | blue band | 450–510 |
Band 3 | green band | 510–580 |
Band 4 | yellow band | 585–625 |
Band 5 | red band | 630–690 |
Band 6 | red-edge band | 705–745 |
Tree Species | Species Merged | Shorthand | Field Sampling Points | Classification Labeled Sample Set |
---|---|---|---|---|
Phyllostachys pubescens | Phyllostachys pubescens | Ph. p | 18 | 112 |
Osmanthus fragrans/Camellia japonica/Manglietia sp./Rhododendron sp./Ilex chinensis/Daphniphyllum macropodum/Daphniphyllum oldhamii | Evergreen arbor | Ev.a | 113 | 444 |
Abies fabri/Taxus sp./Tsuga chinensis | Cunninghamia lanceolata | Cu.l | 67 | 139 |
Pinus taiwanensis | Pinus taiwanensis | Pi.t | 245 | 2001 |
Tilia japonica/Cyclobalanopsis glauca/Castanea seguinii/Emmenopterys henryi/Sorbus sp./Acer sp. | Deciduous arbor | De.a | 327 | 617 |
Total | 703 | 3313 |
Tree Species | Training Sample Set | Validation Sample Set | Test Sample Set |
---|---|---|---|
Ph. p | 396 | 138 | 23 |
Ev.a | 1596 | 534 | 89 |
Cu.l | 498 | 168 | 28 |
Pi.t | 7194 | 2406 | 401 |
De.a | 2214 | 744 | 124 |
Total | 11,898 | 3990 | 665 |
Model | Convergence Period | Training Accuracy | Verification Accuracy |
---|---|---|---|
U-Net | 82 | 94.28% | 94.16% |
ResNet | 38 | 98.25% | 94.49% |
ResU-Net | 43 | 95.77% | 95.67% |
ResU-Net2 | 28 | 93.86% | 93.38% |
Model | Evaluating Indicator | Real Tree Species | |||||
---|---|---|---|---|---|---|---|
Ph. p | Ev.a | Cu.l | Pi.t | De.a | |||
U-Net | Predicted tree species | Ph. p | 21 | 0 | 0 | 0 | 0 |
Ev.a | 0 | 65 | 4 | 9 | 6 | ||
Cu.l | 1 | 0 | 20 | 0 | 0 | ||
Pi.t | 1 | 18 | 3 | 390 | 1 | ||
De.a | 0 | 6 | 1 | 2 | 117 | ||
Producer’s accuracy/% | 91.30 | 73.03 | 71.43 | 97.26 | 94.35 | ||
User’s accuracy/% | 100.00 | 77.38 | 95.24 | 94.43 | 92.86 | ||
Overall accuracy/% | 92.18 | ||||||
Kappa coefficient | 0.86 | ||||||
ResNet | Predicted tree species | Ph. p | 22 | 0 | 0 | 0 | 0 |
Ev.a | 0 | 68 | 4 | 8 | 4 | ||
Cu.l | 0 | 0 | 22 | 0 | 0 | ||
Pi.t | 1 | 13 | 2 | 391 | 5 | ||
De.a | 0 | 8 | 0 | 2 | 115 | ||
Producer’s accuracy/% | 95.65 | 76.40 | 78.57 | 97.51 | 92.74 | ||
User’s accuracy/% | 100.00 | 80.95 | 100.00 | 94.90 | 92.00 | ||
Overall accuracy/% Kappa coefficient | 92.93 | ||||||
0.88 | |||||||
ResU-Net | Predicted tree species | Ph. p | 22 | 0 | 0 | 0 | 0 |
Ev.a | 0 | 68 | 5 | 8 | 0 | ||
Cu.l | 0 | 1 | 23 | 0 | 0 | ||
Pi.t | 1 | 15 | 0 | 392 | 2 | ||
De.a | 0 | 5 | 0 | 1 | 122 | ||
Producer’s accuracy/% | 95.65 | 76.40 | 82.14 | 97.76 | 98.39 | ||
User’s accuracy/% | 100.00 | 83.95 | 95.83 | 95.61 | 95.31 | ||
Overall accuracy/% | 94.29 | ||||||
Kappa coefficient | 0.90 | ||||||
ResU-Net2 | Predicted tree species | Ph. p | 20 | 0 | 0 | 0 | 0 |
Ev.a | 0 | 58 | 4 | 5 | 0 | ||
Cu.l | 2 | 2 | 21 | 0 | 0 | ||
Pi.t | 1 | 18 | 3 | 391 | 1 | ||
De.a | 0 | 11 | 0 | 5 | 123 | ||
Producer’s accuracy/% | 86.96 | 65.17 | 75.00 | 97.51 | 99.19 | ||
User’s accuracy/% | 100.00 | 86.57 | 84.00 | 94.44 | 88.49 | ||
Overall accuracy/% | 92.18 | ||||||
Kappa coefficient | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Jing, L.; Li, H.; Tang, Y. A New Individual Tree Species Classification Method Based on the ResU-Net Model. Forests 2021, 12, 1202. https://doi.org/10.3390/f12091202
Chen C, Jing L, Li H, Tang Y. A New Individual Tree Species Classification Method Based on the ResU-Net Model. Forests. 2021; 12(9):1202. https://doi.org/10.3390/f12091202
Chicago/Turabian StyleChen, Caiyan, Linhai Jing, Hui Li, and Yunwei Tang. 2021. "A New Individual Tree Species Classification Method Based on the ResU-Net Model" Forests 12, no. 9: 1202. https://doi.org/10.3390/f12091202
APA StyleChen, C., Jing, L., Li, H., & Tang, Y. (2021). A New Individual Tree Species Classification Method Based on the ResU-Net Model. Forests, 12(9), 1202. https://doi.org/10.3390/f12091202