Analyses of Impregnation Quality and Mechanical Properties of Radiata Pine Wood Treated with Copper Nanoparticle- and Micronized-Copper-Based Wood Preservatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Wood Impregnation
2.3. Retention and Penetration of Impregnated Wood
2.4. Scanning Electron Microscopy and Energy Dispersive Spectroscopy
2.5. Mechanical Properties
2.6. Data Analyses
3. Results and Discussion
3.1. Quality of Impregnated Radiata Pine Wood
3.1.1. Impregnation Process—Retention Performance
3.1.2. Penetrability Characteristics of the Used Preservatives
3.2. Copper Particle Distribution in Treated Wood by SEM-EDS
3.3. Mechanical Properties Evaluation
3.3.1. Static Bending
3.3.2. Hardness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bektha, P.; Niemz, P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57, 539–546. [Google Scholar]
- Aguayo, M.G.; Oviedo, C.; Reyes, L.; Navarrete, J.; Gómez, L.; Torres, H.; Gaviño, G.; Trollund, E. Radiata Pine Wood Treated with Copper Nanoparticles: Leaching Analysis and Fungal Degradation. Forests 2021, 12, 1606. [Google Scholar] [CrossRef]
- Isaksson, T.; Brischke, C.; Thelandersson, S. Development of decay performance models for outdoor timber structures. Mater. Struct. 2013, 46, 1209–1225. [Google Scholar] [CrossRef]
- Tripathi, S.; Poonia, P.K. Treatability of Melia composita using vacuum pressure impregnation. Maderas Cienc. Tecnol. 2015, 17, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.N.; Ando, K.; Yamauchi, H.; Kobayashi, Y.; Hattori, N. Comparative study between full cell and passive impregnation method of wood preservation for laser incised Douglas fir lumber. Wood Sci. Technol. 2008, 42, 343–350. [Google Scholar] [CrossRef]
- Winfield, P.H.; Becerra, N.; Kaczmar, P. Investigation of primer/preservative basecoats for timber using vacuum impregnation. Int. J. Adhes. Adhes. 2009, 29, 702–709. [Google Scholar] [CrossRef]
- Teng, T.J.; Arip, M.N.M.; Sudesh, K.; Nemoikina, A.; Jalaludin, Z.; Ng, E.P.; Lee, H.L. Conventional technology and nanotechnology in wood preservation: A review. BioResources 2018, 13, 9220–9252. [Google Scholar] [CrossRef] [Green Version]
- Tarmian, A.; Zahedi, I.; Oladi, R.; Efhamisisi, D. Treatability of wood for pressure treatment processes: A literature review. Eur. J. Wood Wood Prod. 2020, 78, 635–660. [Google Scholar] [CrossRef]
- Groenier, J.S.; Lebow, S. Preservative-Treated Wood and Alternative Products in the Forest Service; Department of Agriculture, Forest Service, Missoula Technology and Development Center: Missoula, MT, USA, 2006; p. 44.
- Khademibami, L.; Bobadilha, G.S. Recent Developments Studies on Wood Protection Research in Academia: A Review. Front. For. Glob. Chang. 2022, 5, 793177. [Google Scholar] [CrossRef]
- Winandy, J.E. Effects of waterborne preservative treatment on mechanical properties: A review. In Proceedings of the 91st Annual Meeting of American Wood Preservers’ Association, New York, NY, USA, 21–24 May 1995. [Google Scholar]
- Shukla, S.R.; Zhang, J.; Kamdem, D.P. Pressure treatment of rubberwood (Heavea brasiliensis) with waterborne micronized copper azole: Effects on retention, copper leaching, decay resistance and mechanical properties. Constr. Build. Mater. 2019, 216, 576–587. [Google Scholar] [CrossRef]
- Barnes, H.M.; Linsay, G.B.; Hill, J.M. Effect of copper xyligen treatment on bending properties of wood. Holzforchung 2009, 63, 254–256. [Google Scholar] [CrossRef]
- Matsunaga, H.; Kiguchi, M.; Evans, P.D. Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood. J. Nanoparticle Res. 2009, 11, 1087–1098. [Google Scholar] [CrossRef]
- Pařil, P.; Baar, J.; Čermák, P.; Rademacher, P.; Prucek, R.; Sivera, M.; Panáček, A. Antifungal effects of copper and silver nanoparticles against white and brown-rot fungi. J. Mat. Sci. 2017, 52, 2720–2729. [Google Scholar] [CrossRef]
- Bak, M.; Németh, R. Effect of different nanoparticle treatments on the decay resistance of wood. BioResources 2018, 13, 7886–7899. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.P.; Schmitt, U.; Dawson, B.S.; Rickard, C. Biomodification of Pinus radiata wood to enhance penetrability. N. Z. J. For. Sci. 2009, 39, 145–151. [Google Scholar]
- Kartal, S.N.; Green, F., III; Clausen, C.A. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? Int. Biodeter. Biodegr. 2009, 63, 490–495. [Google Scholar] [CrossRef]
- Mantanis, G.; Terzi, E.; Kartal, S.N.; Papadopoulos, A.N. Evaluation of mold, decay and termite resistance of pine wood treated with zinc-and copper-based nanocompounds. Int. Biodeter. Biodegr. 2014, 90, 140–144. [Google Scholar] [CrossRef]
- Dadzie, P.K.; Amoah, M.; Frimpong-Mensah, K.; Oheneba-Kwarteng, F. Some physical, mechanical and anatomical characteristics of stemwood and branchwood of two hardwood species used for structural applications. Mater. Struct. 2016, 49, 4947–4958. [Google Scholar] [CrossRef]
- ASTM D2395; Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- AWPA A9-18; Standard Methods for Analysis of Treated Wood and Treating Solutions by X-ray Spectroscopy. Book of Standards. American Wood Protection Association: Birmingham, AL, USA, 2018; p. 173.
- AWPA A69-18; Standard Method to Determine the Penetration of Copper Containing Preservatives and Fire Retardants. Book of Standards. American Wood Protection Association: Birmingham, AL, USA, 2018; p. 284.
- AWPA T1-18; Processing and Treatment Standard. American Wood Protection Association: Birmingham, AL, USA, 2018; pp. 84–88.
- ASTM D143; Standard Test Methods for Small Clear Specimens of Timber. American Society for Testing Materials: West Conshohocken, PA, USA, 2014.
- Baettig-Palma, R.; Cornejo-Troncoso, J.; Salas-Maureira, M.; Tapia-Sanhueza, J. Estudio comparativo entre fluorescencia de rayos X y reflectancia difusa de infrarrojos cercanos para la determinación de la retención en madera impregnada con arseniato de cobre cromatado. Maderas Cienc. Tecnol. 2015, 17, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Humar, M.; Lesar, B.; Thaler, N.; Kržišnik, D.; Kregar, N.; Drnovšek, S. Quality of Copper Impregnated Wood in Slovenian Hardware Stores. Wood Ind. Drv. Ind. 2018, 69, 121–126. [Google Scholar] [CrossRef]
- AWPA U1-18; Use Category System: User Specification for Treated Wood. Book of Standards. American Wood Protection Association: Birmingham, AL, USA, 2018; p. 5.
- NCh 819; Madera Preservada–Clasificación Según Riesgo de Deterioro en Servicio y Muestreo. Instituto Nacional de Normalización: Santiago, Chile, 2019.
- Civardi, C. Assessing the Effectiveness and Environmental Risk of Nanocopper-Based Wood Preservatives. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2016. [Google Scholar]
- Lebow, P.K.; Taylor, A.M.; Young, T.M. A tool for estimating variability in wood preservative treatment retention. For. Prod. J. 2015, 65, 278–284. [Google Scholar] [CrossRef]
- Poonia, P.K.; Hom, S.K.; Sihag, K.; Tripathi, S. Effect of microwave treatment on longitudinal air permeability and preservative uptake characteristics of chir pine wood. Maderas. Cienc. Tecnol. 2016, 18, 125–132. [Google Scholar] [CrossRef]
- Wang, C.; Qi, C. Revealing the structural and chemical properties of copper-based nanoparticles released from copper treated wood. RSC Adv. 2022, 12, 11391–11401. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, J.; Booker, R.; Donalson, B.; Ridoutt, B. Impregnation of radiata pine wood by vacuum treatment: Identification of flow paths using fluorescent dye and confocal microscopy. IAWA J. 1998, 19, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Siau, J.F. Transport Processes in Wood; Springer: Berlin/Heidelberg, Germany, 1984; p. 243. [Google Scholar]
- Yildiz, U.C.; Temiz, A.; Gezer, E.D.; Yildiz, S. Effects of the wood preservatives on mechanical properties of yellow pine (Pinus sylvestris L.) wood. Build. Environ. 2004, 39, 1071–1075. [Google Scholar] [CrossRef]
- Hansson, L.; Antti, A.L. The effect of drying method and temperature level on the hardness of wood. J. Mat. Process Technol. 2006, 171, 467–470. [Google Scholar] [CrossRef]
- Meyer, L.; Brischke, C.; Welzbacher, C.R. Dynamic and static hardness of wood: Method development and comparative studies. Int. Wood Prod. J. 2011, 2, 5–11. [Google Scholar] [CrossRef]
- Almeida, A.; Criscuolo, G.; Almeida, T.H.; Christoforo, A.L.; Chahud, E.; Branco, L.A.M.N.; Pinheiro, R.; Lahr, F.A.R. Influence of CCA-A preservative on physical-mechanical properties of Brazilian tropical woods. BioResources 2019, 14, 3030–3041. [Google Scholar]
- Holmberg, H. Influence of grain angle on Brinell hardness of Scots pine (Pinus sylvestris L.). Holz Als Roh-Und Werkst. 2000, 58, 91–95. [Google Scholar] [CrossRef]
- Li, F.; Ye, C.; Huang, Y.; Liu, X.; Fei, B. Incorporation of in situ synthesized nano-copper modified phenol-formaldehyde resin to improve the mechanical properties of Chinese fir: A preliminary study. Polymers 2021, 13, 876. [Google Scholar] [CrossRef]
- Yildiz, S.; Yildiz, Ü.; Dizman, E.; Temiz, A.; Gezer, E. The effects of preacid treatment on preservative retention and compression strength of refractory spruce wood impregnated with CCA and ACQ. Wood Res. 2010, 56, 93–104. [Google Scholar]
Preservative Solutions | Designation | Solution Concentration (%) |
---|---|---|
CuNP-based + A 1 | K1 | 0.31 |
CuNP-based + B 1 | K2 | 0.35 |
Micronized copper | M | 0.56 |
MOE (MPa) | MOR (MPa) | Perpendicular Hardness (kN) | Parallel Hardness (kN) | |||||
---|---|---|---|---|---|---|---|---|
Samples | Mean | CoV * (%) | Mean | CoV *(%) | Mean | CoV * (%) | Mean | CoV * (%) |
Control | 10289 a (1384) | 13.5 | 75.7 a (7.9) | 10.4 | 1.78 a (0.39) | 22.0 | 3.12 a (0.60) | 19.2 |
K1 | 8273 b (1507) | 18.2 | 65.0 b (17.1) | 26.3 | 2.08 a (0.58) | 27.6 | 3.81 b (0.71) | 18.6 |
K2 | 9447 ab (1794) | 19.0 | 80.6 a (13.1) | 16.2 | 2.09 a (0.39) | 18.6 | 4.11 b (0.46) | 11.2 |
M | 7723 bc (2149) | 27.8 | 50.7 c (8.0) | 15.7 | 1.47 b (0.31) | 21.3 | 2.62 a (0.43) | 16.6 |
F-test | 8.84 | 23.42 | 6.32 | 17.89 | ||||
p-value | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguayo, M.G.; Erazo, O.; Montero, C.; Reyes, L.; Gacitúa, W.; Gómez, L.; Torres, H. Analyses of Impregnation Quality and Mechanical Properties of Radiata Pine Wood Treated with Copper Nanoparticle- and Micronized-Copper-Based Wood Preservatives. Forests 2022, 13, 1636. https://doi.org/10.3390/f13101636
Aguayo MG, Erazo O, Montero C, Reyes L, Gacitúa W, Gómez L, Torres H. Analyses of Impregnation Quality and Mechanical Properties of Radiata Pine Wood Treated with Copper Nanoparticle- and Micronized-Copper-Based Wood Preservatives. Forests. 2022; 13(10):1636. https://doi.org/10.3390/f13101636
Chicago/Turabian StyleAguayo, María Graciela, Oswaldo Erazo, Claudio Montero, Laura Reyes, William Gacitúa, Liset Gómez, and Hugo Torres. 2022. "Analyses of Impregnation Quality and Mechanical Properties of Radiata Pine Wood Treated with Copper Nanoparticle- and Micronized-Copper-Based Wood Preservatives" Forests 13, no. 10: 1636. https://doi.org/10.3390/f13101636
APA StyleAguayo, M. G., Erazo, O., Montero, C., Reyes, L., Gacitúa, W., Gómez, L., & Torres, H. (2022). Analyses of Impregnation Quality and Mechanical Properties of Radiata Pine Wood Treated with Copper Nanoparticle- and Micronized-Copper-Based Wood Preservatives. Forests, 13(10), 1636. https://doi.org/10.3390/f13101636