Carbon Sink Performance Evaluation and Socioeconomic Effect of Urban Aggregated Green Infrastructure Based on Sentinel-2A Satellite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Source
2.2.1. Aggregated Green Infrastructure Data
2.2.2. Socioeconomic Activities Data
2.3. Method
2.3.1. The Carbon Sequestration Amount of Aggregated Green Infrastructure
2.3.2. Location Entropy of Aggregated Green Infrastructure
2.3.3. Compactness of Aggregated Green Infrastructure
2.3.4. Spatial Autocorrelation
3. Results
3.1. Spatial Distribution Analysis of Aggregated Green Infrastructure Carbon Sink Performance
3.1.1. Aggregated Green Infrastructure Carbon Sequestration
3.1.2. Spatial Distribution of Aggregated Green Infrastructure Carbon Sink Performance
3.1.3. Spatial Autocorrelation of Aggregated Green Infrastructure Carbon Sink Performance
3.1.4. Spatial Distribution Statistical of the Socioeconomic Activities and Aggregated Green Infrastructure Carbon Sink Performance
4. Discussion
4.1. Carbon Sink Performance of Urban Aggregated Green Infrastructure
4.2. Effects of Human Socioeconomic Activities
4.3. Research Limitations and Future Development Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Gaede, J.; Meadowcroft, J. A Question of Authenticity: Status Quo Bias and the International Energy Agency’s World Energy Outlook. J. Environ. Pol. Plan. 2016, 18, 608–627. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.W. Analysis of spatial distribution of global energy-related CO2 emissions. Nat. Hazards 2014, 73, 165–171. [Google Scholar] [CrossRef]
- Shi, X.L.; Wang, T.L.; Lu, S.Y.; Chen, K.; He, D.; Xu, Z. Evaluation of China’s forest carbon sink service value. Environ. Sci. Pollut. Res. 2022, 29, 44668–44677. [Google Scholar] [CrossRef] [PubMed]
- Eze, S.; Palmer, S.M.; Chapman, P.J. Response to comments by Hoffmann et al. on “Upland grasslands in Northern England were atmospheric carbon sinks regardless of management regime”. Agric. For. Meteorol. 2019, 264, 366–368. [Google Scholar] [CrossRef]
- Bu, X.Y.; Dong, S.C.; Mi, W.B.; Li, F.J. Spatial-temporal change of carbon storage and sink of wetland ecosystem in arid regions, Ningxia Plain. Atmos. Environ. 2019, 204, 89–101. [Google Scholar]
- Liu, C.; Liu, G.Y.; Casazza, M.; Yan, N.Y.; Xu, L.Y.; Hao, Y.; Franzese, P.P.; Yang, Z.F. Current Status and Potential Assessment of China? Ocean Carbon Sinks. Environ. Sci. Technol. 2022, 56, 6584–6595. [Google Scholar] [CrossRef]
- Barthel, S.; Parker, J.; Ernstson, H. Food and green space in cities: A resilience Lens on gardens and urban environmental movements. Urban Stud. 2015, 52, 1321–1338. [Google Scholar] [CrossRef] [Green Version]
- Biernacka, M.; Kronenberg, J. Classification of institutional barriers affecting the availability, accessibility and attractiveness of urban green spaces. Urban For. Urban Green. 2018, 36, 22–33. [Google Scholar] [CrossRef]
- Ying, J.; Zhang, X.J.; Zhang, Y.Q.; Bilan, S. Green infrastructure: Systematic literature review. Ekon. Istraz. 2022, 35, 343–366. [Google Scholar] [CrossRef]
- Wei, J.X.; Li, H.B.; Wang, Y.C.; Xu, X.Z. The Cooling and Humidifying Effects and the Thresholds of Plant Community Structure Parameters in Urban Aggregated Green Infrastructure. Forests 2021, 12, 111. [Google Scholar] [CrossRef]
- Richard, T.F. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar]
- Iversen, M.H.; Lampitt, R.S. Size does not matter after all: No evidence for a size-sinking relationship for marine snow. Prog. Oceanogr. 2020, 189, 102445. [Google Scholar] [CrossRef]
- Fan, P.; Xu, L.; Yue, W.; Chen, J. Accessibility of public urban green space in an urban periphery: The case of Shanghai. Landsc. Urban Plan. 2017, 165, 177–192. [Google Scholar] [CrossRef]
- Kuwae, T.; Crooks, S. Linking climate change mitigation and adaptation through coastal green-gray infrastructure: A perspective. Coast Eng. J. 2021, 63, 188–199. [Google Scholar] [CrossRef]
- McConnell, K.; Braneon, C.V.; Glenn, E.; Stamler, N.; Mallen, E.; Johnson, D.P.; Pandya, R.; Abramowitz, J.; Fernandez, G.; Rosenzweig, C. A quasi-experimental approach for evaluating the heat mitigation effects of roofs in Illinois. Sust. Cities Soc. 2022, 76, 103376. [Google Scholar] [CrossRef]
- Zhu, S.J.; Yang, Y.; Yan, Y.; Causone, F.; Jin, X.; Zhou, X.; Shi, X. An evidence-based framework for designing urban green infrastructure morphology to reduce urban building energy use in a hot-humid climate. Build. Environ. 2022, 219, 109181. [Google Scholar] [CrossRef]
- Chen, W.Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities 2015, 44, 112–120. [Google Scholar] [CrossRef]
- Hsu, K.W.; Chao, J.C. Study on the Value Model of Urban Green Infrastructure Development-A Case Study of the Central District of Taichung City. Sustainability 2021, 13, 7402. [Google Scholar] [CrossRef]
- Jantz, C.A.; Manuel, J.J. Estimating impacts of population growth and land use policy on ecosystem services: A community-level case study in Virginia, USA. Ecosyst. Serv. 2013, 5, 110–123. [Google Scholar] [CrossRef]
- Huang, C.D.; Shao, Y.; Liu, J.H.; Chen, J.S. Temporal analysis of urban forest in Beijing using Landsat imagery. J. Appl. Remote Sens. 2007, 1, 013534. [Google Scholar] [CrossRef]
- Westfall, J.A. A Comparison of Above-Ground Dry-Biomass Estimators for Trees in the Northeastern United States. North. J. Appl. For. 2012, 29, 26–34. [Google Scholar] [CrossRef]
- Snehlata; Rajlaxmi, A.; Kumar, M. Urban tree carbon density and CO2 equivalent of National Zoological Park, Delhi. Environ. Monit. Assess. 2021, 193, 841. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.F.; Zhao, N.J.; Shi, C.Y.; Chen, S.; Qin, Z.S.; Zhang, X.L.; Yan, R.F.; Gan, T.T.; Liu, J.G.; Liu, W.Q. Phytoplankton photosynthetic rate measurement using tunable pulsed light induced fluorescence kinetics. Opt. Express. 2018, 26, 293–300. [Google Scholar] [CrossRef]
- Kinnunen, A.; Talvitie, I.; Ottelin, J.; Heinonen, J.; Junnila, S. Carbon sequestration and storage potential of urban residential environment-A review. Sust. Cities Soc. 2022, 84, 104027. [Google Scholar] [CrossRef]
- Lahoti, S.; Lahoti, A.; Joshi, R.K.; Saito, O. Vegetation Structure, Species Composition, and Carbon Sink Potential of Urban Green Spaces in Nagpur City, India. Land 2020, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Brandt, M.; Tong, X.W.; Ciais, P.; Yue, Y.M.; Xiao, X.M.; Zhang, W.M.; Wang, K.L.; Fensholt, R. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 2022, 5, 321–328. [Google Scholar] [CrossRef]
- Ma, X.P.; Li, J.; Zhao, K.F.; Wu, T.; Zhang, P.T. Simulation of Spatial Service Range and Value of Carbon Sink Based on Intelligent Urban Ecosystem Management System and Net Present Value Models-An Example from the Qinling Mountains. Forests 2022, 13, 407. [Google Scholar] [CrossRef]
- Lorenzo-Saez, E.; Lerma-Arce, V.; Coll-Aliaga, E.; Oliver-Villanueva, J.V. Contribution of green urban areas to the achievement of SDGs. Case study in Valencia (Spain). Ecol. Indic. 2021, 131, 108246. [Google Scholar] [CrossRef]
- Penazzi, S.; Accorsi, R.; Manzini, R. Planning low carbon urban-rural ecosystems: An integrated transport land-use model. J. Clean Prod. 2019, 235, 96–111. [Google Scholar] [CrossRef]
- Xia, L.L.; Wei, J.F.; Wang, R.W.; Chen, L.; Zhang, Y.; Yang, Z.F. Exploring Potential Ways to Reduce the Carbon Emission Gap in an Urban Metabolic System: A Network Perspective. Int. J. Environ. Res. Public Health 2022, 19, 5793. [Google Scholar] [CrossRef] [PubMed]
- Kopecka, M.; Szatmari, D.; Rosina, K. Analysis of Urban Green Spaces Based on Sentinel-2A: Case Studies from Slovakia. Land 2017, 6, 25. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Liu, J.Y.; Liu, Y.J.; Zuo, Q.; Li, Q. Exploring the potential of multispectral satellite images for estimating the contents of cadmium and lead in cropland: The effect of the dimidiate pixel model and random forest. J. Clean Prod. 2022, 367, 132922. [Google Scholar] [CrossRef]
- Silva, L.O.E.; Resende, M.; Galhardas, H.; Manquinho, V.; Lynce, I. DeepData: Machine learning in the marine ecosystems. Expert Syst. Appl. 2022, 206, 117841. [Google Scholar] [CrossRef]
- Tripp, H.L.; Crosman, E.T.; Johnson, J.B.; Rogers, W.J.; Howell, N.L. The Feasibility of Monitoring Great Plains Playa Inundation with the Sentinel 2A/B Satellites for Ecological and Hydrological Applications. Water 2022, 14, 2314. [Google Scholar] [CrossRef]
- Biswas, R.; Rathore, V.S.; Krishna, A.P.; Singh, G.; Das, A.K. Integration of C-band SAR and high-resolution optical images for delineating palaeo-channels in Nagaur and Barmer districts, western Rajasthan, India. Environ. Monit. Assess. 2022, 194, 589. [Google Scholar] [CrossRef]
- Yu, D.J.; Wanyan, W.B.; Wang, D.J. Leveraging contextual influence and user preferences for point-of-interest recommendation. Multimed. Tools Appl. 2021, 80, 1487–1501. [Google Scholar] [CrossRef]
- Liu, K.; Yin, L.; Lu, F.; Mou, N.X. Visualizing and exploring POI configurations of urban regions on POI-type semantic space. Cities 2020, 99, 102610. [Google Scholar] [CrossRef]
- Bin, C.Z.; Gu, T.L.; Sun, Y.P.; Chang, L. A personalized POI route recommendation system based on heterogeneous tourism data and sequential pattern mining. Multimed. Tools Appl. 2019, 78, 35135–35156. [Google Scholar] [CrossRef]
- Rahmani, H.A.; Deldjoo, Y.; di Noia, T. The role of context fusion on accuracy, beyond-accuracy, and fairness of point-of-interest recommendation systems. Expert Syst. Appl. 2022, 205, 117700. [Google Scholar] [CrossRef]
- Zhao, S.J.; Duan, W.C.; Zhao, D.F.; Song, Q.B. Identifying the influence factors of residents? low-carbon behavior under the background of “Carbon Neutrality”: An empirical study of Qingdao city, China. Energy Rep. 2022, 8, 6876–6886. [Google Scholar] [CrossRef]
- Zhang, X.X.; Lu, Z.G.; He, M.G.; Wang, J.F. What can Beijing learn from the world megacities on energy and environmental issues? Energy Rep. 2022, 8, 414–424. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Li, B. Study on forecasting ecological land demand with carbon-oxygen balance method. China Lands Cience 2008, 6, 23–28. (In Chinese) [Google Scholar]
- Jie, H.; Pan, Y.; Zhu, W. Measurement of terrestrial ecosystem service value in China. Chin. J. Ecol. 2005, 6, 1122–1127. (In Chinese) [Google Scholar]
- Xueying, M.; Xiufeng, Z. Carbon storage and fixation by a typical wetland vegetation in Changjiang River Estuary—A case study of Phragmites australis in east beach of Chong Ming Island. Chin. J. Eco-Agric. 2008, 2, 269–272. (In Chinese) [Google Scholar]
- Xiaonan, D.; Xiaoke, W.; Fei, L. Carbon sequestration and its potential by wetland ecosystems in China. J. Ecol. 2008, 2, 463–469. (In Chinese) [Google Scholar]
- Cao, Z.Y.; Yan, Y.C.; Tang, K. Path optimization of open collaborative innovation of energy industry in urban agglomeration based on particle swarm optimization algorithm. Energy Rep. 2022, 8, 5533–5540. [Google Scholar] [CrossRef]
- Gu, Y.X.; Li, W.; He, G.; Zhao, S.H. Evaluation of industrial ecological security in industrial transformation demonstration area based on spatiotemporal differentiation. Geomat. Nat. Hazards Risk 2022, 13, 1422–1440. [Google Scholar]
- Ariluoma, M.; Ottelin, J.; Hautamaki, R.; Tuhkanen, E.M.; Manttari, M. Carbon sequestration and storage potential of urban green in residential yards: A case study from Helsinki. Urban For. Urban Green. 2021, 57, 126939. [Google Scholar] [CrossRef]
- Park, Y.; Kim, S.H.; Kim, S.P.; Ryu, J.; Yi, J.; Kim, J.Y.; Yoon, H.J. Spatial autocorrelation may bias the risk estimation: An application of eigenvector spatial filtering on the risk of air pollutant on asthma. Sci. Total Environ. 2022, 843, 157053. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, R.; Zhao, M.L.; Wang, Y.; Chen, X. Policy Orientation, Technological Innovation and Energy-Carbon Performance: An Empirical Study Based on China’s New Energy Demonstration Cities. Front. Environ. Sci. 2022, 10, 846742. [Google Scholar] [CrossRef]
- Mahanta, N.K.; Abramson, A.R. The thermal flash technique: The inconsequential effect of contact resistance and the characterization of carbon nanotube clusters. Rev. Sci. Instrum. 2012, 83, 054904. [Google Scholar] [CrossRef]
- Wu, Q.; Lin, Q.G.; Yang, Q.; Li, Y. An optimization-based CCUS source-sink matching model for dynamic planning of CCUS clusters. Greenh. Gases 2022, 12, 433–453. [Google Scholar] [CrossRef]
- Guo, H.Q.; Yu, Q.; Pei, Y.R.; Wang, G.; Yue, D.P. Optimization of landscape spatial structure aiming at achieving carbon neutrality in desert and mining areas. J. Clean Prod. 2021, 322, 129156. [Google Scholar] [CrossRef]
- Mickler, R.A.; Fox, S. Effects of elevated carbon dioxide on the growth and physiology of loblolly pine. In The Productivity and Sustainability of Southern Forest Ecosystems in a Changing Environment; Springer: New York, NY, USA, 1998; Volume 128, pp. 93–101. [Google Scholar]
- Lopez, M.L.; Gerasimov, E.; Machimura, T.; Takakai, F.; Iwahana, G.; Fedorov, A.N.; Fukuda, M. Comparison of carbon and water vapor exchange of forest and grassland in permafrost regions, Central Yakutia, Russia. Agric. For. Meteorol. 2008, 148, 1968–1977. [Google Scholar] [CrossRef]
- Sattler, D.; Murray, L.T.; Kirchner, A.; Lindner, A. Influence of soil and topography on aboveground biomass accumulation and carbon stocks of afforested pastures in South East Brazil. Ecol. Eng. 2014, 73, 126–131. [Google Scholar] [CrossRef]
- Chen, Y.G. An analytical process of spatial autocorrelation functions based on Moran’s index. PLoS ONE 2021, 16, e0249589. [Google Scholar] [CrossRef]
- Meng, X.; Han, J.; Huang, C. An Improved Vegetation Adjusted Nighttime Light Urban Index and Its Application in Quantifying Spatiotemporal Dynamics of Carbon Emissions in China. Remote Sens. 2017, 9, 829. [Google Scholar] [CrossRef] [Green Version]
- Rizzati, M.; De Cian, E.; Guastella, G.; Mistry, M.N.; Pareglio, S. Residential electricity demand projections for Italy: A spatial downscaling approach. Energy Policy 2022, 160, 112639. [Google Scholar] [CrossRef]
- Zhang, H.; Bi, Y.; Kang, F.; Wang, Z. Incentive mechanisms for government officials’ implementing open government data in China. Online Inf. Rev. 2022, 46, 224–243. [Google Scholar] [CrossRef]
- Steffens, C.; Beer, C.; Schelfhout, S.; De Schrijver, A.; Pfeiffer, E.M.; Vesterdal, L. Do tree species affect decadal changes in soil organic carbon and total nitrogen stocks in Danish common garden experiments? Eur. J. Soil Sci. 2021, 73, 13206. [Google Scholar] [CrossRef]
- Beckert, M.R.; Smith, P.; Lilly, A.; Chapman, S.J. Soil and tree biomass carbon sequestration potential of silvopastoral and woodland-pasture systems in North East Scotland. Agrofor. Syst. 2016, 90, 371–383. [Google Scholar] [CrossRef]
- Hulvey, K.B.; Hobbs, R.J.; Standish, R.J.; Lindenmayer, D.B.; Lach, L.; Perring, M.P. Benefits of tree mixes in carbon plantings. Nat. Clim. Chang. 2013, 3, 869–874. [Google Scholar] [CrossRef]
Indicators | Data | |
---|---|---|
Socioeconomic status | The income of residents | Average house price |
Population Distribution | The number of residents | Number of households × Average Population per household |
Public service convenience | Number of public facility POIs | |
Employment opportunities | Number of company POIs | |
The richness of cultural and Recreational facilities | Number of dining and shopping POIs | |
Accessibility | Transportation convenience | Number of transport facilities POIs |
Carbon Sink | Area (ha) | Carbon Sink Volume (t/a) |
---|---|---|
Forest land | 3386.10 | 30,576.48 |
Grassland | 349.58 | 2695.26 |
Water area | 558.87 | 1168.04 |
Total | 4987.13 | 34,439.78 |
Statistical Characteristics | Carbon Sink Volume (t/a) |
---|---|
Sample size | 90 |
Min | 0.1922 |
Max | 22,157.1381 |
Mean | 375.6586 |
Standard Deviation | 2354.3169 |
Upper quartile | 4.7915 |
Median | 27.2026 |
Lower quartile | 96.4523 |
Quartile distance | 69.2496 |
Indicator | Group | Moran’s I | Z Value | p Value |
---|---|---|---|---|
Carbon sink | Group1 | 0.4192 | 13.9772 | 0.0000 |
Group2 | 0.1826 | 5.9574 | 0.0000 | |
Group3 | 0.1522 | 5.4640 | 0.0000 | |
Location entropy | Group1 | 0.4369 | 14.1768 | 0.0000 |
Group2 | 0.2076 | 6.7441 | 0.0000 |
Variables | Area | Shape | Carbon Sink Volume | Location Entropy | The Income of Residents | The Number of Residents | Public Service Convenience | Employment Opportunities | The Richness of Cultural and Recreational Facilities | Transportation Convenience |
---|---|---|---|---|---|---|---|---|---|---|
Area | 1 | −0.03 | 0.993 ** | 0.206 | −0.015 | 0.273 ** | 0.466 ** | 0.174 | 0.211 * | 0.397 ** |
(0.778) | (0) | (0.051) | (0.885) | (0.009) | (0) | (0.102) | (0.046) | (0) | ||
Shape | −0.03 | 1 | −0.036 | 0.107 | −0.121 | −0.309 ** | −0.317 ** | −0.119 | −0.216 * | −0.279 ** |
(0.778) | (0.738) | (0.315) | (0.256) | (0.003) | (0.002) | (0.263) | (0.041) | (0.008) | ||
Carbon sink volume | 0.993 ** | −0.036 | 1 | 0.223 * | −0.025 | 0.246 * | 0.435 ** | 0.143 | 0.184 | 0.355 ** |
(0) | (0.738) | (0.035) | (0.818) | (0.019) | (0) | (0.18) | (0.082) | (0.001) | ||
Location entropy | 0.206 | 0.107 | 0.223 * | 1 | −0.143 | −0.109 | 0.012 | −0.163 | −0.178 | −0.081 |
(0.051) | (0.315) | (0.035) | (0.179) | (0.304) | (0.914) | (0.125) | (0.094) | (0.448) | ||
The income of residents | −0.015 | −0.121 | −0.025 | −0.143 | 1 | 0.302 ** | 0.251 * | 0.374 ** | 0.226 * | 0.347 ** |
(0.885) | (0.256) | (0.818) | (0.179) | (0.004) | (0.017) | (0) | (0.032) | (0.001) | ||
The number of residents | 0.273 ** | −0.309 ** | 0.246 * | −0.109 | 0.302 ** | 1 | 0.865 ** | 0.819 ** | 0.875 ** | 0.892 ** |
(0.009) | (0.003) | (0.019) | (0.304) | (0.004) | (0) | (0) | (0) | (0) | ||
Public service convenience | 0.466 ** | −0.317 ** | 0.435 ** | 0.012 | 0.251 * | 0.865 ** | 1 | 0.762 ** | 0.817 ** | 0.919 ** |
(0) | (0.002) | (0) | (0.914) | (0.017) | (0) | (0) | (0) | (0) | ||
Employment opportunities | 0.174 | −0.119 | 0.143 | −0.163 | 0.374 ** | 0.819 ** | 0.762 ** | 1 | 0.890 ** | 0.866 ** |
(0.102) | (0.263) | (0.18) | (0.125) | (0) | (0) | (0) | (0) | (0) | ||
The richness of cultural and Recreational facilities | 0.211 * | −0.216 * | 0.184 | −0.178 | 0.226 * | 0.875 ** | 0.817 ** | 0.890 ** | 1 | 0.889 ** |
(0.046) | (0.041) | (0.082) | (0.094) | (0.032) | (0) | (0) | (0) | (0) | ||
Transportation convenience | 0.397 ** | −0.279 ** | 0.355 ** | −0.081 | 0.347 ** | 0.892 ** | 0.919 ** | 0.866 ** | 0.889 ** | 1 |
(0) | (0.008) | (0.001) | (0.448) | (0.001) | (0) | (0) | (0) | (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Huang, X.; Chen, Y.; Dong, H.; Li, J. Carbon Sink Performance Evaluation and Socioeconomic Effect of Urban Aggregated Green Infrastructure Based on Sentinel-2A Satellite. Forests 2022, 13, 1661. https://doi.org/10.3390/f13101661
Cheng S, Huang X, Chen Y, Dong H, Li J. Carbon Sink Performance Evaluation and Socioeconomic Effect of Urban Aggregated Green Infrastructure Based on Sentinel-2A Satellite. Forests. 2022; 13(10):1661. https://doi.org/10.3390/f13101661
Chicago/Turabian StyleCheng, Shuoqi, Xiancheng Huang, Yu Chen, Hangna Dong, and Jing Li. 2022. "Carbon Sink Performance Evaluation and Socioeconomic Effect of Urban Aggregated Green Infrastructure Based on Sentinel-2A Satellite" Forests 13, no. 10: 1661. https://doi.org/10.3390/f13101661
APA StyleCheng, S., Huang, X., Chen, Y., Dong, H., & Li, J. (2022). Carbon Sink Performance Evaluation and Socioeconomic Effect of Urban Aggregated Green Infrastructure Based on Sentinel-2A Satellite. Forests, 13(10), 1661. https://doi.org/10.3390/f13101661