Forest Road Wearing Course Damage Assessment Possibilities with Different Types of Laser Scanning Methods including New iPhone LiDAR Scanning Apps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Point Cloud Data Collection
2.2.1. Terrestrial Laser Scanning (TLS)
2.2.2. Hand-Held Personal Laser Scanning (PLShh) with GeoSLAM ZEB Horizon
2.2.3. Hand-Held Personal Laser Scanning (PLShh) with iPhone 13 Pro
2.3. Point Cloud Data Processing
2.4. Accuracy Asessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Toscani, P.; Sekot, W.; Holzleitner, F. Forest Roads from the Perspective of Managerial Accounting—Empirical Evidence from Austria. Forests 2020, 11, 378. [Google Scholar] [CrossRef] [Green Version]
- The Parliament of the Czech Republic. Road Act and Amendments to Certain Acts (Road Act); Act No. 13/1997 Coll; on Forests and on Amendments to Certain Acts (Road Act); The Parliament of the Czech Republic: Prague, Czech Republic, 1997. [Google Scholar]
- The Parliament of the Czech Republic. Forest Act and Amendments to Certain Acts (Forest Act); Act No. 289/1995 Coll; on Forests and on Amendments to Certain Acts (Forest Act); The Parliament of the Czech Republic: Prague, Czech Republic, 1995. [Google Scholar]
- Dodson, E.M. Challenges in Forest Road Maintenance in North America. Croat. J. For. Eng. 2021, 42, 107–116. [Google Scholar] [CrossRef]
- Akgul, M.; Yurtseven, H.; Akburak, S.; Demir, M.; Cigizoglu, H.K.; Öztürk, T.; Eksi, M.; Akay, A.O. Short term monitoring of forest road pavement degradation using terrestrial laser scanning. Measurement 2017, 103, 283–293. [Google Scholar] [CrossRef]
- Wang, H. Development of Laser System to Measure Pavement Rutting. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2005. Available online: http://digital.lib.usf.edu/SFS0025691/00001 (accessed on 7 November 2017).
- Demir, M.; Hasdemir, M. Functional planning criterion of forest road network system according to recent forestry development and suggestion in Turkey. Am. J. Environ. Sci. 2005, 1, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Starke, M.; Kunneke, A.; Ziesak, M. Monitoring of Carriageway Cross Section Profiles on Forest Roads: Assessment of an Ultrasound Data Based Road Scanner with TLS Data Reference. Forests 2021, 12, 1191. [Google Scholar] [CrossRef]
- Yurtseven, H.; Akgul, M.; Akay, A.O.; Akburak, S.; Cigizoglu, H.K.; Demir, M.; Eksi, T.O.A.M. High accuracy monitoring system to estimate forest road surface degradation on horizontal curves. Environ. Monit. Assess. 2019, 191, 32. [Google Scholar] [CrossRef]
- Bhatt, A.; Bharadwaj, S.; Sharma, V.B.; Biswas, R.D.A.S. An Overview of Road Health Monitoring System for Rigid Pavement By Terrestrial Laser Scanner. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 173–180. [Google Scholar] [CrossRef]
- Fidelus-Orzechowska, J.; Strzyżowski, D.; Wrońska-Wałach, J.C.A.D. A Quantitative Analysis of Surface Changes on an Abandoned Forest Road in the Lejowa Valley (Tatra Mountains, Poland). Remote Sens. 2020, 12, 3467. [Google Scholar] [CrossRef]
- Hrůza, P.; Mikita, T.; Tyagur, N.; Krejza, Z.; Cibulka, M.; Procházková, A.; Patocka, Z. Detecting Forest Road Wearing Course Damage Using Different Methods of Remote Sensing. Remote Sens. 2018, 10, 492. [Google Scholar] [CrossRef] [Green Version]
- Hyyppä, J.; Hyyppä, H.; Yu, X.; Kaartinen, H.; Kukko, A.; Holopainen, M. Forest Inventory Using Small-Footprint Airborne LiDAR. In Topographic Laser Ranging and Scanning, Principles and Processing; Shan, J., Toth, C.K., Eds.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Brenner, C. Building Reconstruction from Images and Laser Scanning. Int. J. Appl. Earth Obs. Geoinf. 2005, 6, 187–198. [Google Scholar] [CrossRef]
- Sithole, G.; Vosselman, G. Experimental Comparison of Filter Algorithms for Bare-Earth Extraction from Airborne Laser Scanning Point Clouds. ISPRS J. Photogramm. Remote Sens. 2004, 59, 85–101. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Litkey, P.; Yu, X.; Haggrén, H.; Rönnholm, P.; Pyysalo, U.; Pitkänen, J.; Maltamo, M. Algorithms and Methods of Airborne Laser Scanning for Forest Measurements; International Society for Photogrammetry and Remote Sensing (ISPRS): Freiburg, Germany, 2004; Volume XXXVI–8/W2, pp. 82–89. [Google Scholar]
- Rodriguez-Perez, J.R.; Alvarez, M.F.; Sanz-Ablanedo, E. Assessment of low-cost receiver accuracy and precision in forest environments. J. Surv. Eng. 2007, 133, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Bruggisser, M.; Hollaus, M.; Kükenbrink, D.; Pfeifer, N. Comparison of forest structure metrics derived from UAV lidar and ALS data. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus GmbH: Göttingen, Germany, 2019; Volume 4, pp. 325–332. [Google Scholar]
- Hrůza, P.; Mikita, T.; Janata, P. Monitoring of forest hauling roads wearing course damage using unmanned aerial systems. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 64, 1537–1546. [Google Scholar] [CrossRef] [Green Version]
- Luetzenburg, G.; Kroon, A.; Bjørk, A.A. Evaluation of the Apple iPhone 12 Pro LiDAR for an Application in Geosciences. Sci. Rep. 2021, 11, 22221. [Google Scholar] [CrossRef] [PubMed]
- Mrics, S.W.; Clegg, P.; Jones, R. Combining terrestrial laser scanning, RTK GPS and 3D visualization: Application of optical 3D measurement in geological exploration. In Proceedings of the 7th Conference on Optical 3D Measurement Techniques, Vienna, Austria, 3–5 October 2005. [Google Scholar]
- Barbarella, M.; De Blasiis, M.R.; Fiani, M.; Santoni, M. A LiDAR application for the study of taxiway surface evenness and slope. In ISPRS Annals Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the ISPRS Technical Commision V Symposium, Riva del Garda, Italy, 23–25 June 2014; ISPRS: Göttingen, Germanny, 2014; Volume II-5. [Google Scholar] [CrossRef] [Green Version]
- Chin, A.; Olsen, M.J. Evaluation of technologies for road profile capture, analysis, and evaluation. J. Surv. Eng. 2015, 141, 04014011. [Google Scholar] [CrossRef]
- Jaakkola, A.; Hyyppä, J.; Hyyppä, H.; Kukko, A. Retrieval algorithms for road surface modelling using laser-based mobile mapping. Sensors 2008, 8, 5238–5249. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Li, J.; Cao, S.; Yu, Y. Use of mobile LiDAR in road information inventory: A review. Int. J. Image Data Fusion 2016, 7, 219–242. [Google Scholar] [CrossRef]
- Kumar, P.; Angelats, E. An automated road roughness detection from mobile laser scanning data. ISPRS Arch. 2017, 42, 91–96. [Google Scholar] [CrossRef]
- Yan, L.; Li, Z.; Liu, H.; Tan, J.; Zhao, S.; Chen, C. Detection and classification of pole-like road objects from mobile LiDAR data in motorway environment. Opt. Laser Technol. 2017, 97, 272–283. [Google Scholar] [CrossRef]
- Vallet, B.; Papelard, J.P. Road orthophoto/DTM generation from mobile laser csanning. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Kukko, A.; Kaartinen, H.; Hyyppä, J.; Chen, Y. Multiplatform approach to mobile laser scanning. In Proceedings of the 2012 XXII ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012; Volume XXXIX-B2, pp. 483–488. [Google Scholar]
- Kukko, A.; Kaijaluoto, R.; Kaartinen, H.; Jaakkola, A.; Hyyppä, J. Graph SLAM correction for single scanner MLS forest data under boreal forest canopy. ISPRS J. Photogramm. Remote Sens. 2017, 132, 199–209. [Google Scholar] [CrossRef]
- Gollob, C.; Ritter, T.; Nothdurft, A. Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote Sens. 2020, 12, 1509. [Google Scholar] [CrossRef]
- Balenović, I.; Liang, X.; Jurjević, L.; Hyyppä, J.; Seletković, A.; Kukko, A. Hand-Held Personal Laser Scanning: Current Status and Perspectives for Forest Inventory Application. Croat. J. For. Eng. 2021, 42, 165–183. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; Feng, Z.; Shen, C.; Chen, P. Applicability of personal laser scanning in forestry inventory. PLoS ONE 2019, 14, e0211392. [Google Scholar] [CrossRef] [PubMed]
- Gollob, C.; Ritter, T.; Kraßnitzer, R.; Tockner, A.; Nothdurft, A. Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology. Remote Sens. 2021, 13, 3129. [Google Scholar] [CrossRef]
- Mokroš, M.; Mikita, T.; Singh, A.; Tomaštík, J.; Chudá, J.; Wężyk, P.; Kuželka, K.; Surovỳ, P.; Klimánek, M.; Zięba-Kulawik, K.; et al. Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102512. [Google Scholar] [CrossRef]
Scanning Device | Total Time in Minutes |
---|---|
Faro Focus 3D | 170 |
Geoslam ZEB Horizon | 20 |
iPhone Polycam | 30 |
iPhone 3D Scanner | 30 |
FARO FOCUS 3D | |||
---|---|---|---|
Mean | Std. Dev. | RMSE | |
devX | −0.00001 | 0.03469 | 0.03469 |
devY | −0.00002 | 0.03563 | 0.03563 |
devZ | −0.00002 | 0.00779 | 0.00779 |
devXY | −0.04660 | 0.01737 | 0.04973 |
Geoslam ZEB Horizon | |||
Mean | Std. Dev. | RMSE | |
devX | 0.00000 | 0.06835 | 0.06835 |
devY | 0.00002 | 0.08466 | 0.08466 |
devZ | 0.00000 | 0.02574 | 0.02574 |
devXY | 0.08976 | 0.06150 | 0.10881 |
iPhone Polycam | |||
Mean | Std. Dev. | RMSE | |
devX | 0.00000 | 0.11772 | 0.11772 |
devY | −0.00001 | 0.28678 | 0.28678 |
devZ | −0.00001 | 0.04561 | 0.04561 |
devXY | 0.25568 | 0.17530 | 0.31000 |
iPhone 3D Scanner | |||
Mean | Std. Dev. | RMSE | |
devX | −0.00001 | 0.10609 | 0.10609 |
devY | −0.00001 | 0.21895 | 0.21895 |
devZ | 0.00000 | 0.02190 | 0.02190 |
devXY | 0.16414 | 0.08601 | 0.18531 |
Scanning Device | Mean | Std. Dev. | RMSE |
---|---|---|---|
Faro Focus 3D | 0.01 | 0.02 | 0.02 |
Geoslam ZEB Horizon | 0.01 | 0.08 | 0.08 |
iPhone Polycam | 0.06 | 0.09 | 0.11 |
iPhone 3D Scanner | 0.05 | 0.05 | 0.07 |
Scanning Device | Mean | Min | Max | Std. Dev. | RMSE |
---|---|---|---|---|---|
Geoslam ZEB Horizon | 0.0143 | −0.0774 | 0.1012 | 0.0288 | 0.0321 |
iPhone Polycam | 0.0082 | −0.1155 | 0.1093 | 0.0404 | 0.0413 |
iPhone 3D Scanner | 0.0067 | −0.0555 | 0.0603 | 0.0161 | 0.0174 |
Scanning Device | Mean | Min | Max | Std. Dev. | RMSE |
---|---|---|---|---|---|
Geoslam ZEB Horizon | 0.008 | −0.262 | 0.810 | 0.018 | 0.028 |
iPhone Polycam | 0.001 | −0.120 | 0.885 | 0.04 | 0.041 |
iPhone 3D Scanner | 0.008 | −0.168 | 0.832 | 0.016 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikita, T.; Krausková, D.; Hrůza, P.; Cibulka, M.; Patočka, Z. Forest Road Wearing Course Damage Assessment Possibilities with Different Types of Laser Scanning Methods including New iPhone LiDAR Scanning Apps. Forests 2022, 13, 1763. https://doi.org/10.3390/f13111763
Mikita T, Krausková D, Hrůza P, Cibulka M, Patočka Z. Forest Road Wearing Course Damage Assessment Possibilities with Different Types of Laser Scanning Methods including New iPhone LiDAR Scanning Apps. Forests. 2022; 13(11):1763. https://doi.org/10.3390/f13111763
Chicago/Turabian StyleMikita, Tomáš, Dominika Krausková, Petr Hrůza, Miloš Cibulka, and Zdeněk Patočka. 2022. "Forest Road Wearing Course Damage Assessment Possibilities with Different Types of Laser Scanning Methods including New iPhone LiDAR Scanning Apps" Forests 13, no. 11: 1763. https://doi.org/10.3390/f13111763
APA StyleMikita, T., Krausková, D., Hrůza, P., Cibulka, M., & Patočka, Z. (2022). Forest Road Wearing Course Damage Assessment Possibilities with Different Types of Laser Scanning Methods including New iPhone LiDAR Scanning Apps. Forests, 13(11), 1763. https://doi.org/10.3390/f13111763