Economic Feasibility of Tropical Forest Restoration Models Based on Non-Timber Forest Products in Brazil, Cambodia, Indonesia, and Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forest Restoration Initiatives
2.3. Data Collection and Analysis
- The Discount rate refers to the opportunity cost of capital and the investor’s intertemporal preferences. It is composed by the sum of a risk-free rate and a risk premium rate—the remuneration that an investor would demand to risk its capital in a business. Therefore, future costs and benefits have a discounted weight in comparison to present costs and benefits in the economic analysis. The discount rate adopted for Brazil, Peru, Cambodia, and Indonesia is a real discount rate of 10%, kept equal for the sake of comparison—even though we recognize that different discount rates may be more appropriate to reflect specific countries’ risk rates and market structure. The discount rate adopted was estimated by the WACC (Weighted Average Cost of Capital) for the forest sector in Brazil, which suggests values for the forest sector ranging from 7% to 11% [46,47]. Conservatively, we adopted a 10% discount rate.
- Net Present Value (NPV): NPV is the sum of discounted cash flows (costs and benefits) of the project over time. The NPV represents the net financial surplus after remunerating labor and capital opportunity costs. The equation used was (1):: Net cash flow from t = 0 to t = T;: Discount rate;: Time periods;
- Internal Return Rate (IRR): The IRR is a rate that, when applied to a cash flow, makes the sum of costs and benefits to be equal to zero when brought to present value. The equation used to calculate the IRR was (2):: Net cash flow from t = 0 to t = T;: Discount rate;: Time periods;
- Benefit/Cost Ratio: Is the ratio among the total benefits and total costs when brought to a present value. The equation used was (3):: Net income (benefits) from t = 0 to t = T;: Net outcome (costs) from t = 0 to t = T;: Discount rate;: Time periods;
3. Results
3.1. Investment to Restore 01 Hectare of Tropical Forest
3.2. Productivity of the Main Species of Economic Value in Forest Restoration Initiatives in 2018 and 2019
3.3. Income from Forest Restoration Initiatives
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Girardin, C.A.J.; Jenkins, S.; Seddon, N.; Allen, M.; Lewis, S.L.; Wheeler, C.E.; Griscom, B.W.; Malhi, Y. Nature-based solutions can help cool the planet—If we act now. Nature 2021, 593, 191–194. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C.; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; 32p. [Google Scholar]
- Ometto, J.P.; Kalaba, K.; Anshari, G.Z.; Chacón, N.; Farrell, A.; Halim, S.A.; Neufeldt, H.; Sukumar, R. 2022: Cross-Chapter Paper 7: Tropical Forests. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022; in press. [Google Scholar]
- Batini, N.; di Serio, M.; Fragetta, M.; Melina, G.; Waldron, A. IMF Working Paper: Building Back Better: How Big Are Green Spending Multipliers? International Monetary Fund: Washington, DC, USA, 2021; 46p. [Google Scholar]
- New UN Decade on Ecosystem Restoration Offers Unparalleled Opportunity for Job Creation, Food Security and Addressing Climate Change. Available online: https://www.unep.org/explore-topics/ecosystems-and-biodiversity (accessed on 21 February 2021).
- Chazdon, R.L.; Brancalion, P.H.S.; Lamb, D.; Laestadius, L.; Calmon, M.; Kumar, C. A Policy-Driven Knowledge Agenda for Global Forest and Landscape Restoration. Conserv. Lett. 2017, 10, 125–132. [Google Scholar] [CrossRef]
- IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Campos-Filho, E.M.; Da Costa, J.N.M.N.; De Sousa, O.L.; Junqueira, R.G.P. Mechanized Direct-Seeding of Native Forests in Xingu, Central Brazil. J. Sustain. For. 2013, 32, 702–727. [Google Scholar] [CrossRef]
- Palmer, M.A.; Zedler, J.B.; Falk, D.A. Foundations of Restoration Ecology, 2nd ed.; Island Press: Washington, DC, USA, 2016; 550p. [Google Scholar]
- Crouzeilles, R.; Beyer, H.L.; Monteiro, L.M.; Feltran-Barbieri, R.; Pessôa, A.C.M.; Barros, F.S.M.; Lindenmayer, D.B.; Lino, E.D.S.M.; Grelle, C.E.V.; Chazdon, R.L.; et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 2020, 13, e12709. [Google Scholar] [CrossRef]
- Schwartz, G.; do Ferreira, M.S.; do Lopes, J.C. Silvicultural intensification and agroforestry systems in secondary tropical forests: A review. Rev. Ciências Agrar. Amaz. J. Agric. Environ. Sci. 2015, 58, 319–326. [Google Scholar]
- Martorano, L.G.; Siviero, M.A.; Tourne, D.C.M.; Vieira, S.B.; Fitzjarrald, D.R.; Vettorazzi, C.A.; Júnior, S.B.; Yeared, J.A.G.; Meyering, É.; Lisboa, L.S.S. Agriculture and forest: A sustainable strategy in the Brazilian Amazon. Aust. J. Crop Sci. 2016, 10, 1136–1143. [Google Scholar] [CrossRef] [Green Version]
- Homma, A.K.O. Extrativismo vegetal ou plantio: Qual a opção para a Amazônia? Estud. Av. 2012, 26, 167–186. [Google Scholar] [CrossRef] [Green Version]
- Wortley, L.; Hero, J.M.; Howes, M. Evaluating ecological restoration success: A review of the literature. Restor. Ecol. 2013, 21, 537–543. [Google Scholar] [CrossRef]
- Holl, K.D. Research Directions in Tropical Forest Restoration. Ann. Missouri Bot. Gard. 2017, 102, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Brancalion, P.H.S.; Meli, P.; Tymus, J.R.C.; Lenti, F.E.B.; Benini, R.M.; Silva, A.P.M.; Isernhagen, I.; Holl, K.D. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 2019, 240, 108274. [Google Scholar] [CrossRef]
- Menz, M.H.M.; Dixon, K.W.; Hobbs, R.J. Hurdles and opportunities for landscape-scale restoration. Science 2013, 339, 526–527. [Google Scholar] [CrossRef] [PubMed]
- Meli, P.; Herrera, F.F.; Melo, F.; Pinto, S.; Aguirre, N.; Musálem, K.; Minaverry, C.; Ramírez, W.; Brancalion, P.H.S. Four approaches to guide ecological restoration in Latin America. Restor. Ecol. 2017, 25, 156–163. [Google Scholar] [CrossRef]
- Bustamante, M.M.C.; Silva, J.S.; Scariot, A.; Sampaio, A.B.; Mascia, D.L.; Garcia, E.; Sano, E.; Fernandes, G.W.; Durigan, G.; Roitman, I.; et al. Ecological restoration as a strategy for mitigating and adapting to climate change: Lessons and challenges from Brazil. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 1249–1270. [Google Scholar] [CrossRef]
- Vergara, W.; Lomeli, L.G.; Rios, A.R.; Isbell, P.; Prager, S.; De Camino, R. The Economic Case for Landscape Restoration in Latin America; World Resources Institute: Washington, DC, USA, 2016; p. 62. [Google Scholar]
- Molin, P.G.; Chazdon, R.; Frosini de Barros Ferraz, S.; Brancalion, P.H.S. A landscape approach for cost-effective large-scale forest restoration. J. Appl. Ecol. 2018, 55, 2767–2778. [Google Scholar] [CrossRef]
- Brandão, D.O.; Barata, L.E.S.; Nobre, C.A. The effects of environmental changes on plant species and forest dependent communities in the Amazon region. Forests 2022, 13, 466. [Google Scholar] [CrossRef]
- Mahonya, S.; Shackleton, C.M.; Schreckenberg, K. Non-timber forest product use and market chains along a deforestation gradient in Southwest Malawi. Front. For. Glob. Chang. 2019, 2, 71. [Google Scholar] [CrossRef]
- Brandão, D.O.; Barata, L.E.S.; Nobre, I.; Nobre, C.A. The effects of Amazon deforestation on non-timber forest products. Reg. Environ. Chang. 2021, 21, 122. [Google Scholar] [CrossRef]
- Bugge, M.M.; Hansen, T.; Klitkou, A. What is the bioeconomy? A review of the literature. Sustainability 2016, 8, 691. [Google Scholar] [CrossRef] [Green Version]
- Fearnside, P.M. Deforestation in Brazilian Amazonia: History, Rates, and Consequences. Conserv. Biol. 2005, 19, 680–688. [Google Scholar] [CrossRef]
- Carvalho, W.D.; Mustin, K.; Hilário, R.R.; Vasconcelos, I.M.; Eilers, V.; Fearnside, P.M. Deforestation control in the Brazilian Amazon: A conservation struggle being lost as agreements and regulations are subverted and bypassed. Persp. Ecol. Conserv. 2019, 17, 122–130. [Google Scholar] [CrossRef]
- Davis, K.F.; Yu, K.; Rulli, M.C.; Pichdara, L.; D’Odorico, P. Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat. Geosci. 2015, 8, 772–775. [Google Scholar] [CrossRef]
- Austin, K.G.; Schwantes, A.; Gu, Y.; Kasibhatla, P.S. What causes deforestation in Indonesia? Environ. Res. Lett. 2019, 14, 024007. [Google Scholar] [CrossRef]
- Asner, G.P.; Llactayo, W.; Tupayachi, R.; Luna, E.R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl. Acad. Sci. USA 2013, 110, 18454–18459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzi, H. Brazilian Trees: A Guide to the Cultivation and Identification of Brazilian Trees, 7th ed.; Instituto Plantarum: Nova Odessa, SP, Brazil, 2016; pp. 17–368. [Google Scholar]
- Lorenzi, H.; de Matos, F.F.A. Plantas Medicinais no Brasil: Nativas e Exóticas, 2nd ed.; Instituto Plantarum: Nova Odessa SP, Brasil, 2008; ISBN 85-86714-28-3. [Google Scholar]
- Kinupp, V.F.; Lorenzi, H. Plantas Alimentícias não Convencionais (Panc) no Brasil, 2nd ed.; Instituto Plantarum: Nova Odessa, SP, Brazil, 2021; p. 768. [Google Scholar]
- de Yamaguchi, K.K.L.; Pereira, L.F.R.; Lamarão, C.V.; Lima, E.S.; da Veiga-Junior, V.F. Amazon acai: Chemistry and biological activities: A review. Food Chem. 2015, 179, 137–151. [Google Scholar] [CrossRef]
- Wickramasuriya, A.M.; Dunwell, J.M. Cacao biotechnology: Current status and future prospects. Plant Biotech. J. 2018, 16, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Ovalle-Magallanes, B.; Eugenio-Pérez, D.; Pedraza-Chaverri, J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem. Toxicol. 2017, 109, 102–122. [Google Scholar] [CrossRef]
- Boateng, L.; Ansong, R.; Owusu, W.B.; Steiner-Asiedu, M. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Med. J. 2016, 50, 189–196. [Google Scholar] [CrossRef]
- Gupta, S.; Saini, M.; Singh, T.G. Updated pharmacological, clinical and phytochemical prospects of green coffee: A review. Plant Arch. 2020, 20, 3820–3827. [Google Scholar]
- Khoozani, A.A.; Birch, J.; Bekhit, A.E.D.A. Production, application and health effects of banana pulp and peel flour in the food industry. J. Food Sci. Technol. 2019, 56, 548–559. [Google Scholar] [CrossRef]
- Cechin, A.; da Silva Araújo, V.; Amand, L. Exploring the synergy between Community Supported Agriculture and agroforestry: Institutional innovation from smallholders in a brazilian rural settlement. J. Rural Stud. 2021, 81, 246–258. [Google Scholar] [CrossRef]
- Arco-Verde, M.F.; Amaro, G.C. Metodologia para análise da viabilidade financeira e valoração de serviços ambientais em sistemas agroflorestais. In Serviços Ambientais em Sistemas Agrícolas e Florestais do Bioma Mata Atlântica; Parron, L.M., Garcia, J.R., Oliveira, E.B., Brown, G.G., Prado, R.B., Eds.; Embrapa: Brasília, Brazil, 2015; p. 30. [Google Scholar]
- Brazilian Institute of Geography and Statistics (IBGE). Índice Nacional de Preços ao Consumidor Amplo—IPCA. Available online: https://www.ibge.gov.br/estatisticas/economicas/precos-e-custos/9256-indice-nacional-de-precos-ao-consumidor-amplo.html?=&t= (accessed on 29 September 2022).
- Rahman, S.A.; De Groot, W.T.; Snelder, D.J. Exploring the agroforestry adoption gap: Financial and socioeconomics of litchi-based agroforestry by smallholders in Rajshahi (Bangladesh). In Smallholder Tree Growing for Rural Development and Environmental Services; Springer: Dordrecht, The Netherlands, 2008; pp. 227–243. [Google Scholar]
- Arco-Verde, M.F.; Amaro, G. Cálculo de Indicadores Financeiros para Sistemas Agroflorestais; Boa Vista, R.R., Ed.; Embrapa: Roraima, Brazil, 2012; p. 48. [Google Scholar]
- Batista, A.L.; Prado, A.L.; Pontes, C.L.; Matsumoto, M.A. VERENA Investment Tool: Valuing Reforestation with Native Tree Species and Agroforestry Systems; WRI Brasil: São Paulo, Brazil, 2017. [Google Scholar]
- Ribeiro, S.C.; Jacovine, L.A.G.; Soares, C.P.B.; Da Silva, M.L.; Nardelli, Á.M.B.; De Souza, A.L.; Martins, S.V. Análise econômica da implementação de projetos florestais para a geração de créditos de carbono em propriedades rurais na Mata Atlântica. Sci. For. 2011, 39, 9–19. [Google Scholar]
- Brancalion, P.H.S.; Gandolfi, S.; Rodrigues, R.R. Restauração Florestal, 1st ed.; Ofic: São Paulo, Brazil, 2015; ISBN 978-85-7975-019-9. [Google Scholar]
- Holl, K.D. Restoring tropical forests from the bottom up How can ambitious forest restoration targets be implemented on the ground? Science 2017, 355, 455–456. [Google Scholar] [CrossRef] [PubMed]
- United Nation Decade on Ecosystem Restoration 2021-2030. Available online: https://www.decadeonrestoration.org/ (accessed on 21 November 2020).
- Gasparinetti, P.; Brandão, D.O.; Araújo, V.; Araújo, N. Economic Feasibility Study for Forest Landscape Restoration Banking Models: Cases from Southern Amazonas State; Conservation Strategy Fund: Brasília, Brazil, 2019. [Google Scholar]
- Pauletto, D.; Silva, R.P.; Carvalho, C.S.S.; Lopes, L.S.S.; Baloneque, D.D.; Silva, S.U.P. Custos de implantação de sistema agroflorestal experimental sob diferentes condições de manejo em Santarém, Pará. Cad. Agroecol. 2018, 13, 1–6. [Google Scholar]
- Benini, R.M. Economia da Restauração Florestal; The Nature Conservancy: São Paulo, Brazil, 2017; p. 136. [Google Scholar]
- Embrapa. Melhoramento Genético Aumenta em até Sete Vezes a Produtividade Do Guaraná No Amazonas. 2017. Available online: https://www.embrapa.br/busca-de-noticias/-/noticia/26191362/melhoramento-genetico-aumenta-em-ate-sete-vezes-a-produtividade-do-guarana-no-amazonas (accessed on 30 October 2020).
- Brazil Law 12651 (Native Vegetation Protection Rules). Available online: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm (accessed on 11 October 2017).
Country | Region | Previous Use | Topography | Soil | Average Temperature | Average Precipitation (Annual) | Vegetation Type |
---|---|---|---|---|---|---|---|
Brazil | Apuí District (Amazonas) | Agriculture | Flat | Clayey | 26.3 °C | 2193 mm | Tropical rainforest |
Cambodia | Ou Baktra | Forestry and agriculture | Flat-Gently rolling | Clayey | 27.5 °C | 1349 mm | Deciduous forest |
Sre Ambel District (Koh Kong) | Forestry | Flat-Gently rolling | Clayey | 26 °C | 3459 mm | Evergreen Forest | |
Indonesia | Tapanuli Selatan District (Peatland and Coastal) | Agriculture (Palm Oil) | Flat | Sandy | 25.4 °C | 3220 mm | Broadleaf evergreen forest |
Tapanuli Selatan District (Highlands) | Forestry and agriculture | Mountainous | Clayey | 25.1 °C | 2410 mm | Mangrove | |
Peru | Gepalacio District (Moyobamba Province) | Agriculture and Livestock | Inclined slope (45°) | Clayey | 20.7 °C | 2021 mm | Mountain rainforest |
Calzada District (Moyobamba Province) | Agriculture | Flat | Clayey | 20.7 °C | 2021 mm | Tropical rainforest |
Country | Popular Name | Scientific Name | Botanic Families | Characteristics | Height (Meters) |
---|---|---|---|---|---|
Brazil | Acai berry | Euterpe oleracea Mart. | Arecaceae | Palm | 3–20 |
Banana | Musa X paradisiaca L. | Musaceae | Arboreal herbaceous | 3–7 | |
Cocoa | Theobroma cacao L. | Malvaceae | Tree | 4–6 | |
Coffee | Coffea canephora Pierre | Rubiaceae | Large shrub or shrub | 1–4 | |
Guarana | Paulinia cupana Kunth | Sapindaceae | Scandant or climbing shrub | 1–10 | |
Cambodia | Bamboo | Bambusa sp. | Poaceae | Tufted tinyculms | 2-3 |
Ginger | Zingiber officinale Roscoe | Zingiberaceae | Rhizomatoza herb | 0.5 | |
Lemon grass | Cymbopogon citratus (D.C.) Stapf | Poaceae | Herb | 0.6–1.2 | |
Peanuts | Arachis hypogaea L. | Fabaceae | Herb | 0.5 | |
Rattan | Calamus rotang L. | Arecaceae | Climbing palm | 10 | |
Turmeric | Curcuma longa L. | Zingiberaceae | Rhizomatous herbaceous | 0.4–0.8 | |
Indonesia | Coconut | Cocos nucifera L | Arecaceae | Palm | 30 |
Durian | Durio zibethinus L. | Malvaceae | Tree | 12–28 | |
Ketapang | Terminalia catappa L. | Combretaceae | Tree | 15–25 | |
Mangosteen | Garcinia mangostana L. | Clusiaceae | Tree | 10–20 | |
Sea cypress | Casuarina equisetifolia L. | Casuarinaceae | Tree | 10–20 | |
Peru | Cocoa | Theobroma cacao L. | Malvaceae | Tree | 4–6 |
Coffee | Coffea arabica L. | Rubiaceae | Large shrub or shrub | 1–4 | |
Guaba | Inga edulis Mart. | Fabaceae | Tree | 10–15 | |
Jacaranda | Jacaranda copaia (Aubl.) D. Don | Bignoniaceae | Tree | 20–30 |
Country | Models | Popular Name Species | Size (ha−1) | Investment (USD) | Investment Per Hectare (USD) | Average Annual Operating Cost Per Hectare in 29 Years after the Starting Investment (USD) |
---|---|---|---|---|---|---|
Brazil | 1 | Guarana | 1.0 | 3365 | 3365 | 1229 |
2 | Coffee, cocoa and guarana | 3.0 | 9124 | 3041 | 897 | |
3 | Coffee, cocoa, guarana, acai berry and banana | 1.5 | 5029 | 3353 | 863 | |
Cambodia | 4 | Turmeric, ginger and lemon grass | 1.0 | 7736 | 7736 | 1420 |
5 | Rattan and Bamboo | 1.0 | 1548 | 1548 | 224 | |
6 | Seed dispersal (Taungya) | 6.0 | 8965 | 1494 | 320 | |
Indonesia | 7 | Sea cypress and ketapang | 2.0 | 208 | 104 | 0 |
8 | Durian, mangosteen and coconut | 2.0 | 434 | 217 | 63 | |
9 | Seed dispersal | 1.0 | 1600 | 1600 | 0 | |
Peru | 10 | Cacao and silvopastoral trees | 5.8 | 2600 | 448 | 255 |
11 | Coffee, cacao, guaba and jacaranda | 3.0 | 620 | 207 | 419 | |
12 | Seed dispersal | 5.0 | 2240 | 448 | 8 |
Country | Species (Models) | Plants Per Hectare | Type Forest Product with Economic Value | Average Annual Productivity over 30 Years | Prices in USD (Per Indicated Measure) | |||
---|---|---|---|---|---|---|---|---|
1st to 5th | 6th to 10th | 11th to 20th | 21th to 30th | |||||
Brazil | Acai berry (3) | 240 | Fruits | 970 | 3400 | 3400 | 3400 | 0.49 (kg) 1 |
Banana (3) | 20 | Fruits | 480 | - | - | - | 0.62 (kg) | |
Cocoa (2) | 625 | Seeds | 240 | 580 | 625 | 625 | 1.72 (kg) | |
Coffee (2) | 1666 | Seeds | 1236 | 2400 | 1818 | 2400 | 1.34 (kg) | |
Coffee (3) | 140 | Seeds | 120 | 264 | 171 | 600 | 1.51(kg) | |
Guarana (1) | 667 | Seeds | 240 | 400 | 400 | 400 | 4.78 (kg) | |
Guarana (2) | 333 | Seeds | 24 | 60 | 60 | 60 | 4.78 (kg) | |
Guarana (3) | 417 | Seeds | 33 | 120 | 120 | 120 | 4.78 (kg) | |
Cambodia | Bamboo (5) | 356 | Canes | 0 | 356 | 445 | 445 | 0.08 (pkg) 2 |
Ginger (4) | 27,778 | Roots | 2812 | 2812 | 2812 | 2812 | 0.40 (kg) | |
Lemon grass (4) | 27,778 | Leaves | 1050 | 1050 | 1050 | 1050 | 0.28 (kg) | |
Rattan (5) | 356 | Poles/Culms | 0 | 40 | 40 | 40 | 0.28 (pkg) | |
Turmeric (4) | 27,778 | Roots | 675 | 675 | 675 | 675 | 0.40 (kg) | |
Indonesia | Coconut (8) | 16 | Fruits | 92 | 405 | 440 | 356 | 0.14 (ud) 3 |
Durian (8) | 25 | Fruits | 0 | 75 | 644 | 0 | 0.53 (kg) | |
Mangosteen (8) | 25 | Fruits | 0 | 25 | 329 | 187 | 0.36 (kg) | |
Peru | Cocoa (10) | 1111 | Seeds | 64 | 650 | 750 | 750 | 2.12 (kg) |
Coffee (11) | 2500 | Seeds | 800 | 1400 | 700 | 700 | 0.73 (kg) |
Country | Popular Name Species | Models | Size (ha−1) | Investment/ha−1 (USD) | IRR (%) | NPV/ha−1 (USD) | Benefit/Cost ratio |
---|---|---|---|---|---|---|---|
Brazil | Guarana | 1 | 1.0 | 3365 | 10 | −78 | 1.0 |
Coffee, cocoa, and guarana | 2 | 3.0 | 3041 | 10 | 113 | 1.1 | |
Coffee, cocoa, guarana, acai berry, and banana | 3 | 1.5 | 3353 | 15.5 | 2271 | 1.29 | |
Cambodia | Turmeric, ginger, and lemon grass | 4 | 1.0 | 7736 | 11 | 497 | 1.0 |
Rattan and bamboo | 5 | 2.0 | 1548 | 6.1 | −685 | 0.77 | |
Indonesia | Sea cypress and ketapang | 7 | 2.0 | 104 | 22 | 449 | 1.66 |
Durian, mangosteen and coconut | 8 | 2.0 | 217 | 27 | 1820 | 3.71 | |
Peru | Cocoa and silvopastoral trees | 10 | 5.8 | 448 | 39.6 | 5261 | 3,2 |
Coffee, cocoa, guaba, and jacaranda | 11 | 3.0 | 207 | 206 | 55,531 | 5.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasparinetti, P.; Brandão, D.O.; Maningo, E.V.; Khan, A.; Cabanillas, F.; Farfan, J.; Román-Dañobeytia, F.; Bahri, A.D.; Ponlork, D.; Lentini, M.; et al. Economic Feasibility of Tropical Forest Restoration Models Based on Non-Timber Forest Products in Brazil, Cambodia, Indonesia, and Peru. Forests 2022, 13, 1878. https://doi.org/10.3390/f13111878
Gasparinetti P, Brandão DO, Maningo EV, Khan A, Cabanillas F, Farfan J, Román-Dañobeytia F, Bahri AD, Ponlork D, Lentini M, et al. Economic Feasibility of Tropical Forest Restoration Models Based on Non-Timber Forest Products in Brazil, Cambodia, Indonesia, and Peru. Forests. 2022; 13(11):1878. https://doi.org/10.3390/f13111878
Chicago/Turabian StyleGasparinetti, Pedro, Diego Oliveira Brandão, Edward V. Maningo, Azis Khan, France Cabanillas, Jhon Farfan, Francisco Román-Dañobeytia, Adi D. Bahri, Dul Ponlork, Marco Lentini, and et al. 2022. "Economic Feasibility of Tropical Forest Restoration Models Based on Non-Timber Forest Products in Brazil, Cambodia, Indonesia, and Peru" Forests 13, no. 11: 1878. https://doi.org/10.3390/f13111878
APA StyleGasparinetti, P., Brandão, D. O., Maningo, E. V., Khan, A., Cabanillas, F., Farfan, J., Román-Dañobeytia, F., Bahri, A. D., Ponlork, D., Lentini, M., Alexandre, N., & Araújo, V. d. S. (2022). Economic Feasibility of Tropical Forest Restoration Models Based on Non-Timber Forest Products in Brazil, Cambodia, Indonesia, and Peru. Forests, 13(11), 1878. https://doi.org/10.3390/f13111878