Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Cherries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, DNA Isolation and Sequencing
2.2. Codon Composition
2.3. Neutrality Plot
2.4. Analysis of ENC-Plot
2.5. PR2-Plot
2.6. Correlation Analysis
2.7. Optimal Codons
2.8. Cluster and Phylogenetic Analysis
3. Results
3.1. Base Composition Characteristics
3.2. Neutrality Plot Analysis
3.3. ENC-Plot Analysis, PR2-Plot Analysis and Correlation Analysis
3.4. High-Frequency Codon and Optimal Codon
3.5. Cluster and Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buhr, F.; Jha, S.; Thommen, M.; Mittelstaet, J.; Kutz, F.; Schwalbe, H.; Rodnina, M.V.; Komar, A.A. Synonymous Codons Direct Cotranslational Folding toward Different Protein Conformations. Mol. Cell 2016, 61, 341–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Dang, Y.; Zhou, M.; Li, L.; Yu, C.-H.; Fu, J.; Chen, S.; Liu, Y. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl. Acad. Sci. USA 2016, 113, E6117–E6125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, S.; Yao, H.; Wu, Q.; Li, G. Analysis of compositional bias and codon usage pattern of the coding sequence in Banna virus genome. Virus Res. 2018, 258, 68–72. [Google Scholar] [CrossRef]
- Wang, H.; Meng, T.; Wei, W. Analysis of synonymous codon usage bias in helicase gene from Autographa californica multiple nucleopolyhedrovirus. Genes Genom. 2018, 40, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Romero, H.; Zavala, A.; Musto, H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res. 2000, 28, 2084–2090. [Google Scholar] [CrossRef] [Green Version]
- Hunt, R.C.; Simhadri, V.L.; Iandoli, M.; Sauna, Z.E.; Kimchi-Sarfaty, C. Exposing synonymous mutations. Trends Genet. 2014, 30, 308–321. [Google Scholar] [CrossRef]
- Pop, C.; Rouskin, S.; Ingolia, N.T.; Han, L.; Phizicky, E.M.; Weissman, J.S.; Koller, D. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol. Syst. Biol. 2014, 10, 770. [Google Scholar] [CrossRef]
- Quax, T.E.F.; Claassens, N.J.; Söll, D.; van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell 2015, 59, 149–161. [Google Scholar] [CrossRef] [Green Version]
- López, J.L.; Lozano, M.J.; Lagares, A.; Fabre, M.L.; Draghi, W.O.; Del Papa, M.F.; Pistorio, M.; Becker, A.; Wibberg, D.; Schlüter, A.; et al. Codon Usage Heterogeneity in the Multipartite Prokaryote Genome: Selection-Based Coding Bias Associated with Gene Location, Expression Level, and Ancestry. mBio 2019, 10, e00505-19. [Google Scholar] [CrossRef] [Green Version]
- Daniell, H.; Lin, C.-S.; Yu, M.; Chang, W.-J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef]
- Kwak, S.-Y.; Lew, T.T.S.; Sweeney, C.J.; Koman, V.B.; Wong, M.H.; Bohmert-Tatarev, K.; Snell, K.D.; Seo, J.S.; Chua, N.-H.; Strano, M.S. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 2019, 14, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Hishamuddin, M.S.; Lee, S.Y.; Ng, W.L.; Ramlee, S.I.; Lamasudin, D.U.; Mohamed, R. Comparison of eight complete chloroplast genomes of the endangered Aquilaria tree species (Thymelaeaceae) and their phylogenetic relationships. Sci. Rep. 2020, 10, 13034. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, B.; Li, B.; Zhou, Q.; Wang, G.; Jiang, X.; Wang, C.; Xu, Z. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. PeerJ 2020, 8, e8251. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Liao, R.; Yang, T.; Dong, X.; Lan, D.; Qin, R.; Liu, H. Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae). BMC Genom. 2020, 21, 621. [Google Scholar] [CrossRef] [PubMed]
- Koehne, E. Prunus L. In Plantae Wilsonianae; Sargent, C.R., Ed.; Dioscorides Press: Portland, OR, USA, 1913; Volume 2, pp. 196–282. [Google Scholar]
- Rehder, A. Manual of Cultivated Trees and Shrubs Hardy in North America Exclusive of the Subtropical and Warmer temperate Regions; MacMillan: New York, NY, USA, 1940. [Google Scholar]
- Krüssmann, G. Cultivated broad-leaved trees and shrubs. In Timber Press; Timber Press: Portland, OR, USA, 1986; Volume 3. [Google Scholar]
- Lu, L.T.; Ku, T.C.; Li, C.L.; Chen, S.X. Rosaceae (3) Prunoideae. In Flora Reipublicae Popularis Sinicae, Tomus 38; Yü, T.T., Ed.; Science Press: Beijing, China, 1986; pp. 1–133. [Google Scholar]
- Wang, X.R. An Illustrated Monograph of Cherry Cultivars in China; Science Press: Beijing, China, 2014. [Google Scholar]
- Zhang, Y.; Nie, X.; Jia, X.; Ding, C.; Biradar, S.; Le, W.; Che, X.; Song, W. Analysis of codon usage patterns of the chloroplast genomes in the Poaceae family. Aust. J. Bot. 2012, 60, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Ji, K.; Song, X.; Chen, C.; Li, G.; Xie, S. Codon Usage Profiling of Chloroplast Genome in Magnoliaceae. J. Agric. Sci. Technol. 2020, 22, 52–62. [Google Scholar]
- Nie, X.; Deng, P.; Feng, K.; Liu, P.; Du, X.; You, F.M.; Song, W. Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Mol. Biol. Rep. 2014, 32, 828–840. [Google Scholar] [CrossRef]
- Liu, H.; Xiong, R.; Ni, Y.; Wei, L.; Sun, J.; Wang, G.; Zhang, Y.; Gao, Y. Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Fragaria Species. Mol. Plant Breed. 2021, 1–23. [Google Scholar]
- Shi, S.; Li, J.; Sun, J.; Yu, J.; Zhou, S. Phylogeny and Classification of Prunus sensu lato (Rosaceae). J. Integr. Plant Biol. 2013, 55, 1069–1079. [Google Scholar] [CrossRef]
- Zhang, S.-D.; Jin, J.J.; Chen, S.Y.; Chase, M.W.; Soltis, D.E.; Li, H.-T.; Yang, J.-B.; Li, D.-Z.; Yi, T.-S. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol. 2017, 214, 1355–1367. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; dePamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. Near Homogeneity of PR2-Bias Fingerprints in the Human Genome and Their Implications in Phylogenetic Analyses. J. Mol. Evol. 2001, 53, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-X.; Liu, H.; Moore, M.J.; Landrein, S.; Liu, B.; Zhu, Z.-X.; Wang, H.-F. Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Mol. Phylogenet. Evol. 2020, 142, 106641. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, Q. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J. Genet. 2005, 84, 55–62. [Google Scholar] [CrossRef]
- Suzuki, R.; Shimodaira, H. Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 2006, 22, 1540–1542. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Tuller, T.; Waldman, Y.Y.; Kupiec, M.; Ruppin, E. Translation efficiency is determined by both codon bias and folding energy. Proc. Natl. Acad. Sci. USA 2010, 107, 3645. [Google Scholar] [CrossRef] [Green Version]
- Gu, W.; Zhou, T.; Ma, J.; Sun, X.; Lu, Z. The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens. Biosystems 2004, 73, 89–97. [Google Scholar] [CrossRef]
- Wang, B.; Yuan, J.; Liu, J.; Jin, L.; Chen, J.-Q. Codon Usage Bias and Determining Forces in Green Plant Mitochondrial Genomes. J. Integr. Plant Biol. 2011, 53, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Wei, F.; Cai, Z.; Wei, Y.; Khan, A.; Miao, J.; Wei, K. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth. Dev. Genes Evol. 2021, 231, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hershberg, R.; Petrov, D.A. Selection on codon bias. Annu. Rev. Genet. 2008, 42, 287–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, R.K.; Cai, Z.; Raubeson, L.A.; Daniell, H.; Depamphilis, C.W.; Leebens-Mack, J.; Müller, K.F.; Guisinger-Bellian, M.; Haberle, R.C.; Hansen, A.K.; et al. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. USA 2007, 104, 19369–19374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.S.; Son, O.G.; Park, S. The Chloroplast Genome of Elaeagnus macrophylla and trnH Duplication Event in Elaeagnaceae. PLoS ONE 2015, 10, e0138727. [Google Scholar] [CrossRef]
- Jansen, R.K.; Saski, C.; Lee, S.-B.; Hansen, A.K.; Daniell, H. Complete Plastid Genome Sequences of Three Rosids (Castanea, Prunus, Theobroma): Evidence for At Least Two Independent Transfers of rpl22 to the Nucleus. Mol. Biol. Evol. 2011, 28, 835–847. [Google Scholar] [CrossRef]
Species | Codon No. | CG1 | CG2 | CG3 | GC | ENC | CAI |
---|---|---|---|---|---|---|---|
Prunus apetala | 26158 | 0.4529 | 0.3765 | 0.2982 | 0.3760 | 49.71 | 0.166 |
Prunus avium | 26162 | 0.4541 | 0.3770 | 0.2978 | 0.3770 | 49.66 | 0.166 |
Prunus campanulata | 26157 | 0.4542 | 0.3770 | 0.2984 | 0.3770 | 49.69 | 0.166 |
Prunus cerasoides | 26172 | 0.4542 | 0.3767 | 0.2979 | 0.3770 | 49.68 | 0.166 |
Prunus clarofolia | 26209 | 0.4545 | 0.3768 | 0.2981 | 0.3770 | 49.69 | 0.166 |
Prunus conadenia | 25205 | 0.4560 | 0.3762 | 0.2974 | 0.3770 | 49.67 | 0.167 |
Prunus conradinae | 26490 | 0.4535 | 0.3762 | 0.2988 | 0.3770 | 49.73 | 0.166 |
Prunus dielsiana | 26151 | 0.4543 | 0.3769 | 0.2984 | 0.3770 | 49.70 | 0.166 |
Prunus discoidea | 26525 | 0.4533 | 0.3760 | 0.2991 | 0.3770 | 49.76 | 0.166 |
Prunus emarginata | 26163 | 0.4542 | 0.3769 | 0.2976 | 0.3770 | 49.66 | 0.166 |
Prunus fengyangshanica | 26163 | 0.4542 | 0.3767 | 0.2984 | 0.3770 | 49.71 | 0.166 |
Prunus fruticosa | 26166 | 0.4537 | 0.3766 | 0.2971 | 0.3760 | 49.61 | 0.166 |
Prunus itosakura | 26152 | 0.4546 | 0.3770 | 0.2982 | 0.3770 | 49.69 | 0.166 |
Prunus jamasakura | 26160 | 0.4541 | 0.3769 | 0.2982 | 0.3770 | 49.68 | 0.166 |
Prunus jingningensis | 26165 | 0.4542 | 0.3770 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus kumanoensis | 26158 | 0.4543 | 0.3770 | 0.2982 | 0.3770 | 49.68 | 0.166 |
Prunus leveilleana | 26158 | 0.4543 | 0.3770 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus mahaleb | 26218 | 0.4547 | 0.3771 | 0.2980 | 0.3770 | 49.67 | 0.166 |
Prunus matuurae | 26156 | 0.4540 | 0.3769 | 0.2986 | 0.3770 | 49.72 | 0.166 |
Prunus maximowiczii | 26158 | 0.4543 | 0.3768 | 0.2984 | 0.3770 | 49.71 | 0.166 |
Prunus mugus | 25990 | 0.4552 | 0.3775 | 0.2977 | 0.3770 | 49.67 | 0.166 |
Prunus pensylvanica | 26162 | 0.4544 | 0.3769 | 0.2980 | 0.3770 | 49.68 | 0.166 |
Prunus polytricha | 26220 | 0.4543 | 0.3769 | 0.2984 | 0.3770 | 49.70 | 0.166 |
Prunus pseudocerasus | 26575 | 0.4535 | 0.3761 | 0.2988 | 0.3770 | 49.73 | 0.166 |
Prunus rufa | 26171 | 0.4541 | 0.3769 | 0.2979 | 0.3770 | 49.67 | 0.166 |
Prunus sargentii | 26153 | 0.4543 | 0.3770 | 0.2981 | 0.3770 | 49.67 | 0.166 |
Prunus schneideriana | 26224 | 0.4543 | 0.3769 | 0.2985 | 0.3770 | 49.70 | 0.166 |
Prunus serrula | 26217 | 0.4544 | 0.3769 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus setulosa | 26227 | 0.4539 | 0.3769 | 0.2980 | 0.3770 | 49.67 | 0.166 |
Prunus speciosa | 26164 | 0.4540 | 0.3769 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus spontanea | 26158 | 0.4543 | 0.3770 | 0.2984 | 0.3770 | 49.70 | 0.166 |
Prunus subhirtella | 26152 | 0.4546 | 0.3770 | 0.2982 | 0.3770 | 49.69 | 0.166 |
Prunus takesimensis | 26158 | 0.4543 | 0.3770 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus verecunda | 26158 | 0.4544 | 0.3770 | 0.2983 | 0.3770 | 49.69 | 0.166 |
Prunus yedoensis | 26152 | 0.4546 | 0.3770 | 0.2982 | 0.3770 | 49.69 | 0.166 |
Prunus yunnanensis | 26003 | 0.4551 | 0.3774 | 0.2977 | 0.3770 | 49.66 | 0.166 |
GC1 | GC2 | GC3 | GC12 | GC | CAI | ENC | |
---|---|---|---|---|---|---|---|
Axis 1 | −0.141 ** | 0.035 | −0.103 ** | −0.066 ** | −0.091 ** | −0.130 ** | −0.071 ** |
Axis 2 | −0.074 ** | 0.026 | −0.030 | −0.030 | −0.037 | 0.147 ** | −0.055 * |
Axis 3 | −0.023 | 0.042 | −0.023 | 0.009 | 0.002 | −0.050 * | −0.107 ** |
Axis 4 | −0.050 * | −0.098 ** | 0.094 ** | −0.084 ** | −0.049 * | 0.077 ** | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.-F.; Yang, Q.-H.; Yi, X.-G.; Zhu, Z.-Q.; Wang, X.-R.; Li, M. Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Cherries. Forests 2022, 13, 1891. https://doi.org/10.3390/f13111891
Song Y-F, Yang Q-H, Yi X-G, Zhu Z-Q, Wang X-R, Li M. Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Cherries. Forests. 2022; 13(11):1891. https://doi.org/10.3390/f13111891
Chicago/Turabian StyleSong, Yan-Feng, Qing-Hua Yang, Xian-Gui Yi, Zhao-Qing Zhu, Xian-Rong Wang, and Meng Li. 2022. "Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Cherries" Forests 13, no. 11: 1891. https://doi.org/10.3390/f13111891
APA StyleSong, Y. -F., Yang, Q. -H., Yi, X. -G., Zhu, Z. -Q., Wang, X. -R., & Li, M. (2022). Comparative Analysis of Codon Usage Patterns in Chloroplast Genomes of Cherries. Forests, 13(11), 1891. https://doi.org/10.3390/f13111891