Plant Growth-Promoting (PGP) Traits of Endophytic Bacteria from In Vitro Cultivated Tectona grandis L.f
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation of Culturable Endophytic Bacteria
2.3. Bacteria Identification
2.4. Morphological and Biochemical Characterization
2.5. Evaluation of Bacterial Influence in Plant Growth
2.6. Statistical Analysis
3. Results
3.1. Bacterial Isolation and Characterization
3.2. PGP Traits Evaluation
4. Discussion
4.1. Teak Harbors Endophytic Bacteria with PGP Traits
4.2. Curtubacterium, Ochrobactrum, and Bacillus genera Are Teak Endophytic Bacteria
4.3. Isothiazolinones Biocide Inhibit Teak Endophytic Bacteria Growth In Vitro
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; Stevens, P.F. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- Sreekumar, V.B.; Sanil, M.S. Teak biology and ecology. In The Teak Genome; Ramasamy, Y., Galeano, E., Win, T.T., Eds.; Compendium of Plant Genomes; Springer: Cham, Germany, 2021; pp. 67–81. [Google Scholar] [CrossRef]
- Tewari, D.N. A Monograph on Teak (Tectona grandis Linn. f.); International Book Distributors: Dehra Dun, India, 1999. [Google Scholar]
- Kollert, W.; Kleine, M. The Global Teak Study. Analysis, Evaluation and Future Potential of Teak Resources, 1st ed.; International Union of Forest Research Organizations: Viena, Austria, 2017. [Google Scholar]
- Vyas, P.; Yadav, D.K.; Khandelwal, P. Tectona grandis (teak)—A review on its phytochemical and therapeutic potential. Nat. Prod. Res. 2019, 33, 2338–2354. [Google Scholar] [CrossRef]
- Gyves, E.M.; Royani, J.I.; Rugini, E. Efficient method of micropropagation and in vitro rooting of teak (Tectona grandis L.) focusing on large-scale industrial plantations. Ann. For. Sci. 2007, 64, 73–78. [Google Scholar] [CrossRef]
- Gangopadhyay, G.; Gangopadhyay, S.B.; Poddar, R.; Grupta, S.; Mukherjee, K.K. Micropropagation of Tectona grandis: Assessment of genetic fidelity. Biol. Plant. 2003, 46, 459–461. [Google Scholar] [CrossRef]
- Monteuuis, O.; Goh, G.D.K. Origin and global dissemination of clonal material in planted teak forests. In The Global Teak Study: Analysis, Evaluation and Future Potential of Teak Resources, 1st ed.; Kollert, W., Kleine, M., Eds.; International Union of Forest Research Organizations: Viena, Austria, 2017; pp. 30–36. [Google Scholar]
- Liu, H.; Carvalhais, L.C.; Crawford, M.; Singh, E.; Dennis, P.G.; Pieterse, C.M.J.; Schenk, P.M. Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Front. Microbiol. 2017, 8, 2552. [Google Scholar] [CrossRef]
- Taulé, C.; Vaz-Jauri, P.; Battistoni, F. Insights into the early stages of plant–endophytic bacteria interaction. World J. Microbiol. Biotechnol. 2021, 37, 13. [Google Scholar] [CrossRef]
- Ulrich, K.; Ulrich, A.; Ewald, D. Paenibacillus—A predominant endophytic bacterium colonizing tissue cultures of woody plants. Plant Cell Tissue Organ Cult. 2008, 93, 347–351. [Google Scholar] [CrossRef]
- Afzal, I.; Shinwaria, Z.K.; Sikandarb, S.; Shahzad, S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019, 221, 36–49. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsieb, G.; Orozco-Mosqueda, M.C.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Puri, A.; Padda, K.P.; Chanway, C.P. Nitrogen-fixation by endophytic bacteria in agricultural crops: Recent advances. In Nitrogen in Agriculture—Updates, 1st ed.; Fahad, A., Fahad, S., Eds.; IntechOpen: London, UK, 2017; pp. 73–94. [Google Scholar] [CrossRef]
- Walia, A.; Guleria, S.; Chauhan, A.; Mehta, P. Endophytic bacteria: Role in phosphate solubilization. In Endophytes: Crop Productivity and Protection, 1st ed.; Maheshwari, D.K., Annapurna, K., Eds.; Springer: Berlin, Germany, 2017; pp. 61–93. [Google Scholar]
- Taghavi, S.; Garafola, C.; Monchy, S.; Newman, L.; Hoffman, A.; Weyens, N.; Barac, T.; Vangronsveld, J.; Lelie, D. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 2009, 75, 748–757. [Google Scholar] [CrossRef]
- Tashi-Oshnoei, F.; Harighi, B.; Abdollahzadeh, J. Isolation and identification of endophytic bacteria with plant growth promoting and biocontrol potential from oak trees. For. Pathol. 2017, 47, e12360. [Google Scholar] [CrossRef]
- Patturaj, M.; Kannan, N.; Warrier, R.R.; Jacob, J.P.; Yasodha, R. Molecular diversity and functional prediction of foliar endophytic bacteria in Tectona grandis (Teak) estimated by 16S rDNA sequence analysis. Philipp. J. Sci. 2021, 150, 1677–1687. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Döbereiner, J. Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In Methods in Applied Soil Microbiology and Biochemistry, 1st ed.; Alef, K., Nannipieri, P., Eds.; Academic: San Diego, CA, USA, 1995; pp. 134–141. [Google Scholar]
- Verma, S.C.; Ladha, J.K.; Tripathi, A.K. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 2001, 91, 127–141. [Google Scholar] [CrossRef]
- Gordon, S.A.; Weber, R.P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951, 26, 192–195. [Google Scholar] [CrossRef]
- Laukkanen, H.; Soini, H.; Kontunen-Soppela, S.; Hohtola, A.; Viljanen, M. A mycobacterium isolated from tissue cultures of mature Pinus sylvestris interferes with growth of Scots pine seedlings. Tree Physiol. 2000, 20, 915–920. [Google Scholar] [CrossRef]
- Pirttilä, A.M.; Laukkanen, H.; Pospiech, H.; Myllylä, R.; Hohtola, A. Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl. Environ. Microbiol. 2000, 66, 3073–3077. [Google Scholar] [CrossRef]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Etminani, F.; Harighi, B. Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. Plant Pathol. J. 2018, 34, 208–217. [Google Scholar] [CrossRef]
- Carrell, A.A.; Frank, A.C. Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front. Microbiol. 2014, 5, 333. [Google Scholar] [CrossRef]
- Montanez, A.; Abreu, C.; Gill, P.R.; Hardarson, G.; Sicardi, M. Biological nitrogen fixation in maize (Zea mays L.) by N-15 isotope-dilution and identification of associated culturable diazotrophs. Biol. Fertil. Soils 2009, 45, 253–263. [Google Scholar] [CrossRef]
- Welbaum, G.E.; Sturz, A.V.; Dong, Z.; Nowak, J. Endophytic nitrogen fixation in sugarcane: Present knowledge and future applications. Plant Soil 2003, 252, 139–149. [Google Scholar] [CrossRef]
- Jimenez-Salgado, T.; Fuentes-Ramirez, L.E.; Tapia-Hernandez, A.; Mascarua-Esparza, M.A.; Martinez-Romero, E.; Caballero-Mellado, J. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl. Environ. Microbiol. 1997, 63, 3676–3683. [Google Scholar] [CrossRef] [PubMed]
- Doty, S.L.; Sher, A.W.; Fleck, N.D.; Khorasani, M.; Bumgarner, R.E.; Khan, Z.; Ko, A.W.K.; Kim, S.H.; Deluca, T.H. Variable nitrogen fixation in wild Populus. PLoS ONE 2011, 11, e0155979. [Google Scholar] [CrossRef] [PubMed]
- Sehim, A.E.; Dawwam, G.E. Molecular phylogenetics of microbial endophytes endowed with plant growth-promoting traits from Populus tomentosa. Egypt. J. Bot. 2022, 62, 797–810. [Google Scholar] [CrossRef]
- Yarte, M.R.; Gismondi, M.I.; Llorente, B.E.; Larraburu, E.E. Isolation of endophytic bacteria from the medicinal, forestal and ornamental tree Handroanthus impetiginosus. Environ. Technol. 2022, 43, 1129–1139. [Google Scholar] [CrossRef]
- Szilagyi-Zecchin, V.J.; Ikeda, A.C.; Hungria, M.; Adamoski, D.; Kava-Cordeiro, V.; Glienke, C.; Galli-Terasawa, V.G. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 2014, 4, 26. [Google Scholar] [CrossRef]
- Araujo, W.L.; Marcon, J.; Maccheroni, W., Jr.; Van Elsas, J.D.; Van Vuurde, J.W.L.; Azevedo, J.L. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 2002, 68, 4906–4914. [Google Scholar] [CrossRef]
- Vega, F.E.; Pava-Ripoll, M.; Posada, F.; Buyer, Y.S. Endophytic bacteria in Coffea arabica L. J. Basic Microbiol. 2005, 45, 371–380. [Google Scholar] [CrossRef]
- Bell, C.R.; Dickie, G.A.; Harvey, W.L.G.; Chan, J.W.Y.F. Endophytic bacteria in grapevine. Can. J. Microbiol. 1995, 41, 46–53. [Google Scholar] [CrossRef]
- Chase, A.B.; Arevalo, P.; Polz, M.F.; Berlemont, R.; Martiny, J.B.H. Evidence for ecological flexibility in the cosmopolitan genus Curtobacterium. Front. Microbiol. 2016, 7, 1874. [Google Scholar] [CrossRef] [PubMed]
- Dunleavy, J.M. Curtobacterium plantarum sp. nov. is ubiquitous in plant leaves and is seed transmitted in soybean and corn. Int. J. Syst. Bacteriol. 1989, 39, 240–249. [Google Scholar] [CrossRef]
- Hsieh, T.F.; Huang, H.C.; Mundel, H.-H.; Conner, R.L.; Erickson, R.S.; Balasubramanian, P.M. Resistance of Common Bean (Phaseolus vulgaris) to bacterial wilt caused by Curtobacterium flaccumfaciens pv. Flaccumfaciens. J. Phytopathol. 2005, 153, 245–249. [Google Scholar] [CrossRef]
- Lacava, P.T.; Li, W.; Araújo, W.L.; Azevedo, J.L.; Hartung, J.S. The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J. Microbiol. 2007, 45, 388–393. [Google Scholar]
- Raupach, G.S.; Kloepper, J.W. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 1998, 88, 1158–1164. [Google Scholar] [CrossRef]
- Bulgari, D.; Casati, P.; Crepaldi, P.; Daffonchio, D.; Quaglino, F.; Brusetti, L.; Bianco, P.A. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Appl. Environ. Microbiol. 2011, 77, 5018–5022. [Google Scholar] [CrossRef]
- Cardinale, M.; Ratering, S.; Suarez, C.; Montoya, A.M.Z.; Geissler-Plaum, R.; Schnell, S. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol. Res. 2015, 181, 22–32. [Google Scholar] [CrossRef]
- Schillaci, M.; Raio, A.; Sillo, F.; Zampieri, E.; Mahmood, S.; Anjum, M.; Khalid, A.; Centritto, M. Pseudomonas and Curtobacterium strains from olive rhizosphere characterized and evaluated for plant growth promoting traits. Plants 2022, 11, 2245. [Google Scholar] [CrossRef]
- Zurdo-Piñeiro, J.L.; Rivas, R.; Trujillo, M.E.; Vizcaíno, N.; Carrasco, J.A.; Chamber, M.; Palomares, A.; Mateos, P.F.; Martínez-Molina, E.; Velázquez, E. Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int. J. Syst. Evol. Microbiol. 2007, 57, 784–788. [Google Scholar] [CrossRef]
- Tariq, M.; Hameed, S.; Yasmeen, T.; Zahid, M.; Zafar, M. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J. Microbiol. Biotechnol. 2014, 30, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Burygin, G.L.; Popova, I.A.; Kargapolova, K.Y.; Tkachenko, O.V.; Matora, L.Y.; Shchyogolev, S.Y. A bacterial isolate from the rhizosphere of potato (Solanum tuberosum L.) identified as Ochrobactrum lupini IPA7.2. Agric. Biol. 2017, 52, 105–115. [Google Scholar] [CrossRef]
- Burygin, G.L.; Kargapolova, K.Y.; Kryuchkova, Y.V.; Avdeeva, E.S.; Gogoleva, N.E.; Ponomaryova, T.S.; Tkachenko, O.V. Ochrobactrum cytisi IPA7.2 promotes growth of potato microplants and is resistant to abiotic stress. World J. Microbiol. Biotechnol. 2019, 35, 55. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.; Nain, L.; Garg, V.; Saxena, J. Improvement of growth, yield, and pigmentation of mung bean plants using Ochrobactrum intermedium CP-2 as bioinoculant. Clean–Soil Air Water 2017, 45, 1500670. [Google Scholar] [CrossRef]
- Imran, A.; Saadalla, M.J.A.; Khan, S.U.; Mirza, M.S.; Malik, K.A.; Hafeez, F.Y. Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Ann. Microbiol. 2014, 64, 1797–1806. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, R.; Zhao, L.; Duan, Y.; Wang, H.; Yan, Z.; Shen, X.; Chen, X.; Yin, C.; Mao, Z. Isolation of phloridzin-degrading, IAA-producing bacterium Ochrobactrum haematophilum and its effects on the apple replant soil environment. Hortic. Plant J. 2022. [Google Scholar] [CrossRef]
- Toyota, K. Bacillus-related spore formers: Attractive agents for plant growth promotion. Microbes Environ. 2015, 30, 205–207. [Google Scholar] [CrossRef]
- Xu, J.-X.; Li, Z.-Y.; Lv, X.; Yan, H.; Zhou, G.-Y.; Cao, L.X.; Yang, Q.; He, Y.-H. Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization. PLoS ONE 2020, 15, e0232096. [Google Scholar] [CrossRef]
- Yue, Z.; Shen, Y.; Chen, Y.; Liang, A.; Chu, C.; Chen, C.; Sun, Z. Microbiological insights into the stress-alleviating property of an endophytic Bacillus altitudinis WR10 in wheat under low-phosphorus and high-salinity stresses. Microorganisms 2019, 7, 508. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, D.; Chen, X.; Zhang, J.; Huang, H.; Wei, L. Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Plant Soil 2017, 416, 53–66. [Google Scholar] [CrossRef]
- Gond, S.K.; Bergen, M.S.; Torres, M.S.; White Jr, J.F. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defense gene expression in maize. Microbiol. Res. 2015, 172, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liu, K.; Zhang, J.; Zhang, Y.; Xu, K.; Yu, D.; Wang, J.; Hu, L.; Chen, L.; Li, C. IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L. seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil 2017, 419, 1–11. [Google Scholar] [CrossRef]
- Cueva-Yesquén, L.G.; Goulart, M.C.; Attili de Angelis, D.; Nopper Alves, M.; Fantinatti-Garboggini, F. Multiple plant growth-promotion traits in endophytic bacteria retrieved in the vegetative stage from passionflower. Front. Plant Sci. 2021, 11, 621740. [Google Scholar] [CrossRef] [PubMed]
- Niedz, R.P. Using isothiazolone biocides to control microbial and fungal contaminants in plant tissue cultures. Horttechnology 1998, 8, 598–601. [Google Scholar] [CrossRef]
- George, M.W.; Tripepi, R.R. Plant Preservative Mixture™ can affect shoot regeneration from leaf explants of Chrysanthemum, European Birch, and Rhododendron. Hortscience 2001, 36, 768–769. [Google Scholar] [CrossRef]
- Machado, J.S.; Degenhardt, J.; Maia, F.R.; Quoirin, M. Micropropagation of Campomanesia xanthocarpa O. Berg (Myrtaceae), a medicinal tree from the Brazilian Atlantic Forest. Trees 2020, 34, 791–799. [Google Scholar] [CrossRef]
- Sax, M.S.; Bassuk, N.; Bridgen, M. Tissue culture clonal propagation of hybrid white oaks for the urban environment. Hortscience 2019, 54, 2214–2223. [Google Scholar] [CrossRef]
- Nagy, J.K.; Sule, S.; Sampaio, J.P. Apple tissue culture contamination by Rhodotorula spp.: Identification and prevention. Vitr. Cell. Dev. Biol. Plant 2005, 41, 520–524. [Google Scholar] [CrossRef]
- Quambusch, M.; Winkelmann, T. Bacterial endophytes in plant tissue culture: Mode of action, detection, and control. In Plant Cell Culture Protocols. Methods in Molecular Biology; Loyola-Vargas, V., Ochoa-Alejo, N., Eds.; Humana Press: New York, NY, USA, 2018; pp. 69–88. [Google Scholar] [CrossRef]
Clones | Total Number of Isolates | Calli Isolates | Stem Isolates | Leaves Isolates | Culture Medium |
---|---|---|---|---|---|
T. grandis A3 | 54 | 18 | 14 | 19 | 3 |
T. grandis E4 | 50 | 19 | 17 | 13 | 1 |
Clone A3 | Clone E4 | ||||||
---|---|---|---|---|---|---|---|
Strain | Origin | Colony Pigmentation | Gram Reac. | Strain | Origin | Colony Pigmentation | Gram Reac. |
TG A3.1 | In vitro growth | solid light yellow | + | TG E4.1 | in vitro growth | light pink | − |
TG A3.2 | In vitro growth | solid ivory | − | TG E4.2 | Leaf | light pink | + |
TG A3.3 | In vitro growth | solid ivory | − | TG E4.3 | Leaf | light orange | − |
TG A3.4 | Leaf | transl.light yellow | − | TG E4.4 | Leaf | light pink | + |
TG A3.5 | Leaf | transl.bright yellow | − | TG E4.5 | Leaf | light orange | + |
TG A3.6 | Leaf | transl.bright yellow | − | TG E4.6 | Leaf | light pink | + |
TG A3.7 | Leaf | transl.bright yellow | − | TG E4.7 | Leaf | light orange | − |
TG A3.8 | Leaf | transl.bright yellow | − | TG E4.8 | Leaf | light orange | − |
TG A3.9 | Leaf | solid ivory | + | TG E4.9 | Leaf | light pink | + |
TG A3.10 | Leaf | solid bright yellow | + | TG E4.10 | Leaf | light pink | + |
TG A3.11 | Leaf | light beige | − | TG E4.11 | Leaf | light orange | + |
TG A3.12 | Leaf | solid ivory | + | TG E4.12 | Leaf | light pink | − |
TG A3.13 | Leaf | solid ivory | + | TG E4.13 | Leaf | light pink | + |
TG A3.14 | Leaf | solid light yellow | + | TG E4.14 | Leaf | light pink | + |
TG A3.15 | Leaf | solid light yellow | + | TG E4.15 | Stem | light orange | + |
TG A3.16 | Leaf | light pink | − | TG E4.16 | Stem | light orange | − |
TG A3.17 | Leaf | solid ivory | + | TG E4.17 | Stem | light pink | + |
TG A3.18 | Leaf | transl.ivory | + | TG E4.18 | Stem | light orange | + |
TG A3.19 | Leaf | light orange | − | TG E4.19 | Stem | light pink | + |
TG A3.20 | Leaf | solid bright yellow | + | TG E4.20 | Stem | light orange | − |
TG A3.21 | Leaf | solid light yellow | + | TG E4.21 | Stem | light orange | + |
TG A3.22 | Leaf | solid light yellow | + | TG E4.22 | Stem | light orange | + |
TG A3.23 | Stem | transl.bright yellow | − | TG E4.23 | Stem | light orange | − |
TG A3.24 | Stem | solid bright yellow | − | TG E4.24 | Stem | light orange | + |
TG A3.25 | Stem | solid yellow | + | TG E4.25 | Stem | light orange | − |
TG A3.26 | Stem | solid light yellow | − | TG E4.26 | Stem | light orange | − |
TG A3.27 | Stem | transl.bright yellow | − | TG E4.27 | Stem | light orange | + |
TG A3.28 | Stem | solid bright yellow | + | TG E4.28 | Stem | light pink | + |
TG A3.29 | Stem | solid bright yellow | + | TG E4.29 | Stem | light orange | + |
TG A3.30 | Stem | transl.bright yellow | − | TG E4.30 | Stem | light orange | + |
TG A3.31 | Stem | transl.bright yellow | − | TG E4.31 | Stem | light orange | − |
TG A3.32 | Stem | transl.light yellow | − | TG E4.32 | Callus | light orange | − |
TG A3.33 | Stem | solid bright yellow | + | TG E4.33 | Callus | light orange | + |
TG A3.34 | Stem | light orange | + | TG E4.34 | Callus | light orange | − |
TG A3.35 | Stem | solid bright yellow | + | TG E4.35 | Callus | light beige | + |
TG A3.36 | Stem | solid light yellow | + | TG E4.36 | Callus | light orange | − |
TG A3.37 | Callus | transl.bright yellow | − | TG E4.37 | Callus | light orange | + |
TG A3.38 | Callus | solid bright yellow | + | TG E4.38 | Callus | light orange | + |
TG A3.39 | Callus | transl.light yellow | − | TG E4.39 | Callus | light pink | + |
TG A3.40 | Callus | solid bright yellow | + | TG E4.40 | Callus | light orange | + |
TG A3.41 | Callus | solid light yellow | + | TG E4.41 | Callus | light orange | − |
TG A3.42 | Callus | transl.bright yellow | − | TG E4.42 | Callus | light orange | − |
TG A3.43 | Callus | solid light yellow | − | TG E4.43 | Callus | light pink | − |
TG A3.44 | Callus | light orange | + | TG E4.44 | Callus | light orange | + |
TG A3.45 | Callus | transl.bright yellow | − | TG E4.45 | Callus | light orange | − |
TG A3.46 | Callus | transl.light yellow | − | TG E4.46 | Callus | light orange | − |
TG A3.47 | Callus | transl.light yellow | − | TG E4.47 | Callus | light orange | + |
TG A3.48 | Callus | solid ivory | − | TG E4.48 | Callus | light orange | + |
TG A3.49 | Callus | transl.bright yellow | − | TG E4.49 | Callus | light orange | + |
TG A3.50 | Callus | solid ivory | + | TG E4.50 | Callus | light orange | + |
TG A3.51 | Callus | solid bright yellow | − | ||||
TG A3.52 | Callus | transl.bright yellow | − | ||||
TG A3.53 | Callus | transl.bright yellow | − | ||||
TG A3.54 | Callus | transl.light yellow | − |
Clone A3 | Clone E4 | ||||||
---|---|---|---|---|---|---|---|
Strain | P Solubilization | N Fixation | IAA mg L−1 | Strain | P Solubilization | N Fixation | IAA mg L−1 |
TG A3.1 | − | + | 1.69 | TG E4.1 | − | + | 4.27 |
TG A3.2 | − | − | 4.23 | TG E4.2 | − | − | 0.00 |
TG A3.3 | + | − | 3.32 | TG E4.3 | − | + | 0.00 |
TG A3.4 | − | + | 5.24 | TG E4.4 | − | − | 0.00 |
TG A3.5 | − | − | 4.07 | TG E4.5 | − | + | 0.00 |
TG A3.6 | − | + | 5.26 | TG E4.6 | − | + | 13.80 |
TG A3.7 | − | − | 5.25 | TG E4.7 | − | + | 0.00 |
TG A3.8 | − | + | 3.78 | TG E4.8 | − | + | 0.00 |
TG A3.9 | − | + | 2.50 | TG E4.9 | − | − | 0.00 |
TG A3.10 | − | + | 10.49 | TG E4.10 | − | − | 0.00 |
TG A3.11 | + | − | 3.58 | TG E4.11 | − | + | 0.00 |
TG A3.12 | − | + | 2.72 | TG E4.12 | − | + | 0.00 |
TG A3.13 | − | − | 2.34 | TG E4.13 | − | + | 0.00 |
TG A3.14 | − | + | 5.69 | TG E4.14 | − | − | 0.00 |
TG A3.15 | − | − | 2.26 | TG E4.15 | − | + | 0.00 |
TG A3.16 | − | + | 0.40 | TG E4.16 | − | + | 0.00 |
TG A3.17 | − | − | 4.69 | TG E4.17 | − | − | 0.00 |
TG A3.18 | + | − | 1.66 | TG E4.18 | − | + | 0.00 |
TG A3.19 | − | + | 8.36 | TG E4.19 | − | − | 0.00 |
TG A3.20 | − | + | 1.60 | TG E4.20 | − | + | 0.00 |
TG A3.21 | − | − | 5.03 | TG E4.21 | − | + | 0.00 |
TG A3.22 | − | − | 4.94 | TG E4.22 | − | + | 6.18 |
TG A3.23 | − | − | 0.00 | TG E4.23 | − | + | 0.00 |
TG A3.24 | − | + | 4.37 | TG E4.24 | − | + | 0.00 |
TG A3.25 | − | + | 3.94 | TG E4.25 | − | + | 0.00 |
TG A3.26 | − | + | 2.11 | TG E4.26 | − | + | 0.00 |
TG A3.27 | − | + | 4.10 | TG E4.27 | − | + | 0.00 |
TG A3.28 | − | + | 2.91 | TG E4.28 | − | − | 0.00 |
TG A3.29 | − | − | 0.00 | TG E4.29 | − | + | 0.00 |
TG A3.30 | − | + | 2.93 | TG E4.30 | − | + | 0.00 |
TG A3.31 | − | + | 5.43 | TG E4.31 | − | + | 0.00 |
TG A3.32 | − | + | 3.19 | TG E4.32 | − | + | 0.00 |
TG A3.33 | − | + | 2.76 | TG E4.33 | − | + | 0.00 |
TG A3.34 | − | + | 7.69 | TG E4.34 | − | + | 0.00 |
TG A3.35 | − | + | 5.76 | TG E4.35 | − | + | 0.00 |
TG A3.36 | − | + | 4.28 | TG E4.36 | − | + | 0.00 |
TG A3.37 | − | + | 4.54 | TG E4.37 | − | + | 0.00 |
TG A3.38 | − | + | 3.94 | TG E4.38 | − | + | 0.00 |
TG A3.39 | − | − | 0.00 | TG E4.39 | − | + | 0.00 |
TG A3.40 | − | + | 0.74 | TG E4.40 | − | + | 0.40 |
TG A3.41 | + | + | 0.36 | TG E4.41 | − | + | 0.00 |
TG A3.42 | − | + | 3.44 | TG E4.42 | − | + | 0.00 |
TG A3.43 | − | − | 0.00 | TG E4.43 | − | + | 0.00 |
TG A3.44 | − | + | 1.00 | TG E4.44 | − | + | 0.00 |
TG A3.45 | − | + | 5.85 | TG E4.45 | − | + | 0.00 |
TG A3.46 | − | − | 4.39 | TG E4.46 | − | + | 0.00 |
TG A3.47 | − | − | 4.00 | TG E4.47 | − | + | 0.00 |
TG A3.48 | − | − | 0.37 | TG E4.48 | − | + | 0.00 |
TG A3.49 | − | + | 3.77 | TG E4.49 | − | + | 0.00 |
TG A3.50 | − | + | 0.00 | TG E4.50 | − | + | 0.00 |
TG A3.51 | − | + | 0.05 | ||||
TG A3.52 | − | + | 1.81 | ||||
TG A3.53 | − | + | 2.36 | ||||
TG A3.54 | − | − | 1.08 |
Strain | Best Alignment with Type Strains on NCBI | Max Score | Total Score | Query Cover | E-Value | Per. Ident |
---|---|---|---|---|---|---|
TG A3.1 | Curtobacterium flaccumfaciens pv. Basellae | 843 | 843 | 81% | 0 | 98.53% |
TG A3.3 | Ochrobactrumcytisi strain ESC5 16S-23S ribosomal RNA intergenic spacer, partial sequence Accession: EF059910.1 | 867 | 867 | 98% | 0 | 88.08% |
TG A3.18 | Bacillusoceanisediminis 2691 chromosome, complete genome. Accession: CP015506.1 | 318 | 1867 | 99% | 8 × 10−83 | 87.26% |
TG A3.41 | Bacillus altitudinis strain 11-1-1 chromosome, complete genome. Accession: CP054136.1 | 529 | 3973 | 94% | 4 × 10−146 | 100% |
TG A3.44 | Bacillus altitudinis strain SCU11 chromosome, complete genome. Accession: CP038517.1 | 510 | 3840 | 89% | 1 × 10−140 | 99.64% |
TG E4.49 | Bacillus altitudinis strain SCU11 chromosome, complete genome. Accession: CP038517.1 | 507 | 3803 | 91% | 2 × 10−139 | 98.25% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, M.d.S.; Inocente, L.B.; Oliveira, P.N.d.; Silva, K.J.P.; Carrer, H. Plant Growth-Promoting (PGP) Traits of Endophytic Bacteria from In Vitro Cultivated Tectona grandis L.f. Forests 2022, 13, 1539. https://doi.org/10.3390/f13101539
Pinto MdS, Inocente LB, Oliveira PNd, Silva KJP, Carrer H. Plant Growth-Promoting (PGP) Traits of Endophytic Bacteria from In Vitro Cultivated Tectona grandis L.f. Forests. 2022; 13(10):1539. https://doi.org/10.3390/f13101539
Chicago/Turabian StylePinto, Maísa de Siqueira, Laura Beatriz Inocente, Perla Novais de Oliveira, Katchen Julliany Pereira Silva, and Helaine Carrer. 2022. "Plant Growth-Promoting (PGP) Traits of Endophytic Bacteria from In Vitro Cultivated Tectona grandis L.f" Forests 13, no. 10: 1539. https://doi.org/10.3390/f13101539
APA StylePinto, M. d. S., Inocente, L. B., Oliveira, P. N. d., Silva, K. J. P., & Carrer, H. (2022). Plant Growth-Promoting (PGP) Traits of Endophytic Bacteria from In Vitro Cultivated Tectona grandis L.f. Forests, 13(10), 1539. https://doi.org/10.3390/f13101539