Transcriptome Analysis Reveals Putative Genes Involved in the Lipid Metabolism of Chaulmoogra Oil Biosynthesis in Carpotroche brasiliensis (Raddi) A.Gray, a Tropical Tree Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. RNA-Sequencing and Analysis
2.1.1. Plant Material
2.1.2. RNA Extraction and cDNA Library Preparation
2.1.3. Quality Control and Assembly
2.1.4. Quality of Transcripts, Complete Transcripts, and Super Transcripts
2.1.5. Functional Annotation
2.2. Phylogenetic Analysis
2.3. Analysis of Orthologous Gene Families
2.4. Heatmap
2.5. Construction of the Lipid Metabolism Model
3. Results
3.1. RNA Sequencing: The First Transcriptomic Information of C. brasiliensis
3.2. Phylogenetic Analyses with 18S: A Search for Related Species Producing Lipids of Economic Importance
3.3. Orthologous Groups Involved in Lipid Metabolism
3.4. Expression of Genes Involved in Lipid Biosynthesis
3.4.1. Special Characteristics of Lipids in Fruits and Seeds
3.4.2. Special Features of Lipids in Flower Tissue
3.4.3. Special Features of Root and Leaf Lipids
3.4.4. Metabolic Pathways Related to Oil Biosynthesis
4. Discussion
5. Conclusions
6. Declarations
Ethics Approval and Consent to Participate
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, L.C.; de Souza, M.P.C.; Lopes, M.V.; Figueiredo, C.A.V. Teor de Fenólicos Totais e Atividade Antioxidante Das Sementes Da Carpotroche Brasiliensis (Raddi). Rev. Ciências Médicas Biológicas 2012, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Rehfeldt, A.G.; Schulte, E.; Spener, F. Occurrence and Biosynthesis of Cyclopentenyl Fatty Acids in Leaves and Chloroplasts of Flacourtiaceae. Phytochemistry 1980, 19, 1685–1689. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Lima, J.A.; Rezende, C.M.; Pinto, A.C. Cyclopentenyl Acids from Sapucainha Oil (Carpotroche Brasiliensis Endl, Flacourtiaceae): The First Antileprotic Used in Brazil. Quim. Nova 2009, 32, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Waktola, H.D.; Kulsing, C.; Nolvachai, Y.; Rezende, C.M.; Bizzo, H.R.; Marriott, P.J. Gas Chromatography–Mass Spectrometry of Sapucainha Oil (Carpotroche Brasiliensis) Triacylglycerols Comprising Straight Chain and Cyclic Fatty Acids. Anal. Bioanal. Chem. 2019, 411, 1479–1489. [Google Scholar] [CrossRef]
- Gunstone, F.D. The Chemistry of Oils and Fats: Sources, Composition, Properties, and Uses-Blackwell; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Cramer, U.; Spener, F. Biosynthesis of Cyclopentenyl Fatty Acids. Biochim. Biophys. Acta Lipids Lipid Metab. 1976, 450, 261–265. [Google Scholar] [CrossRef]
- Hall, D.E.; Zerbe, P.; Jancsik, S.; Quesada, A.L.; Dullat, H.; Madilao, L.L.; Yuen, M.; Bohlmann, J. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases. Plant Physiol. 2013, 161, 600–616. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Zhang, Y.; Chen, X.; Lee, E.J.; Barber, C.J.S.; Chakrabarty, R.; Desgagné-Penix, I.; Haslam, T.M.; Kim, Y.B.; Liu, E.; et al. Transcriptome Analysis Based on Next-Generation Sequencing of Non-Model Plants Producing Specialized Metabolites of Biotechnological Interest. J. Biotechnol. 2013, 166, 122–134. [Google Scholar] [CrossRef]
- Huerta-cepas, J.; Forslund, K.; Coelho, L.P.; Szklarczyk, D.; Jensen, L.J.; Mering, C.V.; Bork, P.; Delbru, M. Fast Genome-Wide Functional Annotation through Orthology Assignment by EggNOG-Mapper. Mol. Biol. Evol. 2017, 34, 2115–2122. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, P.; Törönen, P.; Nokso-Koivisto, J.; Holm, L. PANNZER: High-Throughput Functional Annotation of Uncharacterized Proteins in an Error-Prone Environment. Bioinformatics 2015, 31, 1544–1552. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y. KEGG Mapper for Inferring Cellular Functions from Protein Sequences. Protein Sci. 2020, 29, 28–35. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans And Chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Chen, F.; Mackey, A.J.; Jr, C.J.S.; Roos, D.S. OrthoMCL-DB: Querying a Comprehensive Multi-Species Collection of Ortholog Groups. Nucleic Acids Res. 2006, 34, 363–368. [Google Scholar] [CrossRef]
- Maere, S.; Heymans, K.; Kuiper, M. BiNGO: A Cytoscape Plugin to Assess Overrepresentation of Gene Ontology Categories in Biological Networks. Bioinformatics 2005, 21, 3448–3449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thimm, O.; Bla, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Kru, P.; Selbig, J.; Mu, L.A.; Rhee, S.Y.; Stitt, M. MAPMAN: A User-Driven Tool to Display Genomics Data Sets onto Diagrams of Metabolic Pathways and Other Biological Processes. Plant J. 2004, 37, 914–939. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.H.; Cahoon, R.E.; Horn, P.J.; Shi, H.; Prakash, R.R.; Cai, Y.; Hearney, M.; Chapman, K.D.; Cahoon, E.B.; Schwender, J.; et al. Identification of Bottlenecks in the Accumulation of Cyclic Fatty Acids in Camelina Seed Oil. Plant Biotechnol. J. 2018, 16, 926–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, P.; Woodfield, H.K.; Harwood, J.L.; Chye, M.L.; Scofield, S. Comparative Transcriptomics Analysis of Brassica Napus L. During Seed Maturation Reveals Dynamic Changes in Gene Expression between Embryos and Seed Coats and Distinct Expression Profiles of Acyl-CoA-Binding Proteins for Lipid Accumulation. Plant Cell Physiol. 2019, 60, 2812–2825. [Google Scholar] [CrossRef] [Green Version]
- Zhi, Y.; Taylor, M.C.; Campbell, P.M.; Warden, A.C.; Shrestha, P.; El Tahchy, A.; Rolland, V.; Vanhercke, T.; Petrie, J.R.; White, R.G.; et al. Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow (Triadica Sebifera). Front. Plant Sci. 2017, 8, 1–20. [Google Scholar] [CrossRef]
- Brown, A.P.; Kroon, J.T.M.; Swarbreck, D.; Febrer, M.; Larson, T.R.; Graham, I.A.; Caccamo, M.; Slabas, A.R. Tissue-Specific Whole Transcriptome Sequencing in Castor, Directed at Understanding Triacylglycerol Lipid Biosynthetic Pathways. PLoS ONE 2012, 7, e30100. [Google Scholar] [CrossRef] [Green Version]
- Delude, C.; Fouillen, L.; Bhar, P.; Cardinal, M.J.; Pascal, S.; Santos, P.; Kosma, D.K.; Joubès, J.; Rowland, O.; Domergue, F. Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates. Plant Physiol. 2016, 171, 1934–1950. [Google Scholar] [CrossRef]
- Huang, R.; Huang, Y.; Sun, Z.; Huang, J.; Wang, Z. Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya Illinoinensis). J. Agric. Food Chem. 2017, 65, 4223–4236. [Google Scholar] [CrossRef]
- Li, R.J.; Gao, X.; Li, L.M.; Liu, X.L.; Wang, Z.Y.; Lü, S.Y. De Novo Assembly and Characterization of the Fruit Transcriptome of Idesia Polycarpa Reveals Candidate Genes for Lipid Biosynthesis. Front. Plant Sci. 2016, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sterck, L.; Rombauts, S.; Vandepoele, K.; Peer, Y.V.D.; Rouze, P. How Many Genes Are There in Plants (… and Why Are They There)? Curr. Opin. Plant Biol. 2007, 10, 199–203. [Google Scholar] [CrossRef]
- Marx, H.; Jorgensen, S.A.; Wisely, E.; Li, Z.; Katrina, M.D.; Barker, M.S. Progress Towards Plant Community Transcriptomics: Pilot RNA-Seq Data from 24 Species of Vascular Plants at Harvard Forest. SELL J. 2020, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Qin, C.X.; Wang, X.; Ding, N.Z. Plant Unsaturated Fatty Acids: Biosynthesis and Regulation. Front. Plant Sci. 2020, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yin, D.; Wang, Y.; Zhang, X.; Li, H.; Lu, X.; Zhang, J.; Zhang, W.; Chen, S. De Novo Assembly of the Peanut (Arachis Hypogaea L.) Seed Transcriptome Revealed Candidate Unigenes for Oil Accumulation Pathways. PLoS ONE 2013, 8, e73767. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.L.; Yang, Z.J.; Bai, W.W.; Chen, S.P.; Xu, W.Q.; El-Kassaby, Y.A.; Chen, H. Transcriptome Comparative Analysis of Two Camellia Species Reveals Lipid Metabolism during Mature Seed Natural Drying. Trees Struct. Funct. 2017, 31, 1827–1848. [Google Scholar] [CrossRef] [Green Version]
- Chase, M.W.; Zmarzty, S.; Lledó, M.D.; Wurdack, K.J.; Swensen, S.M.; Fay, M.F. When in Doubt, Put It in Flacourtiaceae: A Molecular Phylogenetic Analysis Based on Plastid RbcL DNA Sequences. Kew Bull. 2002, 57, 141–181. [Google Scholar] [CrossRef]
- Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; Stevens, P.F.; et al. An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chapman, K.D.; Dyer, J.M.; Mullen, R.T. Biogenesis and Functions of Lipid Droplets in Plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: From Yeast to Man. J. Lipid Res. 2012, 53, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, R.; Wang, R.; Liu, A. Transcriptome Analysis of Sacha Inchi (Plukenetia Volubilis L.) Seeds at Two Developmental Stages. BMC Genom. 2012, 13, 716. [Google Scholar] [CrossRef]
- Voelker, T.; Kinney, A.J. Variations in the Biosynthesis of Seed-Storage Lipids. Lipids 2001, 42, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ji, B.; Siewers, V.; Xu, D.; Halkier, B.A.; Nielsen, J. Identification of Genes Involved in Shea Butter Biosynthesis from Vitellaria Paradoxa Fruits through Transcriptomics and Functional Heterologous Expression. Appl. Microbiol. Biotechnol. 2019, 103, 3727–3736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, P.D.; Durrett, T.P.; Ohlrogge, J.B.; Pollard, M. Analysis of Acyl Fluxes through Multiple Pathways of Triacylglycerol Synthesis in Developing Soybean Embryos. Plant Physiol. 2009, 150, 55–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irish, V.F. The Flowering of Arabidopsis Flower Development. Plant J. 2010, 61, 1014–1028. [Google Scholar] [CrossRef]
- Nakamura, Y.; Teo, N.Z.W.; Shui, G.; Chua, C.H.L.; Cheong, W.F.; Parameswaran, S.; Koizumi, R.; Ohta, H.; Wenk, M.R.; Ito, T. Transcriptomic and Lipidomic Profiles of Glycerolipids during Arabidopsis Flower Development. New Phytol. 2014, 203, 310–322. [Google Scholar] [CrossRef]
- Samuels, L.; Kunst, L.; Jetter, R. Sealing Plant Surfaces: Cuticular Wax Formation by Epidermal Cells. Annu. Rev. Plant Biol. 2008, 59, 683–707. [Google Scholar] [CrossRef] [Green Version]
- Li-beisson, Y.; Shorrosh, B.; Beisson, F.; Andersson, M.X.; Arondel, V.; Bates, P.D.; Bird, D.; Debono, A.; Durrett, T.P.; Franke, R.B.; et al. Acyl-Lipid Metabolism. Arab. Book 2013, 11, e0161. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, L.M.d.; Bittencourt, F.; Vidal, R.O.; Silva, E.M.d.A.; Costa, E.A.; Micheli, F.; Kirst, M.; Pirovani, C.P.; Gaiotto, F.A. Transcriptome Analysis Reveals Putative Genes Involved in the Lipid Metabolism of Chaulmoogra Oil Biosynthesis in Carpotroche brasiliensis (Raddi) A.Gray, a Tropical Tree Species. Forests 2022, 13, 1806. https://doi.org/10.3390/f13111806
Vasconcelos LMd, Bittencourt F, Vidal RO, Silva EMdA, Costa EA, Micheli F, Kirst M, Pirovani CP, Gaiotto FA. Transcriptome Analysis Reveals Putative Genes Involved in the Lipid Metabolism of Chaulmoogra Oil Biosynthesis in Carpotroche brasiliensis (Raddi) A.Gray, a Tropical Tree Species. Forests. 2022; 13(11):1806. https://doi.org/10.3390/f13111806
Chicago/Turabian StyleVasconcelos, Letícia Maróstica de, Flora Bittencourt, Ramon Oliveira Vidal, Edson Mario de Andrade Silva, Eduardo Almeida Costa, Fabienne Micheli, Matias Kirst, Carlos Priminho Pirovani, and Fernanda Amato Gaiotto. 2022. "Transcriptome Analysis Reveals Putative Genes Involved in the Lipid Metabolism of Chaulmoogra Oil Biosynthesis in Carpotroche brasiliensis (Raddi) A.Gray, a Tropical Tree Species" Forests 13, no. 11: 1806. https://doi.org/10.3390/f13111806
APA StyleVasconcelos, L. M. d., Bittencourt, F., Vidal, R. O., Silva, E. M. d. A., Costa, E. A., Micheli, F., Kirst, M., Pirovani, C. P., & Gaiotto, F. A. (2022). Transcriptome Analysis Reveals Putative Genes Involved in the Lipid Metabolism of Chaulmoogra Oil Biosynthesis in Carpotroche brasiliensis (Raddi) A.Gray, a Tropical Tree Species. Forests, 13(11), 1806. https://doi.org/10.3390/f13111806