Optimal Forest Road Density as Decision-Making Factor in Wood Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Technical and Economic Analysis of Wood Extraction
2.3. Optimal Forest Road Density
3. Results
3.1. Technical and Economic Analysis of Wood Extraction
3.2. Optimal Forest Road Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Labelle, E.R.; Lemmer, K.J. Selected Environmental Impacts of Forest Harvesting Operations with Varying Degree of Mechanization. Croat. J. For. Eng. 2019, 40, 239–257. [Google Scholar] [CrossRef]
- Reichert, J.M.; Cechin, N.F.; Reinert, D.J.; Rodrigues, M.F.; Suzuki, L.E.A.S. Ground-based harvesting operations of Pinus taeda affects structure and pore functioning of clay and sandy clay soils. Geoderma 2018, 331, 38–49. [Google Scholar] [CrossRef]
- Schettino, S.; Minette, L.J.; Lima, R.C.A.; Nascimento, G.S.P.; Caçador, S.S.; Vieira, M.P.L. Forest harvesting in rural properties: Risks and worsening to the worker’s health under the ergonomics approach. Int. J. Ind. Ergon. 2021, 82, 103087. [Google Scholar] [CrossRef]
- Soranso, D.R.; Minette, L.J.; Marçal, M.; Marins, J.C.B.; Schettino, S.; Lima, R.C.A.; Oliveira, M. Thermography in ergonomic assessment: A study of wood processing industry workers. PeerJ 2022, 10, e13973. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Visser, R.; O’Neal, B. A survey of the skidder fleet of Central, Eastern and Southern Europe. Eur. J. For. Res. 2021, 140, 901–911. [Google Scholar] [CrossRef]
- Lima, J.S.S.; Leite, A.M.P. Mecanização. In Colheita Florestal; UFV, Ed.; Universidad Federal de Viçosa: Viçosa, Brazil, 2014; pp. 46–73. [Google Scholar]
- Cazani, A.C.; Miyajima, R.H.; Simões, D.; dos Santos, J.E.G. Operator Exposure to Whole-Body Vibration in Timber Extraction with Grapple Skidder. J. Vib. Eng. Technol. 2021, 9, 177–182. [Google Scholar] [CrossRef]
- Rocha, Q.S.; Lima, R.C.A.; Munis, R.A.; Pereira, G.; Simões, D. Economic viability of the whole tree harvest under conditions of uncertainty: A study in southeastern Brazil. Int. J. For. Eng. 2022, 33, 181–188. [Google Scholar] [CrossRef]
- Visser, R.; Stampfer, K. Expanding Ground-based Harvesting onto Steep Terrain:A Review. Croat. J. For. Eng. 2015, 36, 321–331. [Google Scholar]
- Moskalik, T.; Borz, S.A.; Dvořák, J.; Ferenčík, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber Harvesting Methods in Eastern European Countries: A Review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- Ghaffariyan, M.R. General Productivity Predicting Model for Skidder Working in Eucalypt Plantations. Eur. J. For. Eng. 2020, 6, 1–6. [Google Scholar] [CrossRef]
- Timofte, A.I.; Enescu, C.M. Economic aspects regarding the extraction of wood using horses: A case study. SCI. Pap. Ser. Econ. Eng. Agric. Rural Dev. 2019, 19, 599–604. [Google Scholar]
- Holm, S.; Frutig, F.; Lemm, R.; Thees, O.; Schweier, J. HeProMo: A decision support tool to estimate wood harvesting productivities. PLoS ONE 2020, 15, e0244289. [Google Scholar] [CrossRef] [PubMed]
- Egnell, G. Forest Ecology and Management A review of Nordic trials studying effects of biomass harvest intensity on subsequent forest production. For. Ecol. Manag. 2017, 383, 27–36. [Google Scholar] [CrossRef]
- Jaiswal, A.; Sane, S.M.; Karandikar, V. Improving Productivity in a Paint Engineering Tools and Techniques. Int. J. Adv. Ind. Eng. 2016, 4, 15–21. [Google Scholar]
- Wang, Y.; Wang, J.; Schuler, J.; Hartley, D.; Volk, T.; Eisenbies, M. Optimization of harvest and logistics for multiple lignocellulosic biomass feedstocks in the northeastern United States. Energy 2020, 197, 117260. [Google Scholar] [CrossRef]
- Miyajima, R.H.; de Passos, J.R.S.; Fenner, P.T.; Simões, D. Eucalyptus extraction with grapple skidder: Operational productivity approach and production costs. Sci. For. 2020, 48, e3298. [Google Scholar] [CrossRef]
- Tampekis, S.; Samara, F.; Sakellariou, S.; Sfougaris, A.; Christopoulou, O. An eco-efficient and economical optimum evaluation technique for the forest road networks: The case of the mountainous forest of Metsovo, Greece. Environ. Monit. Assess. 2018, 190, 134. [Google Scholar] [CrossRef]
- Kweon, H.; Seo, J.I.; Lee, J. Planning and Evaluation of Synthetic Forest Road Network using GIS. J. Korean Soc. For. Sci. 2019, 108, 59–66. [Google Scholar] [CrossRef]
- Laschi, A.; Marchi, E.; González-García, S. Forest operations in coppice: Environmental assessment of two different logging methods. Sci. Total Environ. 2016, 562, 493–503. [Google Scholar] [CrossRef]
- Kleinschroth, F.; Healey, J.R. Impacts of logging roads on tropical forests. Biotropica 2017, 49, 620–635. [Google Scholar] [CrossRef]
- Solgi, A.; Naghdi, R.; Zenner, E.K.; Hemmati, V.; Behjou, F.K.; Masumian, A. Evaluating the Effectiveness of Mulching for Reducing Soil Erosion in Cut Slope and Fill Slope of Forest Roads in Hyrcanian Forests. Croat. J. For. Eng. 2021, 42, 259–268. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, B. Forest roads extraction through a convolution neural network aided method. Int. J. Remote Sens. 2021, 42, 2706–2721. [Google Scholar] [CrossRef]
- Petković, V.; Potočnik, I. Planning Forest Road Network in Natural Forest Areas: A Case Study in Northern Bosnia and Herzegovina. Croat. J. For. Eng. 2018, 39, 45–56. [Google Scholar]
- Kelly, M.C.; Germain, R.H.; Bick, S. Impacts of Forestry Best Management Practices on Logging Costs and Productivity in the Northeastern USA. J. For. 2017, 115, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Koutsianitis, D.; Tsioras, P.A. Time Consumption and Production Costs of Two Small-Scale Wood Harvesting Systems in Northern Greece. Small-Scale For. 2017, 16, 19–35. [Google Scholar] [CrossRef]
- Naderializadeh, N.; Crowe, K.A. Formulating the integrated forest harvest-scheduling model to reduce the cost of the road-networks. Oper. Res. 2020, 20, 2283–2306. [Google Scholar] [CrossRef]
- Kaczan, D.J. Can roads contribute to forest transitions? World Dev. 2020, 129, 104898. [Google Scholar] [CrossRef]
- Gumus, S. An Evaluation of Stakeholder Perception Differences in Forest Road Assessment Factors Using the Analytic Hierarchy Process (AHP). Forests 2017, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Bont, L.G.; Fraefel, M.; Fischer, C. A spatially explicit method to assess the economic suitability of a forest road network for timber harvest in steep terrain. Forests 2018, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Pignatti, G.; Id, E.M.; Latterini, F.; Benanchi, M.; Foderi, C.; Venanzi, R.; Verani, S. The Application of Two Approaches Using GIS Technology Implementation in Forest Road Network Planning in an Italian Mountain Setting. Forests 2018, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Krumov, T. Determination of the optimal density of the forest road network. J. For. Sci. 2019, 65, 438–444. [Google Scholar] [CrossRef]
- Laschi, A.; Foderi, C.; Fabiano, F.; Neri, F.; Cambi, M.; Mariotti, B.; Marchi, E. Forest road planning, construction and maintenance to improve forest fire fighting: A review. Croat. J. For. Eng. 2019, 40, 207–219. [Google Scholar]
- Podolskaia, E.; Ershov, D.; Kovganko, K. Automated construction of ground access routes for the management of regional forest fires. J. For. Sci. 2020, 66, 329–338. [Google Scholar] [CrossRef]
- Matthews, D.M. Cost Control in the Logging Industry; McGraw-Hill: New York, NY, USA, 1942. [Google Scholar]
- Chiteculo, V.; Abdollahnejad, A.; Panagiotidis, D.; Surový, P. Effects, Monitoring and Management of Forest Roads Using Remote Sensing and GIS in Angolan Miombo Woodlands. Forests 2022, 13, 524. [Google Scholar] [CrossRef]
- Akay, A.E.; Serin, H.; Sessions, J.; Bilici, E.; Pak, M. Evaluating the Effects of Improving Forest Road Standards on Economic Value of Forest Products. Croat. J. For. Eng. 2021, 42, 245–258. [Google Scholar] [CrossRef]
- Parsakhoo, A.; Hosseini, S.A.; Lotfalian, M.; Mohammadi, J.; Salarijazi, M. Efficiency of Different Anti-Dust Agents in Reducing Dust Emission from Forest Road and Deposition on Leaf Surface. Croat. J. For. Eng. 2021, 42, 269–282. [Google Scholar] [CrossRef]
- Rafiei, A.A.; Lotfalian, M.; Hosseini, S.A.; Parsakhoo, A. Determining the Optimum Road Density for Ground Skidding System in Dalak Kheyl Forest-Hyrcanian Zone. World Appl. Sci. J. 2009, 7, 263–270. [Google Scholar]
- Emmert, F.; Pereira, R.S.; Rezende, A.V.; Encinas, J.M.I. Geoprocessamento como ferramenta de apoio à gerência de pavimentos em estradas florestais. Cienc. Florest. 2010, 20, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Munsell Soil Color Company. Munsell Soil Color Chats, Munsell Color; Munsell Soil Color Company: North Arlington, NJ, USA, 1975. [Google Scholar]
- Schumacher, F.X.; Hall, F. dos S. Logarithmic expression of timber-tree volume. J. Agric. Res. 1933, 47, 719–734. [Google Scholar]
- Hosseini, S.A.; Mazrae, M.R.; Lotfalian, M.; Parsakhoo, A. Designing an Optimal Forest Road Network by Consideration of Environmental Impacts in Gis. J. Environ. Eng. Landsc. Manag. 2012, 20, 58–66. [Google Scholar] [CrossRef]
- Khajavi, S.; Jourgholami, M.; Garagiz, B.M.; Moradpour, P. Ergonomic evaluation of the effect of chainsaw on Vibration White Finger disease (VWF) in the operator. J. For. Wood Prod. 2020, 72, 290–299. [Google Scholar] [CrossRef]
- Steinlin, H. Zur methodik von feldversuchen im haungsbetrieb. Mitt. Schweiz. Anst. Forstl. Verwes 1955, 31, 249–320. [Google Scholar]
- Stevenson, W.J. Operations Management, 12th ed.; McGraw-Hill Education: New York, NY, USA, 2015; ISBN 9780078024108. [Google Scholar]
- Lopes, E.S.; Oliveira, D.; Rodrigues, C.K.; Drinko, C.H. Variables Influencing Working Time and Skidder Productivity in Wood Extraction. Nativa 2017, 5, 298–302. [Google Scholar] [CrossRef]
- Carmo, F.C.D.A.D.; Fiedler, N.C.; Lopes, E.D.S.; Pereira, D.P.; Marin, H.B.; Silva, E.N.D. Analysis of optimum density of forest roads in rural properties. Cerne 2013, 19, 451–459. [Google Scholar] [CrossRef]
- Heinimann, H.R. A Computer model to differentiate Skidder and Cable-Yarder based road network concepts on steep slopes. J. For. Res. 1998, 3, 1–9. [Google Scholar] [CrossRef]
- Zagonel, R.; Maria, C.; Corrêa, C.; Roberto, J. Optimal forest road density in plane relief in Pinus taeda forests in catarinense plateaus. Sci. For. 2008, 33, 33–41. [Google Scholar]
- Schettino, S.; Minette, L.J.; Soranso, D.R.; Lima, R.C.A. Influência de fatores ergonômicos na produtividade do sistema homem-máquina na colheita florestal mecanizada. Sci. For. 2022, 50, e3779. [Google Scholar] [CrossRef]
- Ackerman, P.; Belbo, H.; Eliasson, L.; de Jong, A.; Lazdins, A.; Lyons, J. The COST model for calculation of forest operations costs. Int. J. For. Eng. 2014, 25, 75–81. [Google Scholar] [CrossRef]
- Miyajima, R.H.; Simões, D.; Fenner, P.T.; Batistela, G.C. The Impact of Felling Method, Bunch Size, Slope Degree and Skidding Area on Productivity and Costs of Skidding in a Eucalyptus Plantation. Croat. J. For. Eng. 2021, 42, 381–390. [Google Scholar] [CrossRef]
- McNally, J.A.; Silversides, C.R. Logging and Log Transport in Tropical High Forest: A Manual on Production and Cost; Food and Agriculture Organization: Rome, Italy, 1974; p. 102. [Google Scholar]
- Thompson, M.P.; Gannon, B.M.; Caggiano, M.D. Forest Roads and Operational Wildfire Response Planning. Forests 2021, 12, 110. [Google Scholar] [CrossRef]
- Soares, R.V. Novas tendências no controle de incêndios florestais. Floresta 2000, 30, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Souza, F.L.; Sampietro, J.A.; Dacoregio, H.M.; Soares, P.R.C.; da Lopes, E.S.; Quadros, D.S. Optimum and acceptable forest road density in pine harvesting for cut-to length and full tree systems. Sci. For. 2018, 46, 189–198. [Google Scholar] [CrossRef]
- Speidel, G. Economia florestal; Universidade Federal do Paraná: Curitiba, Brazil, 1966. [Google Scholar]
- United States Department of Agriculture. Commodity Costs and Returns Measurement Methods; United States Department of Agriculture: Washington, DC, USA, 2001. [Google Scholar]
- Vartiainen, E.; Masson, G.; Breyer, C.; Moser, D.; Román Medina, E. Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity. Prog. Photovolt. Res. Appl. 2020, 28, 439–453. [Google Scholar] [CrossRef] [Green Version]
- Moody’s. Available online: https://www.moodys.com (accessed on 26 August 2021).
- United States Department of the Treasury. Daily Treasury Yield Curve Rates; United States Department of the Treasury: Washington, DC, USA, 2021. [Google Scholar]
- Mohanty, S.S. Does one model fit all in global equity markets? Some insight into market factor based strategies in enhancing alpha. Int. J. Financ. Econ. 2019, 24, 1170–1192. [Google Scholar] [CrossRef]
- Latunde, T.; Shina Akinola, L.; Deborah Dare, D. Analysis of capital asset pricing model on Deutsche bank energy commodity. Green Financ. 2020, 2, 20–34. [Google Scholar] [CrossRef]
- Brasil, Bolsa, Balcão. Séries Históricas. Available online: http://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-data/historico/mercado-a-vista/series-historicas/ (accessed on 3 November 2021).
- S&P Global Timber & Forestry Index Overview. Available online: https://www.spglobal.com/spdji/en/indices/equity/sp-global-timber%02and-forestry-index/#overview (accessed on 15 January 2021).
- Morgan, J.P. Emerging Markets Bond Index. Available online: https://www.jpmorgan.com/global (accessed on 26 January 2021).
- De Campos, R.F.; Fiedler, N.C.; Lousada, J.L.P.C.; dos Santos, A.R.; do Carmo, F.C.D.A.; Gonçalves, S.B. Roads density forest in rural properties. Agropecu. Cient. Semiarido 2017, 13, 59–66. [Google Scholar] [CrossRef]
- Vasileiou, K.; Barnett, J.; Thorpe, S.; Young, T. Characterising and justifying sample size sufficiency in interview-based studies: Systematic analysis of qualitative health research over a 15-year period. BMC Med. Res. Methodol. 2018, 18, 148. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhou, Y.; Zhang, X.; Tang, J.; Yang, Q.; Zhang, Y.; Luo, Y.; Hu, J.; Xue, W.; Qiu, Y.; et al. SSizer: Determining the Sample Sufficiency for Comparative Biological Study. J. Mol. Biol. 2020, 432, 3411–3421. [Google Scholar] [CrossRef]
- Behjou, F.K. Shape of skidder productivity function for ground based skidding system in Caspian forests. For. Res. Eng. Int. J. 2018, 2, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Stoilov, S.; Angelov, G.; Aladzhov, S.; Nichev, P. Productivity models and costs of combined skidder–harvester in coniferous forests. For. Ideas 2021, 27, 169–181. [Google Scholar]
- Kormanek, M.; Gołąb, J. Analysis of Surface Deformation and Physical and Mechanical Parameters of Soils on Selected Skid Trails in the Gorce National Park. Forests 2021, 12, 797. [Google Scholar] [CrossRef]
- Diniz, C.C.C.; Robert, R.C.G.; Vargas, M.B. Avaliação técnica de cabeçotes individual e múltiplo no processamento de madeira. Adv. For. Sci. 2018, 5, 253–258. [Google Scholar]
- Naderializadeh, N.; Crowe, K.A. The effect of the density of candidate roads on solutions in tactical forest planning. Can. J. For. Res. 2018, 48, 679–688. [Google Scholar] [CrossRef]
- Ross, K.L.; Tóth, S.F.; Jaross, W.S. Forest Harvest Scheduling with Endogenous Road Costs. Interfaces 2018, 48, 260–270. [Google Scholar] [CrossRef]
- Kweon, H.; Seo, J.I.; Lee, J.-W. Assessing the Applicability of Mobile Laser Scanning for Mapping Forest Roads in the Republic of Korea. Remote Sens. 2020, 12, 1502. [Google Scholar] [CrossRef]
- Kulak, D.; Stańczykiewicz, A.; Szewczyk, G. Productivity and Time Consumption of Timber Extraction with a Grapple Skidder in Selected Pine Stands. Croat. J. For. Eng. 2017, 38, 55–63. [Google Scholar]
- Bodaghi, A.I.; Nikooy, M.; Naghdi, R.; Venanzi, R.; Latterini, F.; Tavankar, F.; Picchio, R. Ground-Based Extraction on Salvage Logging in Two High Forests: A Productivity and Cost Analysis. Forests 2018, 9, 729. [Google Scholar] [CrossRef] [Green Version]
- Mac Donagh, P.; Botta, G.; Schlichter, T.; Cubbage, F. Harvesting contractor production and costs in forest plantations of Argentina, Brazil, and Uruguay. Int. J. For. Eng. 2017, 28, 157–168. [Google Scholar] [CrossRef]
- Keller, G.R. Application of geosynthetics on low-volume roads. Transp. Geotech. 2016, 8, 119–131. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R. Reviewing productivity studies of skidders working in coniferous forests and plantations. Silva Balc. 2020, 21, 83–98. [Google Scholar] [CrossRef]
- Naghdi, R.; Limaei, S.M. Optimal Forest Road Density Based on Skidding and Road Construction Costs in Iranian Caspian Forests. CJES Casp. J. Environ. Sci. Casp. J. Environ. Sci. 2009, 7, 79–86. [Google Scholar]
- Havimo, M.; Mönkönen, P.; Lopatin, E.; Dahlin, B. Optimising forest road planning to maximise the mobilisation of wood biomass resources in Northwest Russia. Biofuels 2017, 8, 501–514. [Google Scholar] [CrossRef]
- Bigelow, S.W.; Jansen, N.A.; Jack, S.B.; Staudhammer, C.L. Influence of Selection Method on Skidder-Trail Soil Compaction in Longleaf Pine Forest. For. Sci. 2018, 64, 641–652. [Google Scholar] [CrossRef]
- de Payá, T.I.A.; da Lopes, E.S.; Cavalieri-Polizeli, K.M.V.; Koehler, H.S.; Muller, M.M.L.; Silva, M.K.C. da Effect of traffic intensities of a directional Feller and Skidder on the compaction of a bruno nitisol. Rev. Árvore 2019, 43, e430111. [Google Scholar] [CrossRef]
- Shadbahr, J.; Bensebaa, F.; Ebadian, M. Impact of forest harvest intensity and transportation distance on biomass delivered costs within sustainable forest management—A case study in southeastern Canada. J. Environ. Manag. 2021, 284, 112073. [Google Scholar] [CrossRef]
- Temba, G.P.; Mauya, E.W.; Shemwetta, D.T.K. Modeling Productivity and Costs of Mechanized Tree Length Skidding Operations. Tanzania J. For. Nat. Conserv. 2021, 90, 62–73. [Google Scholar]
- Phelps, K.; Hiesl, P.; Hagan, D.; Hotaling Hagan, A. The Harvest Operability Index (HOI): A Decision Support Tool for Mechanized Timber Harvesting in Mountainous Terrain. Forests 2021, 12, 1307. [Google Scholar] [CrossRef]
- Heinimann, H.R. Forest road network and transportation engineering—State and perspectives. Croat. J. For. Eng. 2017, 38, 155–173. [Google Scholar]
- Varol, T.; Ozel, H.B.; Ertugrul, M.; Emir, T.; Tunay, M.; Cetin, M.; Sevik, H. Prediction of soil-bearing capacity on forest roads by statistical approaches. Environ. Monit. Assess. 2021, 193, 527. [Google Scholar] [CrossRef]
Item | Unit | Value |
---|---|---|
The average width of forest roads | m | 4.75 |
Average extraction distance | m | 81.99 |
Mean age of clearcut | months | 84.00 |
Average annual increment | m3 ha−1 year | 49.80 |
Diameter at chest height | cm | 15.99 |
The average height of trees | m | 25.25 |
Individual average volume | m3 | 0.25 |
Average volume per hectare | m3 ha−1 | 331.41 |
Standing wood price | USD m−3 | 3.24 |
Land price | USD ha−1 | 4712.00 |
Factor | Unit | Value |
---|---|---|
Fuel consumption | L h−1 | 25.92 |
Diesel price | USD L−1 | 0.69 |
Tires | USD h−1 | 13,000.00 |
Number of working days per year | days | 362.00 |
Using the grapple skidder | % | 60.20 |
Initial investment | USD | 296,330.68 |
Residual value | USD | 59,266.14 |
Operator salary | USD h−1 | 6.43 |
Social charges | % | 134.00 |
Property fee | USD h−1 | 2963.31 |
Machine transport | USD h−1 | 17,779.84 |
Insurance | USD h−1 | 5926.61 |
Shelter | USD h−1 | 14,816.53 |
Overhead | % | 5.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, D.; Cavalcante, F.S.; Lima, R.C.A.; Rocha, Q.S.; Pereira, G.; Miyajima, R.H. Optimal Forest Road Density as Decision-Making Factor in Wood Extraction. Forests 2022, 13, 1703. https://doi.org/10.3390/f13101703
Simões D, Cavalcante FS, Lima RCA, Rocha QS, Pereira G, Miyajima RH. Optimal Forest Road Density as Decision-Making Factor in Wood Extraction. Forests. 2022; 13(10):1703. https://doi.org/10.3390/f13101703
Chicago/Turabian StyleSimões, Danilo, Felipe Soares Cavalcante, Roldão Carlos Andrade Lima, Qüinny Soares Rocha, Gilberto Pereira, and Ricardo Hideaki Miyajima. 2022. "Optimal Forest Road Density as Decision-Making Factor in Wood Extraction" Forests 13, no. 10: 1703. https://doi.org/10.3390/f13101703
APA StyleSimões, D., Cavalcante, F. S., Lima, R. C. A., Rocha, Q. S., Pereira, G., & Miyajima, R. H. (2022). Optimal Forest Road Density as Decision-Making Factor in Wood Extraction. Forests, 13(10), 1703. https://doi.org/10.3390/f13101703