Damage to Residual Trees in Thinning of Broadleaf Stand by Mechanised Harvesting System
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Results of the First Field Survey
3.2. Results of the Second Field Survey
3.2.1. Squeezed-Bark Damage
3.2.2. Peeled-Bark Injury
3.2.3. Position of the Damaged Trees in the Stand
3.2.4. Location of the Peeled-Bark Injury
3.2.5. Magnitude of the Peeled-Bark Injury
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Statistical Analyses Results
Mean Group 1 | Mean Group 2 | t-Value | df | p | Valid N Group 1 | Valid N Group 2 | Std.Dev. Group 1 | Std.Dev. Group 2 | F-Ratio Variances | p Variances | |
---|---|---|---|---|---|---|---|---|---|---|---|
14bSH vs. 14cSH | 91.50 | 97.00 | −0.11 | 18 | 0.9114 | 6 | 14 | 103.58 | 98.36 | 1.11 | 0.8043 |
14bSH∑vs. 14c SH∑ | 109.80 | 194.00 | −0.77 | 10 | 0.4613 | 5 | 7 | 105.83 | 226.38 | 4.58 | 0.1627 |
14bBH vs. 14cBH | 103.56 | 120.59 | −0.39 | 55 | 0.6979 | 18 | 39 | 175.36 | 142.19 | 1.52 | 0.2786 |
14bBH∑ vs. 14cBH∑ | 169.45 | 188.28 | −0.29 | 34 | 0.7736 | 11 | 25 | 206.14 | 167.10 | 1.52 | 0.3840 |
14bRcH vs. 14cRcH | 76.97 | 165.71 | −2.43 | 47 | 0.0190 | 32 | 17 | 74.66 | 180.78 | 5.86 | 0.0000 |
14bRcH∑ vs. 14c RcH∑ | 102.63 | 201.21 | −1.81 | 36 | 0.0791 | 24 | 14 | 93.13 | 239.90 | 6.64 | 0.0001 |
14bRH vs. 14cRH | 0.00 | 0.00 | −2 | 0 | 0 | 0.00 | 0.00 | ||||
14bRH∑ vs. 14cRH∑ | 0.00 | 0.00 | −2 | 0 | 0 | 0.00 | 0.00 |
Mean Group 1 | Mean Group 2 | t-Value | df | p | Valid N Group 1 | Valid N Group 2 | Std.Dev. Group 1 | Std.Dev. Group 2 | F-Ratio Variances | p Variances | |
---|---|---|---|---|---|---|---|---|---|---|---|
14bSF vs. 14cSF | 185.00 | 185.25 | −0.0027 | 5 | 0.9979 | 3 | 4 | 153.05 | 94.01 | 2.65 | 0.4345 |
14bSF∑ vs. 14c SF∑ | 277.50 | 247.00 | 0.2221 | 3 | 0.8385 | 2 | 3 | 95.46 | 171.40 | 3.22 | 0.7328 |
14bBF vs. 14cBF | 151.32 | 261.71 | −0.8183 | 31 | 0.4194 | 19 | 14 | 152.64 | 563.52 | 13.63 | 0.0000 |
14bBF∑ vs. 14cBF∑ | 205.36 | 366.40 | −0.7692 | 22 | 0.4500 | 14 | 10 | 151.13 | 769.45 | 25.92 | 0.0000 |
14bRcF vs. 14cRcF | 223.06 | 193.42 | 0.4882 | 56 | 0.6273 | 32 | 26 | 266.04 | 175.16 | 2.31 | 0.0353 |
14bRcF∑vs. 14cRcF∑ | 356.90 | 295.82 | 0.5189 | 35 | 0.6071 | 20 | 17 | 426.51 | 249.88 | 2.91 | 0.0353 |
14bRFvs. 14cRF | 275.25 | 0.00 | 2 | 4 | 0 | 127.11 | 0.00 | 0 | 1.0000 | ||
14bRF∑ vs. 14cRF∑ | 275.25 | 0.00 | 2 | 4 | 0 | 127.11 | 0.00 | 0 | 1.0000 |
Mean Group 1 | Mean Group 2 | t-Value | df | p | Valid N Group 1 | Valid N Group 2 | Std.Dev. Group 1 | Std.Dev. Group 2 | F-Ratio Variances | p Variances | |
---|---|---|---|---|---|---|---|---|---|---|---|
14bSH vs. 14bSF | 91.50 | 185.00 | −1.1036 | 7 | 0.3063 | 6 | 3 | 103.58 | 153.05 | 2.1834 | 0.4164 |
14bSH∑ vs. 14bSF∑ | 109.80 | 277.50 | −1.9304 | 5 | 0.1114 | 5 | 2 | 105.83 | 95.46 | 1.2290 | 1.0000 |
14bBH vs. 14bBF | 103.56 | 151.32 | −0.8850 | 35 | 0.3822 | 18 | 19 | 175.36 | 152.64 | 1.3199 | 0.5642 |
14bBH∑ vs. 14bBF∑ | 169.45 | 205.36 | −0.5030 | 23 | 0.6198 | 11 | 14 | 206.14 | 151.13 | 1.8605 | 0.2924 |
14bRcH vs. 14bRcF | 76.97 | 223.06 | −2.9909 | 62 | 0.0040 | 32 | 32 | 74.66 | 266.04 | 12.6958 | 0.0000 |
14bRcH∑ vs. 14bRcF∑ | 102.63 | 356.90 | −2.8467 | 42 | 0.0068 | 24 | 20 | 93.13 | 426.51 | 20.9721 | 0.0000 |
14bRH vs. 14bRF | 0.00 | 275.25 | 2 | 0 | 4 | 0.00 | 127.11 | 0.0000 | 1.0000 | ||
14bRH∑ vs. 14bRF∑ | 0.00 | 275.25 | 2 | 0 | 4 | 0.00 | 127.11 | 0.0000 | 1.0000 | ||
14cSH vs. 14cSF | 97.00 | 185.25 | −1.5955 | 16 | 0.1302 | 14 | 4 | 98.36 | 94.01 | 1.0947 | 1.0000 |
14cSH∑ vs. 14cSF∑ | 194.00 | 247.00 | −0.3590 | 8 | 0.7289 | 7 | 3 | 226.38 | 171.40 | 1.7443 | 0.8164 |
14cBH vs. 14cBF | 120.59 | 261.71 | −1.4619 | 51 | 0.1499 | 39 | 14 | 142.19 | 563.52 | 15.7077 | 0.0000 |
14cBH∑ vs. 14cBF∑ | 188.28 | 366.40 | −1.1166 | 33 | 0.2722 | 25 | 10 | 167.10 | 769.45 | 21.2033 | 0.0000 |
14cRcH vs. 14cRcF | 165.71 | 193.42 | −0.5010 | 41 | 0.6191 | 17 | 26 | 180.78 | 175.16 | 1.0652 | 0.8639 |
14cRcH∑ vs. 14cRcF∑ | 201.21 | 295.82 | −1.0680 | 29 | 0.2943 | 14 | 17 | 239.90 | 249.88 | 1.0849 | 0.8941 |
14cRH vs. 14cRF | 0.00 | 0.00 | −2 | 0 | 0 | 0.00 | 0.00 | ||||
14cRH∑ vs. 14cRF∑ | 0.00 | 0.00 | −2 | 0 | 0 | 0.00 | 0.00 |
Mean Group 1 | Mean Group 2 | t-Value | df | p | Valid N Group 1 | Valid N Group 2 | Std.Dev. Group 1 | Std.Dev. Group 2 | F-Ratio Variances | p Variances | |
---|---|---|---|---|---|---|---|---|---|---|---|
14bS vs. 14cS | 132.52 | 205.46 | −0.8883 | 165 | 0.3757 | 141 | 26 | 375.89 | 430.72 | 1.3130 | 0.3259 |
14bS∑ vs. 14cS∑ | 230.69 | 356.13 | −0.8549 | 94 | 0.3948 | 81 | 15 | 513.15 | 570.08 | 1.2342 | 0.5362 |
14bB vs. 14cB | 96.17 | 133.29 | −1.4744 | 342 | 0.1413 | 269 | 75 | 161.00 | 279.23 | 3.0078 | 0.0000 |
14bB∑ vs. 14cB∑ | 166.90 | 238.02 | −1.4160 | 195 | 0.1584 | 155 | 42 | 226.80 | 450.94 | 3.9532 | 0.0000 |
14bRc vs. 14cRc | 107.57 | 182.09 | −3.4912 | 351 | 0.0005 | 276 | 77 | 157.50 | 192.12 | 1.4879 | 0.0227 |
14bRc∑ vs. 14cRc∑ | 177.78 | 280.42 | −2.4414 | 215 | 0.0154 | 167 | 50 | 245.65 | 306.52 | 1.5570 | 0.0417 |
14bR vs. 14cR | 266.25 | 276.19 | −0.1526 | 94 | 0.8791 | 69 | 27 | 312.52 | 205.73 | 2.3076 | 0.0199 |
14bR∑ vs. 14cR∑ | 266.25 | 276.19 | −0.1526 | 94 | 0.8791 | 69 | 27 | 312.52 | 205.73 | 2.3076 | 0.0199 |
SS Effect | df Effect | MS Effect | SS Error | df Error | MS Error | F | p | |
---|---|---|---|---|---|---|---|---|
14bS | 669854 | 2 | 334927 | 20350732 | 77 | 264295.2 | 1.2672 | 0.2874 |
14bB | 437602 | 2 | 218801 | 7483819 | 152 | 49235.6 | 4.4440 | 0.0133 |
14bRc | 405392 | 2 | 202696 | 9611604 | 164 | 58607.3 | 3.4585 | 0.0338 |
14bR | 88734 | 2 | 44367 | 6552689 | 66 | 99283.2 | 0.4469 | 0.6415 |
14b∑ | 3142156 | 2 | 1571078 | 88999703 | 276 | 322462.7 | 4.8721 | 0.0083 |
14cS | 232730 | 2 | 116365 | 4317072 | 12 | 359756.0 | 0.3235 | 0.7298 |
14cB | 2395113 | 2 | 1197556 | 5941986 | 39 | 152358.6 | 7.8601 | 0.0014 |
14cRc | 740 | 2 | 370 | 4603150 | 47 | 97939.4 | 0.0038 | 0.9962 |
14cR | 130389 | 2 | 65195 | 970057 | 24 | 40419.0 | 1.6130 | 0.2202 |
14c∑ | 563651 | 2 | 281825 | 34040275 | 82 | 415125.3 | 0.6789 | 0.5100 |
References
- Anić, I. Uzgajanje Šuma I; Šumarski Fakultet Sveučilišta u Zagrebu: Zagreb, Croatia, 2017; p. 37. [Google Scholar]
- Čavlović, J. Osnove Uređivanja Šuma; Šumarski Fakultet Sveučilišta u Zagrebu: Zagreb, Croatia, 2013; p. 50. [Google Scholar]
- Poršinsky, T.; Ožura, M. Oštećivanje dubećih stabala pri izvoženju drva forvarderom. Nova Meh. Šumarstva 2006, 27, 41–49. [Google Scholar]
- Martinić, I. Interakcije Metoda Rada, Radnih Uvjeta i Proizvodnosti Rada pri Sječi i Izradi Drva u Proredama Sastojina. Master’s, Thesis, Šumarski Fakultet u Zagrebu, Zagreb, Croatia, 1990. [Google Scholar]
- Tomanić, S.; Vondra, V.; Martinić, I. Oštećenje sastojina pri šumskim radovima (Damage on Stands at Forest Work). Meh. Šumarstva 1989, 14, 65–72. [Google Scholar]
- Athanassiadis, D. Residual stand damage following cut-to-length harvesting operations with a farm tractor in two conifer stands. Silva Fenn. 1997, 31, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Siren, M. Tree Damage in Single-Grip Harvester Thinning Operations. J. For. Eng. 2001, 12, 29–38. [Google Scholar]
- Martinić, I. Oštećivanje sastojine pri obaranju stabala, izradi i privlačenju drva. Šumarski List 1991, 115, 33–47. [Google Scholar]
- Sist, P.; Nolan, T.; Bertault, J.G.; Dykstra, D. Harvesting intensity versus sustainability in Indonesia. For. Ecol. Manag. 1998, 108, 251–260. [Google Scholar] [CrossRef]
- Behjou, F.K. Effects of wheeled cable skidding on residual trees in selective logging in Caspian forests. Small-Scale For. 2014, 13, 367–376. [Google Scholar] [CrossRef]
- Limbeck-Lilienau, B. Residual stand damage caused by mechanized harvesting systems. In Proceedings of the Austro 2003 meeting: High Tech Forest Operations for Mountainous Terrain, Schlaegl, Austria, 5–9 October 2003. [Google Scholar]
- Iskandar, H.; Snook, L.K.; Toma, T.; MacDicken, K.; Kanninen, M. A comparison of damage due to logging under different forms of resource access in East Kalimantan, Indonesia. For. Ecol. Manag. 2006, 237, 83–93. [Google Scholar] [CrossRef]
- Pinard, M.A.; Putz, F.E. Retaining forest biomass by reducing logging damage. Biotropica 1996, 28, 278–295. [Google Scholar] [CrossRef]
- Picchio, R.; Tavankar, F.; Bonyad, A.; Mederski, P.S.; Venanzi, R.; Nikooy, M. Detailed analysis of residual stand damage due to winching on steep terrains. Small-Scale For. 2019, 18, 255–277. [Google Scholar] [CrossRef] [Green Version]
- Han, H.S.; Kellogg, L.D. Damage characteristics in young Douglas-fir stand from commercial thinning with four Timber harvesting systems. West. J. Appl. For. 2000, 15, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Pinard, M.A.; Putz, F.E.; Tay, J.; Sullivan, T.E. Creating timber harvesting guidelines for a reduced impact logging project in Malaysia. J. For. 1995, 39, 41–45. [Google Scholar]
- Spinelli, R.; Magagnotti, N.; Schweier, J. Trends and perspectives in coppice harvesting. Croat. J. For. Eng. 2017, 38, 219–230. [Google Scholar]
- Lopes, E.S.; Diniz, C.C.C.; Serpe, E.L.; Cabral, O.M.J.V. Efeito do sortimento da madeira na produtividade e custo do forwarder no desbaste comercial de Pinus taeda. Sci. For. 2016, 44, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Nati, C.A. Low-Investment fully mechanised operation for pure selection thinning of pine plantations. Croat. J. For. Eng. 2009, 30, 8–97. [Google Scholar]
- Mederski, P.S.; Borz, S.A.; Đuka, A.; Lazdiņš, A. Challenges in Forestry and Forest Engineering—Case Studies from Four Countries in East Europe. Croat. J. For. Eng. 2021, 42, 117–134. [Google Scholar] [CrossRef]
- Vusić, D.; Rukavina, N. Utjecaj rašljavosti stabala crnoga bora na proizvodnost harvestera. Nova Meh. Šumarstva 2010, 31, 37–43. [Google Scholar]
- Spinelli, R.; Magagnotti, N.; Labelle, E.R. The effect of new silvicultural trends on mental workload of harvester operators. Croat. J. For. Eng. 2020, 41, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and how much, do harvesting activities affect forest soil, regeneration and stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Košir, B. Modeling stand damage and comparison of two harvesting methods. Croat. J. For. Eng. 2008, 29, 5–14. [Google Scholar]
- Lopes, E.S.; Oliveira, F.S.; Droog, E.A. Damage to residual trees following commercial thinning by harvester and forwarder in a Pinus taeda stand in Southern Brazil. Sci. For. 2018, 46, 167–175. [Google Scholar] [CrossRef]
- Diniz, C.C.C.; de Oliveira, F.M.; Junior, R.T.; Robert, R.C.G.; Tramontini, M.P.; de Brito, F.B. Damage caused by a wheeled harvester to the residual trees of a pinus stand in the first mechanized mixed thinning. Floresta 2020, 50, 1547–1554. [Google Scholar] [CrossRef]
- Holzleitner, F.; Langmaier, M.; Hochbichler, E.; Obermayer, B.; Stampfer, K.; Kanzian, C. Effect of prior tree marking, thinning method and topping diameter on harvester performance in a first thinning operation—A field experiment. Silva Fenn. 2019, 53, 22. [Google Scholar] [CrossRef]
- Sirén, M.; Hyvönen, J.; Surakka, H. Tree Damage in Mechanized Uneven-aged Selection Cuttings. Croat. J. For. Eng. 2015, 36, 33–42. [Google Scholar]
- Froese, K.; Han, S.H. Residual Stand Damage from Cut-to-Length Thinning of a Mixed Conifer Stand in Northern Idaho. West. J. Appl. For. 2006, 21, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Dudáková, Z.; Allman, M.; Meranič, J.; Meganičová, K. Machinery-Induced Damage to Soil and Remaining Forest Stands-Case Study from Slovakia. Forests 2020, 11, 15. [Google Scholar]
- Vuletić, D. Ekonomski Gubici na Vrijednosti Drva Hrasta Lužnjaka (Quercus robur L.) kao Posljedica Ozljeđivanja Stabala. Master’s, Thesis, Šumarski Fakultet u Zagrebu, Zagreb, Croatia, 1996. [Google Scholar]
- Meng, W. Baumverletzungen durch Transportvorgänge bei der Holzermte—Ausmaß und Verteilung, Folgeschäden am Holz und Versuch ihrer Bewertung. Schr. Der LFV Baden-Württemberg 1978, 53, 159. [Google Scholar]
- Butora, A.; Schwager, G. Holzernteschäden in Durchforstungsbeständen. Ber. Der Eidgenössischen Anst. Für Das Forstl. Vers. Schweiz 1986, 288, 47. [Google Scholar]
- Krpan, A.P.B.; Petreš, S.; Ivanović, Ž. Neke fizičke štete u sastojini, posljedice i zaštita (Forest stand damage, effects and protection). Glas. Za Šumske Pokuse 1993, Special edition 4, 271–279. [Google Scholar]
- Doležal, B. Štete u Šumi Izazvane Mehanizacijom; Jugoslavenski Poljoprivredno Šumarski Centar: Beograd, Serbia, 1984; pp. 1–47. [Google Scholar]
- Smith, H.C.; Miller, G.W.; Schuler, T.M. Closure of Logging Wounds after 10 Years; Research Paper; USDA Forest Service—Northeastern Forest Experiment Station: Radnor, PA, USA, 1994; Volume 692, pp. 1–10. [Google Scholar]
- Bettinger, P.; Kellogg, L.D. Residual stand damage from cut-to-length thinning of second-growth timber in the Cascade Range of western Oregon. For. Prod. J. 1993, 43, 59–64. [Google Scholar]
- Bragg, W.C.; Ostrofsky, W.D.; Hoffman, B.F. Residual tree damage estimates from partial cutting simulation. For. Prod. J. 1994, 44, 19–22. [Google Scholar]
- Tavankar, P.; Bonyad, A.; Marchi, E.; Venanzi, R.; Picchio, R. Effect of logging wounds on diameter growth of beech (Fagus orientalis Lipsky) trees following selection cutting in Caspian forests of Iran. N. Z. J. For. Sci. 2015, 45, 19. [Google Scholar] [CrossRef] [Green Version]
- Kiser, J. Histochemical and geometric alterations of sapwood in coastal Douglas-fir following mechanical damage during commercial thinning. Silva Fenn. 2011, 45, 729–741. [Google Scholar] [CrossRef] [Green Version]
- Glavaš, M. Gljivične Bolesti Šumskog Drveća; Šumarski Fakultet Sveučilišta u Zagrebu: Zagreb, Croatia, 1999; pp. 54–56. [Google Scholar]
- Arač, K.; Kranjec Orlović, J.; Diminić, D. Effect of Fungus Meripilus giganteus (Pers.) P. Karst. On Occurrence and Develompment of False Heartwood and Rot in Fagus sylvatica L. Round Wood. Croat. J. For. Eng. 2021, 42, 529–542. [Google Scholar] [CrossRef]
- Filip, G.M. Managing Tree Wounding and Stem Decay in Oregon Forests; The Woodland Workbook EC 1519, Extension Service—Oregon State University: Corvallis, OR, USA, 2001; pp. 1–3. [Google Scholar]
- Bobik, M. Damages to Residual Stand in Commercial Thinnings. Master’s Thesis, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Uppsala, Sweden, 2008. [Google Scholar]
- Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NN, 1997: Pravilnik o Uređivanju Šuma. Narodne Novine, NN 11/1997. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/1997_01_11_171.html (accessed on 5 November 2021).
- Venanzi, R.; Barbona, L.; Latterini, F.; Picchio, R. Disturbs to the Ground and to the Stand in Beech Forest due to Thninning Tretment Performed by Different Levels of Mechanization. Enviromental Sci. Proc. 2019, 3, 58. [Google Scholar] [CrossRef]
- Lavallee, A.; Lortie, M. Relationships between external features and trunk rot in living yellow birch. For. Chron. 1968, 44, 5–10. [Google Scholar] [CrossRef] [Green Version]
Subcompartment | 14b | 14c |
---|---|---|
Area, ha | 18.28 | 9.07 |
Age/Rotation, years | 79/100 | 79/100 |
Altitude, m | 100 | 150–175 |
Aspect | Western | Southwestern |
Inclination, % | 3–9 | 3–9 |
Soil | Luvisol | Luvisol |
Phytocenosis | Carpino betuli—Quercetum roboris fagetosum Rauš 1975 | Carici pilosae—Fagetum Oberdorfer 1957 |
Canopy coverage | Complete | Complete |
Stocking | 1.23 | 1.06 |
Growing stock, m3 (m3/ha) | 5530 (291.58) | 3681 (405.84) |
Species composition, m3/ha (%) | European hornbeam (Carpinus betulus L.) 243.71 (84) Pedunculate oak (Quercus robur L.) 18.16 (6) European beech (Fagus sylvatica L.) 17.34 (6) Sessile oak (Quercus petraea (Matt.) Liebl.) 3.72 (1) Black alder (Alnus glutinosa (L.) Gaertn.) 8.32 (3) Other hard broadleaves 0.33 | European beech (Fagus sylvatica L.) 201.76 (50) European hornbeam (Carpinus betulus L.) 179.60 (44) Sessile oak (Quercus petraea (Matt.) Liebl.) 16.54 (4) Pedunculate oak (Quercus robur L.) 7.94 (2) |
Number of trees, N/ha | 784 | 540 |
Basal area, m2/ha | 28.88 | 30.98 |
Mean tree, cm | 21.60 | 30.98 |
Annual increment, m3/ha | 7.49 | 9.70 |
Subcompartment | 14b | 14c | ||
---|---|---|---|---|
Motor-manual felling and processing | Mechanised felling and processing | Motor-manual felling and processing | Mechanised felling and processing | |
Number of trees, N | 1455 | 1782 | 423 | 559 |
Removal, m3 | 741.81 | 731.24 | 407.02 | 446.3 |
Thinning intensity, % (m3/ha) | 13.92 (40.58) | 13.72 (40.00) | 11.06 (44.88) | 12.13 (49.21) |
Average DBH, cm | 21.7 | 26.4 | ||
Average volume, m3/tree | 0.51 | 0.41 | 0.96 | 0.80 |
Harvester Timberjack 1470D | Forwarder Timberjack 1710D | |
---|---|---|
Length, mm | 7700 | 10,900 |
Height, mm | 3730 | 3900 |
Width, mm | 3000 | 3050 |
Weight, kg | 18,800 | 18,500–19,500 |
Payload, kg | - | 17,000 |
Subcompartment | Pedunculate and Sessile Oak | European Beech | European Hornbeam | Black Alder | Other | ∑ | |
---|---|---|---|---|---|---|---|
14b | Undamaged, N | 17 | 38 | 502 | 8 | 10 | 575 |
Trees with peeled bark, N (%) | 1 (5.6%) | 5 (11.6%) | 275 (33.1%) | 2 (20%) | 1 (9.1%) | 284 (33 %) | |
∑ | 18 | 43 | 777 | 10 | 11 | 859 | |
14c | Undamaged, N | 3 | 64 | 73 | - | - | 140 |
Trees with peeled bark, N (%) | 3 (50%) | 34 (34.7%) | 54 (42.5%) | - | - | 91 (39 %) | |
∑ | 6 | 98 | 127 | - | - | 231 |
Valid N | Mean | Minimum | Maximum | Std. Dev. | |
---|---|---|---|---|---|
14bS | 141 | 132.5 | 2 | 4200 | 375.9 |
14bS∑ | 81 | 230.7 | 5 | 4200 | 513.1 |
14bB | 269 | 96.2 | 2 | 1150 | 161.0 |
14bB∑ | 155 | 166.9 | 2 | 1238 | 226.8 |
14bRc | 276 | 107.6 | 2 | 1296 | 157.5 |
14bRc∑ | 167 | 177.8 | 6 | 1428 | 245.6 |
14bR | 107 | 171.7 | 6 | 858 | 157.2 |
14bR∑ | 69 | 266.2 | 9 | 1941 | 312.5 |
14cS | 26 | 205.5 | 6 | 2250 | 430.7 |
14cS∑ | 15 | 356.1 | 6 | 2250 | 570.1 |
14cB | 75 | 133.3 | 3 | 2050 | 279.2 |
14cB∑ | 42 | 238.0 | 3 | 2738 | 450.9 |
14cRc | 77 | 182.1 | 4 | 920 | 192.1 |
14cRc∑ | 50 | 280.4 | 6 | 1462 | 306.5 |
14cR | 34 | 219.3 | 10 | 750 | 184.6 |
14cR∑ | 27 | 276.2 | 12 | 750 | 205.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ursić, B.; Vusić, D.; Papa, I.; Poršinsky, T.; Zečić, Ž.; Đuka, A. Damage to Residual Trees in Thinning of Broadleaf Stand by Mechanised Harvesting System. Forests 2022, 13, 51. https://doi.org/10.3390/f13010051
Ursić B, Vusić D, Papa I, Poršinsky T, Zečić Ž, Đuka A. Damage to Residual Trees in Thinning of Broadleaf Stand by Mechanised Harvesting System. Forests. 2022; 13(1):51. https://doi.org/10.3390/f13010051
Chicago/Turabian StyleUrsić, Branko, Dinko Vusić, Ivica Papa, Tomislav Poršinsky, Željko Zečić, and Andreja Đuka. 2022. "Damage to Residual Trees in Thinning of Broadleaf Stand by Mechanised Harvesting System" Forests 13, no. 1: 51. https://doi.org/10.3390/f13010051
APA StyleUrsić, B., Vusić, D., Papa, I., Poršinsky, T., Zečić, Ž., & Đuka, A. (2022). Damage to Residual Trees in Thinning of Broadleaf Stand by Mechanised Harvesting System. Forests, 13(1), 51. https://doi.org/10.3390/f13010051