European Yield Model Exponential Decay Constant Modification for Glulam after Fire Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Design
2.2. Tests at Normal Temperature before Exposure to Standard Fire
2.3. Exposure to Standard Fire
- boriginal = original timber section width
- bresidual = residual timber section width
- dchar = charring depth with corner roundings effect
- t = time in fire exposure
- β = charring rate
2.4. Tests at Normal Temperature after Exposure to Standard Fire
2.5. Numerical Simulations
2.5.1. Numerical Models in Normal Temperature
2.5.2. Numerical Models in Fire
3. Results
3.1. Comparison of Bending Strength before and after Fire
3.2. Model Validation
3.3. Validation Based on Temperature Gradient in the Bolt and Timber
3.4. Influence of Member Thickness
3.5. Simplified Rules-Unprotected Timber-to-Timber Connections
3.6. Modification Proposal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MS 544-9; Fire-Resistance of Timber Structures: Section 1: Method of Calculating Fire Resistance of Timber Members. Department of Standards Malaysia. SIRIM: Shah Alam, Malaysia, 2001.
- EN 1995-1-1; Design of Timber Structures Part 1 (Vol. 144, Issue 6). European Committee for Standardization: Brussels, Belgium, 2004.
- EN 1995:1-2; Eurocode 5: Design of Timber Structures. European Committee for Standardization: Brussels, Belgium, 2004.
- Awaludin, A.; Astuti, P. Study on Utilization of LVL Sengon (Paraserianthes falcataria) for Three-Hinged Gable Frame Structures. Int. J. Eng. Technol. Innov. 2016, 6, 232–241. [Google Scholar]
- EN 14080; Standards Publication Timber Structures—Glued Laminated Timber and Glued Solid Timber—Requirements. European Committee for Standardization: Brussels, Belgium, 2014.
- König, J.; Fontana, M. The performance of timber connections in fire-test results and rules of Eurocode 5. In Proceedings of the International RILEM Symposium, Stuttgart, Germany, 10–12 September 2001; pp. 639–648. [Google Scholar]
- Palma, P.; Frangi, A. Simplified mechanical models for timber connections in fire. Compwood 2019, 107, 54–74. [Google Scholar]
- Norén, J. Load-bearing capacity of nailed joints exposed to fire. Fire Mater. 1996, 20, 133–143. [Google Scholar] [CrossRef]
- Kruppa, J.; Lamadon, T.; Rachet, P. Fire resistance test of timber connections. In CTICM Ref. INC-00/187-JK/NB; CTICM: Paris, France, 2000. [Google Scholar]
- Fleischer, H.; Fornather, J.; Bergmeister, K.; Luggin, W. Large Fire Test Series 1—GBV 1—Tests on Timber Connections with Dowels; Universität für Bodenkultur Wien: Vienna, Austria, 2002; p. 54. [Google Scholar]
- Scheer, C. Load-bearing capacity of wood connections with pin-shaped fasteners in the event of fire. Part 2: Fire tests to confirm the theoretical knowledge; Technische Universität Berlin: Berlin, Germany, 2004; ISBN 3-8167-6876-8. [Google Scholar]
- Oksanen, T.; Kevarinmaki, A.; Yli-Koski, R.; Kaitila, O. Fire resistance on timber connections with stainless steels, Work 29; VTT Information Service: Espoo, Finland, 2015; ISBN 951-38-6589-4. [Google Scholar]
- Erchinger, C.; Frangi, A.; Fontana, M. Fire design of steel-to-timber dowelled connections. Eng. Struct. 2010, 32, 580–589. [Google Scholar] [CrossRef]
- Laplanche, K.; Dhima, D.; Racher, P. Thermo-Mechanical Analysis of the Timber Connection under Fire Using 3D Finite Element Model. In Proceedings of the 9th World Conference on Timber Engineering 2006, WCTE 2006, Portland, OR, USA, 6–10 August 2006; Volume 1, pp. 279–286. [Google Scholar]
- Lau, P. Fire Resistance of Connections in Laminated Veneer Lumber (LVL). Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2006. [Google Scholar]
- Chuo, T.C. Fire Performance of Connections in Laminated Veneer Lumber (LVL). Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2007. [Google Scholar]
- Peng, L.; Hadjisophocleous, G.; Mehaffey, J.; Mohammad, M. Fire performance of timber connections, part 1: Fire resistance tests on bolted wood-steel-wood and steel-wood-steel connections. J. Struct. Fire Eng. 2012, 3, 107–131. [Google Scholar] [CrossRef]
- Audebert, M.; Dhima, D.; Taazount, M.; Bouchaïr, A. Thermo-mechanical behaviour of timber-to-timber connections exposed to fire. Fire Saf. J. 2013, 56, 52–64. [Google Scholar] [CrossRef]
- Werther, N.; O’Neill, J.W.; Spellman, P.M.; Abu, A.K.; Moss, P.J.; Buchanan, A.H.; Winter, S. Parametric Study of Modelling Structural Timber in Fire with Different Software Packages. In Proceedings of the 7th International Conference on Structures in Fire, Zurich, Switzerland, 6–8 June 2012; pp. 1–10. [Google Scholar]
- Palma, P. Fire Behaviour of Timber Connections. Ph.D. Thesis, Technical University of Lisbon, Lisbon, Portugal, 2016. [Google Scholar]
- Audebert, M.; Dhima, D.; Taazount, M.; Bouchaïr, A. Numerical investigations on the thermo-mechanical behaviour of steel-to-timber joints exposed to fire. Eng. Struct. 2011, 33, 3257–3268. [Google Scholar] [CrossRef]
- ASTM E119; Standard Test Methods for Fire Test of Building Construction and Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2000.
- ISO 834-1; Fire-Resistance Tests—Elements of Building Construction—General Requirements. International Organization for Standardization: Geneva, Switzerland, 1999.
- Petrycki, R.; Salem, O. Structural fire performance of wood-steel-wood bolted connections with and without perpendicular-to-wood grain reinforcement. J. Struct. Fire Eng. 2019. [Google Scholar] [CrossRef]
- Audebert, M.; Dhima, D.; Bouchaïr, A. Proposal for a new formula to predict the fire resistance of timber connections. Eng. Struct. 2019, 204, 1–18. [Google Scholar] [CrossRef]
- Anshari, B.; Guan, Z.W.; Wang, Q.Y. Modelling of glulam beams pre-stressed by compressed wood. Compos. Struct. 2017, 165, 160–170. [Google Scholar] [CrossRef] [Green Version]
- EN 392; Glued Laminated Timber—Shear Tests of Glue Lines. European Committee for Standardization: Brussels, Belgium, 1995.
- MS 758; Glued Laminated Timber—Performance Requirements and Minimum Production Requirements. Malaysian Standard: Cyberjaya, Malaysia, 2001.
- ASTM D5764-97; Standard Test Method for Evaluating Dowel-Bearing Strength of Wood and Wood. American Society for Testing and Materials: West Conshohocken, PA, USA, 2002.
- Moss, P.; Buchanan, A. Fire performance of bolted connections in laminated veneer lumber. Fire Mater. 2009, 33, 223–243. [Google Scholar] [CrossRef] [Green Version]
- ASTM D198-14; Standard Methods of Static Tests of Lumber in Structural Sizes. American Society for Testing and Materials: West Conshohocken, PA, USA, 2014.
- MS 544-5; Timber Joints. SIRIM: Shah Alam, Malaysia, 2017.
- Brandon, D. Fire and Structural Performance of Non-Metallic Timber Connections. Ph.D. Thesis, University of Bath, Bath, UK, 2015. [Google Scholar]
- Dârmon, R.; Lalu, O. The fire performance of cross-laminated timber beams. Procedia Manuf. 2019, 32, 121–128. [Google Scholar] [CrossRef]
- BS 476-20; Fire Tests on Building Materials and Structures. Method for determination of the fire resistance of elements of construction (general principles) (AMD 6487). British Standards Institution: Loughborough, UK, 1987.
- BS 476-21; Fire Resistance Test to Building Material—Loadbearing elements. British Standards Institution: Loughborough, UK, 1987.
- NDS TR-10:2018; National Design Specification for Wood Construction. American Wood Council: Leesburg, VA, USA, 2018.
- Buchanan, H.; King, A.B. Fire performance of gusset connections in glue—laminated timber. Fire Mater. 1991, 15, 137–143. [Google Scholar] [CrossRef]
- Chorlton, B.; Harun, G.; Gales, J.; Weckman, E.; Smith, M. An Investigation Into the Resilience of Glulam Timber Beams after Fire Exposure. In Proceedings of the 6th International Structural Specialty Conference 2018, Held as Part of the Canadian Society for Civil Engineering Annual Conference, Fredericton, Canada, 13–16 June 2018; pp. 655–664. [Google Scholar]
- Quiquero, H.; Chorlton, B.; Gales, J. Performance of adhesives in glulam after short term fire exposure. Int. J. High-Rise Build. 2018, 7, 299–311. [Google Scholar]
- Abaqus; Version 2021; Dassault Systemes: Vélizy-Villacoublay, France, 2021.
- Ahmad, Y. Bending Behaviour of Timber Beams Strengthened Using Fibre Reinforced Polymer Bars and Plates. Ph.D. Thesis, University Teknologi Malaysia, Johor Bahru, Malaysia, 2010. [Google Scholar]
- Monteiro, S.R.S.; Martins, C.; Dias, A.M.P.G.; Cruz, H. Mechanical performance of glulam products made with Portuguese poplar. Eur. J. Wood Wood Prod. 2020, 78, 1007–1015. [Google Scholar] [CrossRef]
- Racher, P.; Laplanche, K.; Dhima, D.; Bouchaïr, A. Thermo-mechanical analysis of the fire performance of dowelled timber connection. Eng. Struct. 2010, 32, 1148–1157. [Google Scholar] [CrossRef]
- Shakimon, M.N.; Abd Malek, N.J.; Hassan, R.; Ahmad, A. The finite element modelling of glulam. J. Teknol. 2016, 78, 75–78. [Google Scholar]
- Suhaimi, T. Factors affecting ultimate strength of solid and glulam timber beams. J. Kejuruter. Awam 2004, 16, 38–47. [Google Scholar]
- Xu, H.; Taazount, M.; Bouchaïr, A.; Racher, P. Numerical 3D finite element modelling and experimental tests for dowel-type timber joints. Constr. Build. Mater. 2009, 23, 3043–3052. [Google Scholar] [CrossRef]
- Wang, M.; Song, X.; Gu, X.; Tang, J. Bolted glulam beam-column connections under different combinations of shear and bending. Eng. Struct. 2019, 181, 281–292. [Google Scholar] [CrossRef]
- Kováčiková, J.; Ekevad, M.; Ivánková, O.; Berg, S. Finite Element Analysis of Timber Beams with Flaws. In Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, 5–10 June 2016; pp. 8606–8611. [Google Scholar]
- Mascia, N.T.; Lahr, F.A.R. Remarks on orthotropic elastic models applied to wood. Mater. Res. 2006, 9, 301–310. [Google Scholar] [CrossRef] [Green Version]
- MS 544 Part 3; Glued Laminated Timber. Department of Standards Malaysia: Selangor, Malaysia, 2001.
- Green, D.W.; Winandy, J.E. Mechanical Properties of Wood. In Wood Handbook: Wood as an Engineering Material; Forest Department of Agriculture: Washington, DC, USA, 1999. [Google Scholar]
- EN 1991-1-2:2002; Eurocode 1. Actions on structure—General actions. Actions on structures exposed to fire. European Committee for Standardization: Brussels, Belgium, 2011.
- Luo, J.; He, M.; Li, Z.; Gan, Z.; Wang, X.; Liang, F. Experimental and numerical investigation into the fire performance of glulam bolted beam-to-column connections under coupled moment and shear force. J. Build. Eng. 2022, 46, 103804. [Google Scholar] [CrossRef]
- Paulo, B.C.; Jean-Marc, F. Comparison between the charring rate model and the conductive model of Eurocode 5. Fire Mater. 2009, 33, 129–143. [Google Scholar]
- Cachim, P.B.; Franssen, J.M. Assessment of Eurocode 5 charring rate calculation methods. Fire Technol. 2010, 46, 169–181. [Google Scholar] [CrossRef]
- EN 1993-1-2; Design of Steel Structures—Part 1–2: General Rules—Structural Fire Design. European Committee for Standardization: Brussels, Belgium, 2011.
- Daud, F.; Ahmad, Z.; Hassan, R. Charring rate of glued laminated timber (glulam) made from selected Malaysian tropical timber. In InCIEC 2014, Proceedings of the International Civil and Infrastructure Engineering Conference 2014, Kota Kinabalu, Sabah, 28 September–1 October 2015; Springer: Singapore, 2015; pp. 1107–1116. [Google Scholar]
Dia. of Bolt (d) | Dia. of Bolt Hole (do) (d + 2) | a1 (4d) | a3min (4d + afi) | a4min (3d + afi) | e1/e2 (2.5do) | Depth of Steel Plate (hp) | Depth of Timber Beam (h) |
---|---|---|---|---|---|---|---|
12 | 14 | 48 | 59 | 47 | 30 | 60 | 150 |
16 | 18 | 64 | 75 | 59 | 40 | 80 | 150 |
20 | 22 | 80 | 91 | 71 | 50 | 100 | 150 |
Species of Timber | Mengkulang |
---|---|
Density of Timber, ρ | 700 kg/m3 |
Modulus of Elasticity, E1 | 10,800 N/mm2 |
Modulus of Elasticity, E2 | 939.13 N/mm2 |
Modulus of Elasticity, E3 | 864 N/mm2 |
Shear Modulus, G12 | 1177.2 N/mm2 |
Shear Modulus, G13 | 831.6 N/mm2 |
Shear Modulus, G23 | 302.4 N/mm2 |
Poisson’s Ratio, ν12 | 0.015 |
Poisson’s Ratio, ν13 | 0.015 |
Poisson’s Ratio, ν23 | 0.35 |
Bolt Dia. | Load-Carrying Capacity | Modulus of Rupture (MOR) | Maximum Shear Stress (N/mm2) | Ductility Index | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mm) | (kN) | (N/mm2) | ||||||||||
Before | After | ∆% | Before | After | ∆% | Before | After | ∆% | Before | After | ∆% | |
Fire | Fire | Fire | Fire | Fire | Fire | Fire | Fire | |||||
12 | 33.27 | 9.37 | 71.8 | 14.33 | 9.2 | 35.8 | 1.28 | 0.63 | 50.8 | 2.65 | 4.16 | 36.3 |
16 | 31.99 | 23.65 | 26.1 | 13.78 | 23.21 | 40.6 | 1.23 | 1.6 | 23.1 | 1.92 | 1.27 | 33.9 |
20 | 42.39 | 22.22 | 47.6 | 18.26 | 21.81 | 16.3 | 1.63 | 1.5 | 8 | 2.4 | 1.21 | 49.6 |
Type of Glulam Timber | Glulam Strength Class | Description | Charring Depth, dchar (mm) | Charring Rate, (mm/min) |
---|---|---|---|---|
Mengkulang (This experiment) | Avg. | 17.11 | 0.57 | |
D40 | Std Dev. | 2.62 | 0.09 | |
CoV (%) | 15.31 | 15.31 | ||
Keruing * | D40 | Avg. | - | 0.44 |
Malagangai * | - | Avg. | - | 0.45 |
EC5-1-2 (for hardwood density > 450 kg/m3) | - | - | - | 0.55 |
Type of Glulam Timber | Strength Class | Description | Charring Depth, dchar (mm) | Charring Rate (mm/min) | ∆% |
---|---|---|---|---|---|
Mengkulang (This experiment) | D40 | Avg. | 17.11 | 0.57 | 3.5 |
FEM Model | D40 | Avg. | 16.5 | 0.55 |
Bolt Dia. d (mm) | Member Thickness b (mm) | Spacing of Bolt a1 (mm) | Load-Carrying Capacity (kN) | ∆% | ||||
---|---|---|---|---|---|---|---|---|
Experimental | Simulation | |||||||
Before Fire | After Fire | Before Fire | After Fire | Before Fire | After Fire | |||
16 | 90 | 64 | - | - | 19.01 | 12.52 | - | - |
100 | - | - | 22.27 | 15.42 | - | - | ||
110 | - | - | 27.29 | 20.15 | - | - | ||
130 | 31.99 | 23.65 | 32.44 | 21.07 | 1.4 | 10.9 | ||
150 | - | - | 35.31 | 26.20 | - | - |
Connection | Configuration | Requirements (mm) | Decay Constant k | Maximum Fire Exposure (min) |
---|---|---|---|---|
Bolt | Slotted-in plate | 90 ≤ b ≤ 150 | 0.0249-0.0001b | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakimon, M.N.; Hassan, R.; Malek, N.J.A.; Zainal, A.; Awaludin, A.; Hamid, N.H.A.; Lum, W.C.; Salit, M.S. European Yield Model Exponential Decay Constant Modification for Glulam after Fire Exposure. Forests 2022, 13, 2012. https://doi.org/10.3390/f13122012
Shakimon MN, Hassan R, Malek NJA, Zainal A, Awaludin A, Hamid NHA, Lum WC, Salit MS. European Yield Model Exponential Decay Constant Modification for Glulam after Fire Exposure. Forests. 2022; 13(12):2012. https://doi.org/10.3390/f13122012
Chicago/Turabian StyleShakimon, Mohd Nizam, Rohana Hassan, Nor Jihan Abd Malek, Azman Zainal, Ali Awaludin, Nor Hayati Abdul Hamid, Wei Chen Lum, and Mohd Sapuan Salit. 2022. "European Yield Model Exponential Decay Constant Modification for Glulam after Fire Exposure" Forests 13, no. 12: 2012. https://doi.org/10.3390/f13122012
APA StyleShakimon, M. N., Hassan, R., Malek, N. J. A., Zainal, A., Awaludin, A., Hamid, N. H. A., Lum, W. C., & Salit, M. S. (2022). European Yield Model Exponential Decay Constant Modification for Glulam after Fire Exposure. Forests, 13(12), 2012. https://doi.org/10.3390/f13122012