Effects of Tree Species Diversity on Fine Root Morphological Characteristics, Productivity and Turnover Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Setting of Sample Sites
2.3. Sequential Coring
2.4. Root Ingrowth Cores
2.5. Fine Root Isolation and Measurement
2.6. Fine Root Productivity (PRO) and Turnover Rate (TUR)
2.7. Physical and Chemical Properties of Soil
2.8. Data Processing
3. Results
3.1. Morphological Characteristics of Fine Roots in Communities with Different Species Richness
3.2. Fine Root Production and Turnover in Communities of Different Species Richness
3.3. Relationship between Fine Root Characteristics and Environmental Factors in Communities with Different Species Richness
4. Discussions
4.1. Effects of Tree Species Diversity on Morphological Characteristics of Fine Roots
4.2. Effects of Tree Species Diversity on Fine Root Productivity and Turnover
4.3. Effects of Biotic and Abiotic Factors on Fine Root Morphological Characteristics, Productivity and Turnover
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wardle, D.A.; Walker, L.R.; Bardgett, R.D. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 2004, 305, 509–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reich, P.B.; Tilman, D.; Isbell, F.; Mueller, K.; Hobbie, S.E.; Flynn, D.F.B.; Eisenhauer, N. Impacts of biodiversity loss escalate through time as redundancy fades. Science 2012, 336, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, A.S.; Osono, T.; Cornelissen, J.H.C.; Craine, J.; Uchida, M. Biodiversity-ecosystem function relationships change through primary succession. Oikos 2017, 126, 1637–1649. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Castro-Izaguirre, N.; Baruffol, M.; Brezzi, M.; Lang, A.; Li, Y.; Härdtle, W.; von Oheimb, G.; Yang, X.; et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 2018, 362, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Trogisch, S.; He, J.; Niklaus, P.A.; Bruelheide, H.; Tang, Z.; Erfmeier, A.; Scherer-Lorenzen, M.; Pietsch, K.A.; Yang, B.; et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B 2018, 285, 20181240. [Google Scholar]
- Li, Y.; Bruelheide, H.; Thomas, S.; Schmid, B.; Sun, Z.; Zhang, N.; Bu, W.; Liu, X.; Ma, K. Early positive effects of tree species richness on soil organic carbon accumulation in a large-scale forest biodiversity experiment. J. Plant Ecol. 2019, 12, 882–893. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecol. Lett. 2007, 10, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Hector, A. Overyielding and stable species coexistence. New Phytol. 2006, 172, 1–3. [Google Scholar] [CrossRef]
- Marquard, E.; Weigelt, A.; Temperton, V.M.; Roscher, C.; Schumacher, J.; Buchmann, N.; Fischer, M.; Weisser, W.W.; Schmid, B. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 2009, 90, 3290–3302. [Google Scholar] [CrossRef] [Green Version]
- Venail, P.; Gross, K.; Oakley, T.H.; Narwani, A.; Allan, E.; Flombaum, P.; Isbell, F.; Joshi, J.; Reich, P.B.; Tilman, D.; et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 2015, 29, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Craven, D.; Eisenhauer, N.; Pearse, W.D.; Hautier, Y.; Isbell, F.; Rosch, C.; Bahn, M.; Beierkuhnlein, C.; Bönisch, G.; Buchmann, N.; et al. Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. 2018, 2, 1579–1587. [Google Scholar] [CrossRef]
- Bowker, M.A.; Maestre, F.T.; Escolar, C. Biological crusts as a model system for examining the biodiversity ecosystem function relationship in soils. Soil Biol. Biochem. 2010, 42, 405–417. [Google Scholar] [CrossRef]
- Brassard, B.W.; Chen, H.Y.H.; Bergeron, Y.; Paré, D. Differences in fine root productivity between mixed-single-species. Funct. Ecol. 2011, 25, 238–246. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Lei, P.; Michael, S.L.; Bauhus, J. The effect of tree species diversity on fine root production in a young temperate forest. Oecologia 2012, 169, 1105–1115. [Google Scholar] [CrossRef]
- Balvanera, P.; Siddique, I.; Dee, L.; Paquette, A.; Isbell, F.; Gonzalez, A.; Byrnes, J.; Oconnor, M.I.; Hungate, B.A.; Groffin, J.N. Linking biodiversity and ecosystem services: Current uncertainties and the necessary next steps. Bioscience 2014, 64, 49–57. [Google Scholar] [CrossRef]
- Hendrick, R.L.; Pregitzer, K.S. The dynamics of fine root length, biomass and nitrogen content in two northern hardwoods ecosystems. Can. J. For. Res. 1993, 23, 2507–2520. [Google Scholar] [CrossRef]
- Bello, F.D.; Lep, J.; Sebastià, M.T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 2006, 29, 801–810. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Hörsch, V.; Moeser, J.S. Synergistic effects of microbial and animal decomposers on plant and herbivore performance. Basic Appl. Ecol. 2010, 11, 23–34. [Google Scholar] [CrossRef]
- Scherber, C.; Eisenhauer, N.; Weisser, W.W.; Schmid, B.; Voigt, W. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 2010, 468, 553–556. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Okubo, S.; Okayasu, T.; Jamsran, U.; Ohkuro, T.; Takeuchi, K. Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands. Ecology 2009, 90, 2598–2608. [Google Scholar] [CrossRef]
- Bauhus, J.; Khanna, P.K.; Menden, N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Can. J. For. Res. 2000, 30, 1886–1894. [Google Scholar] [CrossRef]
- Meinen, C.; Leuschner, C.; Ryan, N.T.; Hertel, D. No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees 2009, 23, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Santantonio, D.; Hermann, R.K. Standing crop, production, and turnover of fine roots on dry moderate and wet sites of mature Douglas-fir in western Oregon. Ann. Sci. For. 1985, 42, 113–142. [Google Scholar] [CrossRef] [Green Version]
- Vogt, K.A.; Vogt, D.J.; Janine, B.F. Analysis of some direct and indirect methods for estimating root biomass and production of forests at all ecosystem level. Plant Soil 1998, 200, 71–89. [Google Scholar] [CrossRef]
- Gill, R. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 2000, 147, 13–31. [Google Scholar] [CrossRef]
- Jacob, A.; Hertel, D.; Leuschner, C. Diversity and species identity effects on fine root productivity and turnover in a species-rich temperate broad-leaved forest. Funct. Plant Biol. 2014, 41, 678–689. [Google Scholar] [CrossRef]
- Liu, C.; Xiang, W.H.; Lei, P.F.; Deng, X.W.; Tian, D.L.; Fang, X.; Peng, C.H. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant Soil 2014, 376, 445–459. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Yang, J.; Lu, Z.Y. Influence of tree functional diversity and stand environment on fine root biomass and necromass in four types of evergreen broad-leaved forests. Glob. Ecol. Conserv. 2020, 21, e00832. [Google Scholar] [CrossRef]
- Zeng, W.; Xiang, W.; Fang, J.; Zhou, B.; Valverde-Barrantes, O.J. Species richness and functional-trait effects on fine root biomass along a subtropical tree diversity gradient. Plant Soil 2020, 446, 515–527. [Google Scholar] [CrossRef]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.H.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; Ruijven, J.V.; et al. High plant diversity is needed to maintain ecosystem services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, N. Aboveground-belowground interactions as a source of complementarity effects in biodiversity experiments. Plant Soil 2012, 351, 1–22. [Google Scholar] [CrossRef]
- Deljouei, A.; Abdi, E.; Schwarz, M.; Majnounian, B.; Sohrabi, H.; Dumroese, R.K. Mechanical characteristics of the fine roots of two broadleaved tree species from the temperate Caspian Hyrcanian ecoregion. Forests 2020, 11, 345. [Google Scholar] [CrossRef] [Green Version]
- Cislaghi, A.; Bordoni, M.; Meisina, C.; Bischetti, G.B. Soil reinforcement provided by the root system of grapevines: Quantification and spatial variability. Ecol. Eng. 2017, 109, 169–185. [Google Scholar] [CrossRef]
- Abdi, E.; Saleh, H.R.; Majnonian, B.; Deljouei, A. Soil fixation and erosion control by haloxylon persicum roots in arid lands, iran. J. Arid Land 2019, 11, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Moresi, F.V.; Maesano, M.; Matteucci, G.; Romagnoli, M.; Sidle, R.C.; Scarascia, M.G. Root biomechanical traits in a montane Mediterranean forest watershed: Variations with species diversity and soil depth. Forests 2019, 10, 341. [Google Scholar] [CrossRef] [Green Version]
- Cislaghi, A.; Alterio, E.; Fogliata, P.; Rizzi, A.; Lingua, E.; Vacchiano, G.; Bischetti, G.B.; Sitzia, T. Effects of tree spacing and thinning on root reinforcement in mountain forests of the European Southern Alps. For. Ecol. Manag. 2021, 482, 118873. [Google Scholar] [CrossRef]
- Giadrossich, F.; Schwarz, M.; Marden, M.; Marrosu, R.; Phillips, C. Minimum representative root distribution sampling for calculating slope stability in pinus radiata D.Don plantations in New Zealand. N. Z. J. For. Sci. 2020, 50, 1–12. [Google Scholar] [CrossRef]
- Karimi, Z.; Abdi, E.; Deljouei, A.; Cislaghi, A.; Shirvany, A.; Schwarz, M.; Hales, T.C. Vegetation-induced soil stabilization in coastal area: An example from a natural mangrove forest. Catena 2022, 216, 106410. [Google Scholar] [CrossRef]
- Hutchings, M.J.; John, E.A.; Wijesinghe, D.K. Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology 2003, 84, 2322–2334. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Hendrick, R.L.; Fogel, R. The demography of fine roots in response to patches of water and nitrogen. New Phytologist. 1993, 125, 575–580. [Google Scholar] [CrossRef]
- Guo, Y.P.; Schob, C.; Ma, W.H.; Mohammat, A.; Liu, H.Y.; Yu, S.L.; Jiang, Y.X.; Schmid, B.; Tang, Z.Y. Increasing water availability and facilitation weaken biodiversity biomass relationships in shrublands. Ecology 2019, 73, 894–904. [Google Scholar] [CrossRef] [Green Version]
- Girardin, C.A.J.; Aragao, L.E.; Malhi, Y.; Huasco, W.H.; Metcalfe, D.B.; Durand, L.; Mamani, M.; Silva-Espejo, J.E.; Whittaker, R.J. Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests. Glob. Biogeochem. Cycles 2013, 27, 252–264. [Google Scholar] [CrossRef]
- Raynal, D.J.; Joslin, J.D.; Thornton, F.C.; Schaedle, M.; Henderson, G.S. Sensitivity of tree seedlings to aluminum: III. Red spruce and loblolly pine. J. Environ. Qual. 1990, 19, 180–187. [Google Scholar] [CrossRef]
- Nowotny, I.; Daehne, J.; Klingelhoefer, D.; Rothe, G.M. Effect of artificial soil acidification and liming on g rowth and nutrientstatus of mycorrhizal roo ts of Norway spruce (Picea abies Karst.). Plant Soil 1998, 199, 29–40. [Google Scholar] [CrossRef]
- Leuschner, C.; Jungkunst, H.F.; Fleck, S. Functional role of forest diversity: Pros and cons of synthetic stands and across-site comparisons in established forests. Basic Appl. Ecol. 2009, 10, 1–9. [Google Scholar] [CrossRef]
- Kroon, D.H.; Hendriks, M.; Ruijven, J.V.; Ravenek, J.; Padilla, F.M.; Jongejans, E.; Visser, E.J.W.; Mommer, L. Root responses to nutrients and soil biota: Drivers of species coexistence and ecosystem productivity. J. Ecol. 2012, 100, 6–15. [Google Scholar] [CrossRef]
- Valverde-Barrantes, O.J.; Freschet, G.T.; Roumet, C.; Blackwood, C.B. A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. 2017, 215, 1562–1573. [Google Scholar] [CrossRef] [Green Version]
- Eissenstat, D.M.; Kucharski, J.M.; Zadworny, M.; Adam, T.S.; Koide, R.T. Linking root traits to nutrient foraging in arbuscular mycorrhizaltreesinatemperateforest. New Phytol. 2015, 208, 114–124. [Google Scholar] [CrossRef]
- Yan, H.; Kou, L.; Wang, H.; Fu, X.; Dai, X.; Li, S. Contrasting root foraging strategies of two subtropical coniferous forests under an increased diversity of understory species. Plant Soil 2019, 436, 427–438. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, X.; Schmid, B.; Bruelheide, H.; Bu, W.; Ma, K. Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. J. Plant Ecol. 2017, 10, 146–157. [Google Scholar] [CrossRef]
- Oram, N.J.; Ravenek, J.M.; Barry, K.E.; Weigelt, A.; Chen, H.; Gessler, A.; Gockele, A.; de Kroon, H.; van der Pauw, J.W.; Scherer-Lorenzen, M.; et al. Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species. J. Ecol. 2018, 106, 265–277. [Google Scholar] [CrossRef]
- Mommer, L.; Dumbrell, A.J.; Wagemaker, C.A.M.; Ouborg, N.J. Belowground DNA-based techniques: Untangling the network of plant root interactions. Plant Soil 2011, 348, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Guo, D.; Xu, X.; Lu, M.; Bardgett, R.D.; Eissenstat, D.M.; Mccormack, M.L.; Hedin, L.O. Evolutionary history resolves global organization of root functional traits. Nature 2018, 555, 94–97. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; McCormack, M.L.; Fan, H.; Wang, H.; Wu, J.; Tu, J.; Liu, W.; Guo, D. Relation of fine root distribution to soil C in a Cunninghamia lanceolata plantation in sub-tropical China. Plant Soil 2014, 381, 225–234. [Google Scholar] [CrossRef]
- Loreau, M.; Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412, 72–76. [Google Scholar] [CrossRef]
- Isbell, F.I.; Polley, H.W.; Wilsey, B.J. Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecol. Lett. 2009, 12, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Ruijven, J.V.; Berendse, F. Long-term persistence of a positive plant diversity productivity relationship in the absence of legumes. Oikos 2009, 118, 101–106. [Google Scholar] [CrossRef]
- Tobner, C.M.; Paquette, A.; Gravel, D.; Reich, P.B.; Williams, L.J.; Messier, C. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 2016, 19, 638–647. [Google Scholar] [CrossRef]
- Brassard, B.W.; Chen, H.Y.H.; Cavard, X.; Laganiere, J.; Reich, P.B.; Bergeron, Y.; Pare, D.; Yuan, Z.Y. Tree species diversity increases fine root productivity through increased soil volume filling. J. Ecol. 2013, 101, 210–219. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, H.Y.H. Effects of species diversity on fine root productivity in diverse ecosystems: A global meta-analysis. Glob. Ecol. Biogeogr. 2016, 25, 1387–1396. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, H.Y.H. Effects of species diversity on fine root productivity increase with stand development and associated mechanisms in a boreal forest. J. Ecol. 2017, 105, 237–245. [Google Scholar] [CrossRef]
- Heijden, V.D.; Klironomos, M.G.A.; Ursic, J.N.; Moutoglis, O. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Barry, K.E.; Mommer, L.; van Ruijven, J.; Wirth, C.; Wright, A.J.; Bai, Y.; Connolly, J.; Deyn, G.B.D.; de Kroon, H.; Isbell, F.; et al. The future of complementarity: Disentangling causes from consequences. Trends Ecol. Evol. 2019, 34, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Villéger, S.; Mason, N.W.H.; Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef] [Green Version]
- Polley, H.W.; Wilsey, B.J.; Derner, J.D. Do species evenness and plant density influence the magnitude of selection and complementarity effects in annual plant species mixtures? Ecol. Lett. 2003, 6, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Bai, Y.Y.; Du, H.Y.; Hu, Y.; Rao, Y.F.; Chen, C.; Cai, Y.L. The spatial and seasonal variation characteristics of fine roots in different plant configuration modes in new reclamation saline soil of humid climate in China. Ecol. Eng. 2016, 86, 231–238. [Google Scholar] [CrossRef]
- Jiang, H.; Du, H.Y.; Bai, Y.Y.; Hu, Y.; Rao, Y.F.; Chen, C.; Cai, Y.L. Effects of spatiotemporal variation of soil salinity on fine root distribution in different plant configuration modes in new reclamation coastal saline field. Environ. Sci. Pollut. Res. 2016, 23, 6639–6650. [Google Scholar] [CrossRef]
- Jiang, H. Spatial and Temporal Distribution of Fine Root and Its Influencing Factors Research in Plantation of Coastal Salt Land. Ph.D. Thesis, East China Normal University, Shanghai, China, 2016. (In Chinese). [Google Scholar]
- He, B. Study on Dynamic of Soil Moisture Content and Salinity and Its Influencing Factors in Coastal Saline Soil under Humid Climate. Ph.D. Thesis, East China Normal University, Shanghai, China, 2014. (In Chinese). [Google Scholar]
- Persson, H. Fine root production, mortality and decomposition in forest ecosystems. Vegetatio 1980, 41, 101–109. [Google Scholar] [CrossRef]
- Powell, S.W.; Day, F.P. Root production in four communities in the Great Dismal Swamp. Am. J. Bot. 1991, 78, 288–297. [Google Scholar] [CrossRef]
- Majdi, H. Root sampling methods-applications and limitations of the minirhizotron technique. Plant Soil 1996, 185, 255–258. [Google Scholar] [CrossRef]
- Lukac, M.; Godbold, D.L. Short communication a modification of the ingrowth-core method to determine root production in fast growing tree species. J. Plant Nutr. Soil Sci. 2001, 164, 613–614. [Google Scholar] [CrossRef]
- Uselman, S.M.; Qualls, R.G.; Lilienfein, J. Fine root production across a primary successional ecosystem chronosequence at Mt. Shasta, California. Ecosystems 2007, 10, 703–717. [Google Scholar] [CrossRef]
- Wang, C.; Han, S.; Zhou, Y.; Zhang, J.; Zheng, X.; Dai, G.; Li, M.H. Fine root growth and contribution to soil carbon in a mixed mature Pinus koraiensis forest. Plant Soil 2016, 400, 275–284. [Google Scholar] [CrossRef]
- Noguchi, K.; Kong, P.B.; Satomura, T.; Kaneko, S.; Takahashi, M. Biomass and production of fine roots in Japanese forests. J. For. Res. 2007, 12, 83–95. [Google Scholar] [CrossRef]
- Imada, S.; Matsuo, N.; Acharya, K.; Yamanaka, N. Effects of salinity on fine root distribution and whole plant biomass of Tamarix ramosissima cuttings. J. Arid Environ. 2015, 114, 84–90. [Google Scholar] [CrossRef]
- Brédoire, F.; Nikitich, P.; Barsukov, P.A.; Derrien, D.; Litvinov, A.; Rieckh, H.; Rusalimova, O.; Zeller, B.; Bakker, M. Distributions of fine root length and mass with soil depth in natural ecosystems of southwestern Siberia. Plant Soil 2016, 400, 315–335. [Google Scholar] [CrossRef]
- McClaugherty, C.A.; Aber, J.D.; Melillo, J.M. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 1982, 635, 1481–1490. [Google Scholar] [CrossRef] [Green Version]
- Liu, C. Fine Roots Biomass, Production and Morphology in Four Subtropcial Forests in Central Hilly Area of Hunan Province. Ph.D. Thesis, Central South University of Forestry and Technology, Changsha, China, 2011; pp. 28–29. (In Chinese). [Google Scholar]
- Bao, S.D. Agricultural Chemistry Analysis of Soil; China Agriculture Press: Beijing, China, 2005. [Google Scholar]
- Cuevas, E.; Brown, S.; Lugo, A.E. Above and belowground organic-matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant Soil 1991, 135, 257–268. [Google Scholar] [CrossRef]
- Schmid, I.; Kazda, M. Root distribution of Norway spruce in monospecific and mixed stands on different soils. For. Ecol. Manag. 2002, 159, 37–47. [Google Scholar] [CrossRef]
- Curt, T.; Prévosto, B. Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant Soil 2003, 34, 265–279. [Google Scholar] [CrossRef]
- Yang, Y.S.; Chen, G.S.; Lin, P.; Lin, P.; Xie, J.S.; Guo, J.F. Fine root distribution, seasonal pattern and production in four plantations compared with a natural forest in subtropical China. Ann. For. Sci. 2004, 61, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Ostonen, I.; Lohmus, K.; Helmisaari, H.S.; Truu, J.; Meel, S. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol. 2007, 27, 1627–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.W.; Huang, J.X.; Chen, F.; Xiong, D.C.; Lu, Z.L.; Hang, C.C.; Yang, Z.J.; Chen, G.S. Effects of tree species diversity on fine-root biomass and morphological characteristics in sub-tropical Castanopsis carlesii forests. Chin. J. Appl. Ecol. 2014, 25, 318–324. (In Chinese) [Google Scholar]
- Ludwig, F.; Dawson, T.E.; Prins, H.H.T.; Berendse, F.; Kroon, H.D. Below-ground competition between trees and grasses may overwhelm the facilitative effects of hydraulic lift. Ecol. Lett. 2004, 7, 623–631. [Google Scholar] [CrossRef]
- Loreau, M. Does functional redundancy exist. Oikos 2004, 104, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.A.M.; Jiang, J.; Patterson, C.M.; Mayes, M.A.; Wang, G.; Classen, A.T. Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes. J. Ecol. 2015, 103, 1442–1453. [Google Scholar] [CrossRef] [Green Version]
- Laliberté, E. Below-ground frontiers in trait-based plant ecology. New Phytol. 2017, 213, 1597–1603. [Google Scholar] [CrossRef]
- Tan, W.; Wang, G.; Huang, C.; Gao, R.; Xi, B.; Zhu, B. Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem. Sci. Total Environ. 2017, 598, 282–288. [Google Scholar] [CrossRef]
- Chen, W.L.; Zeng, H.; Eissenstat, D.M.; Guo, D.L. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Glob. Ecol. Biogeogr. 2013, 22, 846–856. [Google Scholar] [CrossRef]
- Shan, J.P.; Tao, D.L.; Wang, M.; Zhao, S.D. Fine roots turnover in a broad-leaved Korean pine forest of Changbai mountain. Chin. J. Appl. Ecol. 1993, 4, 241–245. (In Chinese) [Google Scholar]
- Coleman, M.D.; Dickson, R.E.; Isebrands, J.G.; Karnosky, D.F. Root growth and physiology of potted and field grown trembling aspen exposed to trophospheric ozone. Tree Physiol. 1996, 16, 145–152. [Google Scholar] [CrossRef]
- Burton, A.J.; Hendrick, K.S.P.L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 2000, 125, 389–399. [Google Scholar] [CrossRef]
Species Richness | Tree Species | Height (m) | DBH (cm) | Crown Width (m) | Ratio (%) | Coverage (%) | Stand Density (Trees·hm−1) |
---|---|---|---|---|---|---|---|
SR1 | Ligustrum lucidum | 5.43 ± 0.12 | 5.02 ± 0.47 | 2.84 ± 1.53 | 100% | 96 | 4000 |
SR2 | Ligustrum lucidum | 5.58 ± 1.08 | 5.85 ± 0.31 | 3.13 ± 1.75 | 50% | 96 | 4000 |
Melia azedarach | 50% | ||||||
SR3 | Ligustrum lucidum | 5.16 ± 1.61 | 5.74 ± 0.59 | 3.14 ± 1.91 | 33.33% | 96 | 4000 |
Sapium sebiferum | 33.33% | ||||||
Quercus virginiana | 33.33% | ||||||
SR4 | Ligustrum lucidum | 5.43 ± 3.12 (1.35 ± 0.10) | 6.02 ± 4.17 (0.52 ± 0.10) | 2.84 ± 1.73 (0.45 ± 0.10) | 33.00% | 96 | 4000 |
Populus ‘Zhonghua Hongye’ | 33.00% | ||||||
Cinnamomum camphora | 33.00% | ||||||
Clerodendrum cyrtophyllum | 1.00% | ||||||
SR5 | Ligustrum lucidum | 5.11 ± 3.34 (1.57 ± 0.30) | 5.31 ± 5.23 (1.12 ± 0.20) | 3.16 ± 1.87 (0.5 ± 0.2) | 24.75% | 96 | 4000 |
Broussonetia papyrifera | 24.75% | ||||||
Populus ‘Zhonghua Hongye’ | 24.75% | ||||||
Cinnamomum camphora | 24.75% | ||||||
Clerodendrum cyrtophyllum | 1.00% | ||||||
SR6 | Ligustrum lucidum | 4.75 ± 3.45 (1.53 ± 0.13) | 5.42 ± 5.25 (1.37 ± 0.20) | 3.00 ± 1.87 (1.14 ± 0.10) | 19.80% | 96 | 4000 |
Salix matsudana | 19.60% | ||||||
Photinia fraseri | 19.80% | ||||||
Robinia pseudoacacia | 19.80% | ||||||
Viburnum odoratissimum | 19.80% | ||||||
Eurya emarginata | 1.00% | ||||||
SR7 | Ligustrum lucidum | 4.35 ± 2.80 (1.62 ± 0.18) | 5.02 ± 3.32 (1.07 ± 0.20) | 2.15 ± 0.90 (0.95 ± 0.10) | 16.50% | 96 | 4000 |
Euonymusbungeanus | 16.50% | ||||||
Cinnamomum camphora | 16.50% | ||||||
Salix matsudana | 16.50% | ||||||
Sapium sebiferum | 16.50% | ||||||
Robinia pseudoacacia | 16.50% | ||||||
Eurya emarginata | 1.00% |
Parameter | Source of Variation | ||
---|---|---|---|
Tree Species Richness | Soil Depth | Tree Species Richness × Soil Depth | |
RTD (g·cm−3) | 1.68 | 4.02 | 1.26 |
RLD (m·m−3) | 3.84 * | 20.79 ** | 2.14 * |
SRL (m·g−1) | 0.46 | 0.92 | 1.05 |
SSA (cm2·g−1) | 0.50 | 0.62 | 0.96 |
RSAD(cm2·m−3) | 5.39 ** | 21.69 ** | 2.34 ** |
Source of Variation | ||||||
---|---|---|---|---|---|---|
Parameter | Species Richness | Soil Depth | Species Richness × Soil Depth | |||
F | p | F | p | F | p | |
Productivity (g·m−2·a−1) | 8.55 | <0.01 ** | 1.90 | Ns | 0.85 | Ns |
Turnover rates (times·a−1) | 5.36 | <0.05 * | 0.49 | Ns | 0.46 | Ns |
Indicator | SR | pH | EC | SM | T | TN | TP | SOM | PRO | TUR | D | RTD | RLD | SRL | SSA | RSD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRO | 0.735 ** | 0.105 | −0.401 * | −0.405 ** | 0.450 ** | −0.103 | −0.089 | −0.284 | 1 | |||||||
TUR | 0.342 * | 0.167 | −0.406 * | 0.116 | 0.395 ** | 0.424 * | 0.336 * | 0.464 ** | 0.248 | 1 | ||||||
D | 0.258 | 0.088 | −0.434 ** | −0.387 * | 0.241 | 0.128 | 0.136 | 0.308 | 0.438 ** | 0.211 | 1 | |||||
RTD | −0.269 | −0.050 | 0.165 | 0.020 | −0.480 ** | −0.181 | −0.227 | −0.435 ** | −0.309 | 0.085 | 0.085 | 1 | ||||
RLD | 0.328 | −0.260 | −0.436 ** | −0.278 | 0.697 ** | 0.245 | 0.180 | 0.693 ** | 0.678 ** | 0.399 * | −0.399 ** | −0.479 ** | 1 | |||
SRL | −0.078 | 0.306 | 0.155 | 0.250 | −0.099 | −0.351 | −0.291 | −0.149 | −0.050 | 0.091 | 0.091 | −0.008 | −0.095 | 1 | ||
SSA | −0.043 | 0.203 | 0.155 | 0.194 | 0.063 | −0.205 | −0.138 | −0.036 | 0.001 | 0.084 | 0.084 | −0.261 | 0.089 | 0.720 ** | 1 | |
RSD | 0.346 * | −0.255 | −0.432 * | −0.274 | 0.691 ** | 0.251 | 0.212 | 0.693 ** | 0.684 ** | 0.402 * | −0.402 ** | −0.522 ** | 0.996 ** | −0.121 | 0.077 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Cai, Y.; Liang, J.; Zhong, Q.; Jiang, H.; Lu, X.; Gao, X.; Yu, S.; Dai, X. Effects of Tree Species Diversity on Fine Root Morphological Characteristics, Productivity and Turnover Rates. Forests 2022, 13, 1740. https://doi.org/10.3390/f13101740
Wang Z, Cai Y, Liang J, Zhong Q, Jiang H, Lu X, Gao X, Yu S, Dai X. Effects of Tree Species Diversity on Fine Root Morphological Characteristics, Productivity and Turnover Rates. Forests. 2022; 13(10):1740. https://doi.org/10.3390/f13101740
Chicago/Turabian StyleWang, Zhibao, Yongli Cai, Jing Liang, Qicheng Zhong, Hong Jiang, Xinghui Lu, Xiangbin Gao, Shouchao Yu, and Xiaojian Dai. 2022. "Effects of Tree Species Diversity on Fine Root Morphological Characteristics, Productivity and Turnover Rates" Forests 13, no. 10: 1740. https://doi.org/10.3390/f13101740
APA StyleWang, Z., Cai, Y., Liang, J., Zhong, Q., Jiang, H., Lu, X., Gao, X., Yu, S., & Dai, X. (2022). Effects of Tree Species Diversity on Fine Root Morphological Characteristics, Productivity and Turnover Rates. Forests, 13(10), 1740. https://doi.org/10.3390/f13101740