Photosynthetic Processes and Light Response Model Fitting of Quercus acutissima Carruth. and Quercus variabilis Bl. in the Changjiang River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Climate Observation
2.3. Measurement of Photosynthetic Characteristics and Light Response Curve
2.4. Fitting Model of the Photosynthetic Light Response Curve
2.5. Model Evaluation
2.6. Data Analysis
3. Results
3.1. Diurnal Dynamics of Photosynthetic Parameters
3.1.1. Diurnal Variations of Net Photosynthetic Rates
3.1.2. Diurnal Variation of Transpiration Rate
3.1.3. Diurnal Variation of Stomatal Conductivity
3.1.4. Diurnal Variation of Intercellular CO2
3.1.5. Correlation Analysis of Net Photosynthetic Rate and Eco-Physiological Factors
3.1.6. Photosynthetic Light Response Model and Photosynthetic Parameters
4. Discussion
4.1. Relationships between Photosynthetic Rates and Eco-Physiological Factors
4.2. Comparison of Photosynthesis–Light Response Models
4.3. Comparison of Net Photosynthetic Rates with Other Regions
4.4. Comparison of Photosynthetic Parameters between Q. acutissima and Q. variabilis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomimatsu, H.; Tang, Y. Effects of high CO2 levels on dynamic photosynthesis: Carbon gain, mechanisms, and environmental interactions. J. Plant Res. 2016, 129, 365–377. [Google Scholar] [CrossRef]
- Shi, X.; Wang, T.; Lu, S.; Chen, K.; He, D.; Xu, Z. Evaluation of China’s forest carbon sink service value. Environ. Sci. Pollut. Res. Int. 2022, 29, 44668–44677. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yu, Q.; Kuang, Q.; Wang, W.; Wang, F.; Xu, H.-l. Light response of cut-flower Chrysanthemum cultivars. J. Food Agric. Environ. 2013, 11, 865–867. [Google Scholar]
- Bhusal, N.; Bhusal, S.J.; Yoon, T.-M. Comparisons of physiological and anatomical characteristics between two cultivars in bi-leader apple trees (Malus × domestica Borkh.). Sci. Hortic. 2018, 231, 73–81. [Google Scholar] [CrossRef]
- Shimada, R.; Takahashi, K. Diurnal and seasonal variations in photosynthetic rates of dwarf pine Pinus pumila at the treeline in central Japan. Arct. Antarct. Alp. Res. 2022, 54, 1–12. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Wang, C.S.; Zhang, J.; Yue, Y.; Li, S.W. Online monitoring and analysis of plant photosynthetic physiology and environmental factors. Appl. Mech. Mater. 2013, 241, 75–80. [Google Scholar] [CrossRef]
- Schechter, P.L.; Wynne, R.A. Even Simpler Modeling of Quadruply Lensed Quasars (and Random Quartets) Using Witt’s Hyperbola. Astrophys. J. 2019, 876, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Calama, R.; Puertolas, J.; Madrigal, G.; Pardos, M. Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. Ecol. Model. 2013, 251, 9–21. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, S.; Zhang, G.; Liu, X.; Xia, X.; Zhang, S.; Xing, W.; Fang, X. Application of Five Light-Response Models in the Photosynthesis of Populus × Euramericana cv. ‘Zhonglin46’ Leaves. Appl. Biochem. Biotechnol. 2015, 176, 86–100. [Google Scholar] [CrossRef]
- Xia, J.B.; Zhang, G.C.; Wang, R.R.; Zhang, S.Y. Effect of soil water availability on photosynthesis in Ziziphus jujuba var. spinosus in a sand habitat formed from seashells: Comparison of four models. Photosynthetica 2014, 52, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Park, K.S.; Bekhzod, K.; Kwon, J.K.; Son, J.E. Development of a coupled photosynthetic model of sweet basil hydroponically grown in plant factories. Hortic. Environ. Biotechnol. 2016, 57, 20–26. [Google Scholar] [CrossRef]
- Lang, Y.; Wang, M.; Zhang, G.C.; Zhao, Q.K. Experimental and simulated light responses of photosynthesis in leaves of three species under different soil water conditions. Photosynthetica 2013, 51, 370–378. [Google Scholar] [CrossRef]
- Li, Y.L.; Liu, X.G.; Hao, K.; Yang, Q.L.; Yang, X.Q.; Zhang, W.H.; Cong, Y. Light-response curve of photosynthesis and model fitting in leaves of Mangifera indica under different soil water conditions. Photosynthetica 2019, 57, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.P.; Suggett, D.J.; Robakowski, P.; Kang, H.J. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytol. 2013, 199, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Qu, L.; Wang, X.; Qian, Q.; Yang, W.; Wang, T.; Kong, H.; Jiang, G.; Chong, K. Research Advances on Plant Science in China in 2013. Chin. Bull. Bot. 2014, 49, 347. [Google Scholar]
- Li, X.; Lu, Y.; Huang, A.; Yuan, R.; Li, J.; Hu, D.; Zhong, Q.; Cheng, D. Light response model fitting and photosynthetic characteristics of ten different fern species in subtropics. Acta Ecol. Sin. 2022, 42, 3333–3344. [Google Scholar]
- Huang, Z.J.; Fan, Z.L.; Huang, Y.-T.; Quan, Q.M. Photoresponse Curve Model Research and Correlation Analysis of Euphorbia marginata. Res. J. Biotechnol. 2017, 12, 258–264. [Google Scholar]
- Pan, H.; Feng, Y.; Li, Y. The comparison of light responses among four species of Calligonum L. in early autumn. In Proceedings of the 3rd International Conference on Agricultural and Biological Sciences (ABS 2017), Qingdao, China, 26–29 June 2017. [Google Scholar]
- Han, M.K.; Kim, K.J.; Yang, K.C. Comparison of carbon storages, annual carbon uptake and soil respiration to planting types in urban park—The case study of Dujeong park in Cheonan city. Korean J. Environ. Ecol. 2014, 28, 142–148. [Google Scholar] [CrossRef]
- Sun, S.; Che, T.; Li, H.; Wang, T.; Ma, C.; Liu, B.; Wu, Y.; Song, Z. Water and carbon dioxide exchange of an alpine meadow ecosystem in the northeastern Tibetan Plateau is energy-limited. Agric. For. Meteorol. 2019, 275, 283–295. [Google Scholar] [CrossRef]
- Li, Q.y.; Liu, X.; Zhang, J.C. Changing trends of acid rain types in the Yangtze River Delta region. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2021, 45, 168–174. [Google Scholar]
- Deng, Y.P.; Lei, J.P.; Pan, L.; Wang, X.R. Model fitting of photosynthetic light-response curves in different Quercus variabilis provenances and its parameter comparison. Chin. J. Ecol. 2016, 35, 387–394. [Google Scholar]
- Xu, F.; Guo, W.h.; Xu, W.h.; Wang, R.q. Effects of light intensity on growth and photosynthesis of seedlings of Quercus acutissima and Robinia pseudoacacia. Acta Ecol. Sin. 2010, 30, 3098–3107. [Google Scholar]
- Xiong, S.; Wang, Y.; Chen, Y.; Gao, M.; Zhao, Y.; Wu, L. Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China. Plants 2022, 11, 679. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Du, E.; Sun, Z.; Zeng, X.; de Vries, W. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants. Environ. Pollut. 2017, 231, 1442–1445. [Google Scholar] [CrossRef]
- Guo, G.; Li, X.; Zhu, X.; Xu, Y.Y.; Dai, Q.; Zeng, G.R.; Lin, J. Effect of Forest Management Operations on Aggregate-Associated SOC Dynamics Using a Cs-137 Tracing Method. Forests 2021, 12, 859. [Google Scholar] [CrossRef]
- Chen, X.; Sun, J.; Lyu, M.; Wang, M.; Hu, D.; Zhong, Q.; Cheng, D. Prediction of photosynthetic light-response curves using traits of the leaf economics spectrum for 75 woody species: Effects of leaf habit and sun-shade dichotomy. Am. J. Bot. 2021, 108, 423–431. [Google Scholar] [CrossRef]
- Duan, L.M.; Yan, X.; Liu, T.X.; Wang, G.L.; Tong, X. Photosynthetic physiological characteristics of artificial populus in semi-arid area under multiple scenarios. J. Soil Water Conserv. 2019, 33, 213–220. [Google Scholar]
- Lykins, S.; Scammon, K.; Lawrence, B.T.; Melgar, J.C. Photosynthetic light response of floricane leaves of erect blackberry cultivars from fruit development into the postharvest Period. Hortscience 2021, 56, 347–351. [Google Scholar] [CrossRef]
- Ye, Z.P.; Yu, Q. Comparison of new and several classical models of photosynthesis in response to irradiance. J. Plant Ecolygy (Chin. Version) 2008, 32, 1356–1361. [Google Scholar]
- Wang, H.Z.; Han, L.; Xu, Y.L.; Niu, J.L.; Yu, J. Simulated photosynthetic responses of Populus euphratica during drought stress using light-response models. Acta Ecol. Sin. 2017, 37, 2315–2324. [Google Scholar]
- Yu, Q.; Wang, Q.Y.; Liu, Z.G.; Zhang, M.R.; Zhang, S.Z.; Shen, Y.M. Comparison of the light response models of photosynthesis in leaves of Magnolia sinostellata under different light intensity and moisture conditions. Chin. J. Ecol. 2018, 37, 898–905. [Google Scholar]
- Wang, X.; Tong, X.; Zhang, J.; Meng, P.; Xie, H.; Hu, H.; Li, J. Effects of photosynthesis on soil respiration of Quercus variabilis plantation in southern Taihang Mountain of northern China. J. Beijing For. Univ. 2021, 43, 66–76. [Google Scholar]
- Zhao, W.R.; Liu, X.; Zhang, J.C.; Wang, Y.X.; Wang, J.P.; Zhuang, J.Y. Photosynthesis transpiration, the carbon fixation and oxygen release, and the cooling and humidificant capacity of typical tree species in Nanjing suburban. Sci. Silvae Sin. 2016, 52, 31–38. [Google Scholar]
- Fan, Y.; Hu, N.; Ding, S.; Lu, X. Physiological and ecological characteristics of photosynthesis of Quercus variabilis of different development stages in the funiu mountain national nature reserve. J. Ecol. Rural Environ. 2015, 31, 684–689. [Google Scholar]
- Zhang, Y.J.; Meinzer, F.C.; Qi, J.H.; Goldstein, G.; Cao, K.F. Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees. Plant Cell Environ. 2013, 36, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, G.; Bu, J.; Zhang, S.; Jing, G.; Zhang, G.; Liu, X. Effects of drought stress on the photosynthetic physiological parameters of Populusxeuramericana “Neva”. J. For. Res. 2019, 30, 409–416. [Google Scholar] [CrossRef]
- Wu, B.J.; Liu, Y.J.; Jiang, C.D.; Shi, L. Effects of stomatal development on leaf temperature during leaf expansion. Plant Physiol. J. 2015, 51, 119–126. [Google Scholar]
- Ruan, C.X.; Hu, H.B.; Ji, J.; Ma, B.; Liu, X.L. Transpiration regulations and responses to climate factors of Quercus acutissima and Quercus variabilis in the Changjiang River delta area. J. Soil Water Conserv. 2021, 35, 338–344. [Google Scholar]
- Wu, T.G.; Zeng, G.Q.; Xiao, Y.G.; Yao, J.; Yu, M.K.; Cheng, X.R.; Wang, C. Daily variation of photosynthesis of six tree species under Pinus elliotii forest and their relations with environmental factors. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2011, 35, 135–138. [Google Scholar]
- Feng, L.G.; Feng, Z.; Zhao, L.Y.; Sheng, L.X. Comparison of photosynthetic characteristics between wild plants and cultivars of Rosa rugosa. Sci. Silvae Sin. 2007, 43, 31–36. [Google Scholar]
- Bhusal, N.; Kim, H.S.; Han, S.-G.; Yoon, T.-M. Photosynthetic traits and plant—Water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions. Environ. Exp. Bot. 2020, 176, 141–153. [Google Scholar] [CrossRef]
- Kim, D.-H.; Jung, J.-Y.; Lee, C.-H.; Park, B.-D.; Bae, K.-H.; Kim, K.W.; Kim, P.-G. Effect of transpiration on the physiological vitality of Zelkova serrata. For. Sci. Technol. 2020, 16, 154–160. [Google Scholar] [CrossRef]
- Leng, H.B.; Qin, J.; Ye, K.; Feng, S.C.; Gao, K. Comparison of light response models of photosynthesis in Nelumbo nucifera leaves under different light conditions. J. Appl. Ecol. 2014, 25, 2855–2860. [Google Scholar]
- Chen, Z.Y.; Luo, F.Y.; Peng, Z.S.; Yu, M.Q. Comparison between modified exponential model and common models of light-response curve. J. Plant Ecol. (Chin. Version) 2012, 36, 1277–1285. [Google Scholar] [CrossRef]
- Ye, Z.P. A review on modeling of responses of photosynthesis to light and CO2. J. Plant Ecol. (Chin. Version) 2010, 34, 727–740. [Google Scholar]
- Xu, G.C.; Luo, W.B.; Li, H.W.; Xu, Y.Q.; Ji, R.C.; Li, G.L.; Lin, Z.M.; Qiu, S.X.; Tang, H. Light response model and photosynthetic parameters of colored potatoes. Fujian J. Agric. Sci. 2020, 35, 691–698. [Google Scholar]
- Xie, F.; Yan, Q.Q.; Yang, F.; Hou, Y.L. Photosynthetic Light Response Curve and Its Model Fitting of Sophora davidii from Different Provenances. J. Temp. For. Res. 2020, 3, 44–49. [Google Scholar]
- Richardson, A.D.; Berlyn, G.P. Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting. Tree Physiol. 2002, 22, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Sui, X.-l.; Mao, S.-l.; Wang, L.-h.; Zhang, B.-x.; Zhang, Z.-x. Effect of Low Light on the Characteristics of Photosynthesis and Chlorophyll a Fluorescence During Leaf Development of Sweet Pepper. J. Integr. Agric. 2012, 11, 1633–1643. [Google Scholar] [CrossRef]
- Wang, B.; Yu, M.-K.; Sun, H.-J.; Cheng, X.-R.; Shan, Q.-H.; Fang, Y.-M. Photosynthetic characters of Quercus acutissima from different provenances under effects of salt stress. Chin. J. Appl. Ecol. 2009, 20, 1817–1824. [Google Scholar]
- Chen, D.; Ou, G.; Chen, J.; Liu, G.; Li, Q.; Zhang, S.; Zhen, Y. Effects of different weather conditions on photosynthetic characteristics of juvenile plantations of four afforestation tree species in Yunnan Province. J. Southwest For. Univ. 2016, 36, 32–38. [Google Scholar]
- Xu, J.; Chen, H.; Shang, S.; Yang, H.; Zhu, G.; Liu, X. Response of net primary productivity of Tibetan Plateau vegetation to climate change based on CEVSA model. Arid Land Geogr. 2020, 43, 592–601. [Google Scholar]
- Wang, X.; Gao, W.; Liu, J.; Ni, Y.; Qu, L.; Zhao, X.; Yang, W.; Deng, Y.; Jiang, Z. Effects of habitat change on the photosynthetic characteristics of Quercus variabilis seedlings. Acta Ecol. Sin. 2016, 36, 8062–8070. [Google Scholar]
- Huang, L.J.; Wang, D.X.; Wang, J.P. Characteristics and variations analysis on chemical composition of atmospheric precipitation of Kunming. Environ. Sci. Surv. 2022, 41, 46–48. [Google Scholar]
- Xiong, D. Study on the Environmental Response to Ecophysiological Features of Quercus variabilis Seedlings. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2011. [Google Scholar]
- Liu, J.F.; Xiao, W.F.; Xiong, D.P.; Lei, J.P.; Wang, P.C. Comparison on the physio-ecological characteristics of Quercus variabilis seedlings from various latitude sites. Bull. Bot. Res. 2011, 31, 467–471. [Google Scholar]
Tree Species | Q. acutissima | Q. variabilis |
---|---|---|
Forest age/years | 65 | 65 |
Tree height/m | 19.24 | 17.78 |
Diameter/cm | 26.64 | 25.08 |
Crown/m | 4.6 | 4.1 |
Density/plants·hm−2 | 325 | 350 |
Crown density | 0.5 | 0.47 |
Species | Growing Period | Stomatal Conductivity | Internal CO2 Concentration | Transpiration Rate | Air Temperate | PAR |
---|---|---|---|---|---|---|
Q. acutissima | Early | 0.890 ** | −0.789 ** | 0.854 ** | 0.202 | 0.789 ** |
Peak | 0.980 ** | −0.650 ** | 0.968 ** | 0.258 | 0.626 ** | |
Q. variabilis | Early | 0.748 ** | −0.737 ** | 0.617 ** | 0.281 | 0.510 ** |
Peak | 0.942 ** | −0.776 ** | 0.944 ** | 0.295 | 0.598 ** |
Species | Models | LSP/μmol m−2 s−1 | LCP/μmol m−2 s−1 | Rd/μ mol m−2 s−1 | Pnmax/μmol m−2 s−1 | MAPE/% | RMSE | R2 |
---|---|---|---|---|---|---|---|---|
Q. acutissima | RHM | 296.28bA | 7.24aA | 0.68cA | 5.00aA | 20.47 | 0.68 | 0.85 |
NHM | 169.77aA | 7.67aA | 0.24aA | 4.29aA | 17.86 | 0.56 | 0.90 | |
YZP | 607.24cA | 8.14abA | 0.42bA | 4.85aA | 15.37 | 0.20 | 0.99 | |
Measured value | 783.33dA | 9.86bA | 0.29aA | 4.65aA | — | |||
Q. variabilis | RHM | 326.84aA | 22.67aB | 1.76aB | 5.36bA | 27.18 | 0.37 | 0.95 |
NHM | 239.65aA | 34.55aB | 1.43aB | 4.78abA | 25.38 | 0.24 | 0.98 | |
YZP | 651.69bA | 27.53aB | 1.65aB | 3.67aB | 24.37 | 0.10 | 0.99 | |
Measured value | 666.67bB | 26.00aB | 1.55aB | 3.630aB | — |
Species | Area | Daily MEAN Net Photosynthetic Rate/μmol·m−2·s−1 | Annual Rainfall/mm | Mean Annual Temperature/°C | Precipitation pH | Latitude/N | Climatic Zone | Reference |
---|---|---|---|---|---|---|---|---|
Q.variabilis | Funiu Mountain | 3.26 | 1100 | 12~14.1 | - | 32°45′ | Temperate | [49] |
Taihang Mountain | 7.62 | 641.7 | 12.4~14.3 | 5.13 | 35°01′ | Temperate | [35] | |
Beijing | 7.72 | 669.1 | 10.8 | 5.21 | 40°29′ | Temperate | [54] | |
Jurong | 3.10 | 1055 | 15.2 | 4.87 | 32°07′ | Subtropics | This study | |
Q.acutissima | Kunming | 6.20 | 1035 | 15 | 7.80 | - | Subtropics | [52] |
Feixian | 6.79 | 856.4 | 20 | 5.35 | 117°96′ | Temperate | [51] | |
Chuzhou | 3.65 | 1050 | 15 | 5.06 | 118°08 | Subtropics | [51] | |
Wanyuan | 3.67 | 1100 | 15 | 4.74 | 108°06′ | Subtropics | [51] | |
Nanjing | 4.47 | 1100 | 15.1 | 4.87 | 31°35′ | Subtropics | [34] | |
Jurong | 4.16 | 1055 | 15.2 | 4.87 | 31°59′ | Subtropics | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, C.; Hu, H.; Cheng, C.; Fang, P.; Jia, X.; Wu, Z.; Zhu, L. Photosynthetic Processes and Light Response Model Fitting of Quercus acutissima Carruth. and Quercus variabilis Bl. in the Changjiang River Delta, China. Forests 2022, 13, 2010. https://doi.org/10.3390/f13122010
Ruan C, Hu H, Cheng C, Fang P, Jia X, Wu Z, Zhu L. Photosynthetic Processes and Light Response Model Fitting of Quercus acutissima Carruth. and Quercus variabilis Bl. in the Changjiang River Delta, China. Forests. 2022; 13(12):2010. https://doi.org/10.3390/f13122010
Chicago/Turabian StyleRuan, Cunxin, Haibo Hu, Can Cheng, Pei Fang, Xichuan Jia, Zhaoming Wu, and Li Zhu. 2022. "Photosynthetic Processes and Light Response Model Fitting of Quercus acutissima Carruth. and Quercus variabilis Bl. in the Changjiang River Delta, China" Forests 13, no. 12: 2010. https://doi.org/10.3390/f13122010
APA StyleRuan, C., Hu, H., Cheng, C., Fang, P., Jia, X., Wu, Z., & Zhu, L. (2022). Photosynthetic Processes and Light Response Model Fitting of Quercus acutissima Carruth. and Quercus variabilis Bl. in the Changjiang River Delta, China. Forests, 13(12), 2010. https://doi.org/10.3390/f13122010