Chemical, Crystallinity and Morphological Changes of Rubberwood (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) Hydrothermally Treated in Different Buffered Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Buffered Media Preparation
2.3. Rubberwood Sample Preparation
2.4. Hydrothermal Treatment in Different Buffered Media
2.5. Evaluation of Chemical Properties
2.5.1. Wet Chemical Properties
2.5.2. Fourier Transform Infrared (FTIR) Analysis
2.5.3. Crystallinity Index
2.5.4. Morphological Changes
2.5.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Properties of Rubberwood
3.2. X-ray Diffraction (XRD) Analysis
3.3. Fourier Transform Infrared (FTIR) Analysis
3.4. Morphological Change
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.R.; Abdullah, U.H.; Ashaari, Z.; Hua, L.S.; Hamid, N.H.; Kamarudin, S.H. Physical properties of hydrothermally treated rubberwood [Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.] in different buffered media. Forests 2022, 13, 1052. [Google Scholar] [CrossRef]
- Lim, S.C.; Gan, K.T.; Choo, K.S. The characteristics, properties and uses of plantation timbers-rubberwood and Acacia mangium. Timber Technol. Bull. 2003, 26, 1–10. [Google Scholar]
- Othaman, R.; Lim, K.G.; Konishi, S.; Sato, M.; Shi, N.; Egashira, R. Thermal Treatment of Wood Residues and Effective Utilization of Its Products to Improve Rubberwood Manufacturing Process. J. Chem. Eng. Jpn. 2008, 41, 1149–1158. [Google Scholar] [CrossRef]
- H’ng, P.S.; Lee, S.H.; Lum, W.C. Effect of Post Heat Treatment on Dimensional Stability of U.F. Asian J. Appl. Sci. 2012, 5, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Ashaari, Z.; Ang, A.F.; Halip, J.A. Dimensional stability of heat oil-cured particleboard made with oil palm trunk and rubberwood. Eur. J. Wood Wood Prod. 2017, 75, 285–288. [Google Scholar] [CrossRef]
- Lee, S.H.; Ashaari, Z.; Jamaludin, F.R.; Yee, C.N.; Ahamad, W.N. Physico-mechanical properties of particleboard made from heat-treated rubberwood particles. Eur. J. Wood Wood Prod. 2017, 75, 655–658. [Google Scholar] [CrossRef]
- Li, G.; Li, T.; Li, M.; Li, X.; Jiang, H.; Lu, Q.; Li, J. Effect of Heat Treatment Temperature on Starch Content of Rubberwood. Chin. J. Trop. Crops 2019, 40, 180–183. [Google Scholar] [CrossRef]
- Srivaro, S.; Börcsök, Z.; Pásztory, Z. Temperature dependence of thermal conductivity of heat-treated rubberwood. Wood Mater. Sci. Eng. 2019, 16, 81–84. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, Q.; Li, G.; Li, M.; Li, J. Effect of heat treatment on the surface color of rubberwood (Hevea brasiliensis). Wood Res. 2020, 65, 633–644. [Google Scholar] [CrossRef]
- Lee, S.H.; Zaidon, A.; Rasdianah, D.; Lum, W.C.; Aisyah, H.A. Alteration in colour fungal resistance of thermally treated oil palm trunk rubberwood particleboard using palm oil. J. Oil Palm Res. 2020, 32, 83–89. [Google Scholar] [CrossRef]
- Lee, S.H.; Ashaari, Z.; Lum, W.C.; Halip, J.A.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Tahir, P.M. Thermal treatment of wood using vegetable oils: A review. Constr. Build. Mater. 2018, 181, 408–419. [Google Scholar] [CrossRef]
- Tarasin, M. Thermal modification of rubberwood to increase its resistance against asian subterranean termites. Commun. Agric. Appl. Biol. Sci. 2014, 79, 279–282. [Google Scholar]
- Umar, I.; Zaidon, A.; Lee, S.H.; Halis, R. Oil-heat treatment of rubberwood for optimum changes in chemical constituents and decay resistance. J. Trop. For. Sci. 2016, 28, 88–96. [Google Scholar]
- Zabel, R.A.; Morrell, J.J. Chemical changes in wood caused by decay fungi. Wood Microbiol. 2020, 211, 215–244. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Zaidon, A.; Maminski, M. Microstructural, mechanical and physical properties of post heat-treated melamine-fortified urea formaldehyde-bonded particleboard. Eur. J. Wood Wood Prod. 2015, 73, 607–616. [Google Scholar] [CrossRef]
- Chotikhun, A.; Kittijaruwattana, J.; Salca, E.-A.; Hiziroglu, S. Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis). Appl. Sci. 2020, 10, 6273. [Google Scholar] [CrossRef]
- Brito, J.O.; Silva, F.G.; Leão, M.M.; Almeida, G. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresour. Technol. 2008, 99, 8545–8548. [Google Scholar] [CrossRef]
- Ali, M.R.; Abdullah, U.H.; Ashaari, Z.; Hamid, N.H.; Hua, L.S. Hydrothermal Modification of Wood: A Review. Polymers 2021, 13, 2612. [Google Scholar] [CrossRef]
- Endo, K.; Obataya, E.; Zeniya, N.; Matsuo, M. Effects of heating humidity on the physical properties of hydrothermally treated spruce wood. Wood Sci. Technol. 2016, 50, 1161–1179. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, S.; Singh, K.; DeVallance, D. Effect of different hydrothermal treatments (steam and hot compressed water) on physical properties and drying behavior of yellow-poplar (Liriodendron tulipifera). For. Prod. J. 2019, 69, 42–52. [Google Scholar] [CrossRef]
- Rasdianah, D.; Zaidon, A.; Hidayah, A.; Lee, S.H. Effects of superheated steam treatment on the physical and mechanical properties of light red meranti and kedondong wood. J. Trop. For. Sci. 2018, 30, 384–392. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Als Roh-Und Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Saliman, M.A.R.; Ashaari, Z.; Bakar, E.S.; Hua, L.S.; Tahir, P.M.; Halip, J.A.; Leemon, N.F. Hydrothermal treatment of oil palm wood: Effect of treatment variables on dimensional stability using response surface methodology. J. Oil Palm Res. 2017, 29, 130–135. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz Als Roh-Und Werkst. 1998, 56, 149–153. [Google Scholar] [CrossRef]
- Kamdem, D.P.; Pizzi, A.; Jermannaud, A. Durability of heat-treated wood. Holz Als Roh-Und Werkst. 2002, 60, 1–6. [Google Scholar] [CrossRef]
- Fukuta, S.; Asada, F.; Sasaki, Y. Manufacture of compressed wood fixed by phenolic resin impregnation through drilled holes. J. Wood Sci. 2008, 54, 100–106. [Google Scholar] [CrossRef]
- Talaei, A.; Karimi, A. Chemical analysis of hydrothermally treated beech wood in buffered mediums. In Proceedings of the IRG43 Conference, Kuala Lumpur, Malaysia, 6–10 May 2012; pp. 6–10. [Google Scholar]
- Talaei, A.; Karimi, A.N.; Ebrahimi, G.; Mirshokrai, A. Comparative study of heat treated beech wood in hot water and steam mediums. Iran. J. Wood Pap. Ind. 2012, 2, 27–38. [Google Scholar]
- Ebadi, S.E.; Karimi, A.; Choo, A.C.; Ashari, Z.; Naji, H.R.; Soltani, M.; Ridzuan, S.M.A. Physical behavior of hydro-thermally treated oil palm wood in different buffered pH media. BioResources 2015, 10, 5317–5329. [Google Scholar] [CrossRef] [Green Version]
- Saliman, M.A.R.; Zaidon, A.; Bakar, E.S.; Lee, S.H.; Tahir, P.M.; Leemon, N.F.; Kaipin, M.F.; Juliana, A.H. Response surface methodology model of hydrothermal treatment parameters on decay resistance of oil palm wood. J. Trop. For. Sci. 2017, 29, 318–324. [Google Scholar]
- Ashaari, Z.; Hua, L.S.; Halip, J.A.; Al Edrus, S.S.; Chen, L.W.; Hao, L.C. Application of response surface methodology models for dimensional stability of hydrothermally treated semantan bamboo. Int. J. Recent Technol. Eng. 2019, 8, 460–463. [Google Scholar] [CrossRef]
- TAPPI Standard, T257 cm-02; Sampling and Preparing Wood for Chemical Analysis. TAPPI Press: Atlanta, GA, USA, 2002.
- TAPPI Standard, T 204 cm-97; Wood Extractives in the Ethanol-Toluene Mixture. TAPPI Press: Atlanta, GA, USA, 1997.
- Wise, L.E.; Murphy, M.; D’addieco, A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J. 1946, 122, 35–43. [Google Scholar]
- TAPPI Standard, T203 cm-09; Alpha-, Beta- and Gamma Cellulose-In Pulp. TAPPI Press: Atlanta, GA, USA, 2009.
- TAPPI Standard, T222 om-02; Acid-Insoluble Lignin in Wood and Pulp. TAPPI Press: Atlanta, GA, USA, 2002.
- Geffer, A.; Geffertová, J.; Výbohová, E.; Dudiak, M. Impact of steaming mode on chemical characteristics and colour of birch wood. Forests 2020, 11, 478. [Google Scholar] [CrossRef] [Green Version]
- Hevea, M.; Taylor, E.; Severo, D.; Calonego, F.W. Changes in the chemical composition and decay resistance of thermally-modified Hevea brasiliensis Wood. PLoS ONE 2016, 1, e0151353. [Google Scholar] [CrossRef]
- Výbohová, E.; Kučerová, V.; Andor, T.; Balážová, Ž.; Veľková, V. The Effect of Heat Treatment on the Chemical Composition of Ash Wood. BioResources 2018, 13, 8394–8408. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.; Fang, L.; Penglian, W.; Fei, B.; Liu, J. Changes of Chemical Composition, Crystallinity, and Fourier Transform Infrared Spectra of Eucalypt pellita Wood under Different Vacuum Heat Treatment Temperatures. For. Prod. J. 2015, 65, 346–351. [Google Scholar] [CrossRef]
- Yalcin, M.; Sahin, H.I. Changes in the chemical structure and decay resistance of heat-treated narrow-leaved ash wood. Maderas. Cienc. Y Tecnol. 2015, 17, 435–446. [Google Scholar] [CrossRef]
- Dahali, R.; Lee, S.H.; Ashaari, Z.; Bakar, E.S.; Ariffin, H.; Khoo, P.S.; Bawon, P.; Salleh, Q.N. Durability of superheated steam-treated light red meranti (Shorea spp.) and kedondong (Canarium spp.) wood against white rot fungus and subterranean termite. Sustainability 2020, 12, 4431. [Google Scholar] [CrossRef]
- Bhuiyan MT, R.; Hirai, N. Study of crystalline behavior of heat-treated wood cellulose during treatments in water. J. Wood Sci. 2005, 51, 42–47. [Google Scholar] [CrossRef]
- Boonstra, M.; Tjeerdsma, B. Chemical analysis of heat-treated softwoods. Holz Als Roh- Und Werkst. 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Wikberg, H.; Maunu, S.L. Characterisation of thermally modified hard-And softwoods by13C CPMAS NMR. Carbohydr. Polym. 2004, 58, 461–466. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, X.; Li, L.; Xi, X.; Tian, M.; Yu, L.; Zhang, B. Effects of heat treatment on interfacial properties of Pinus massoniana wood. Coatings 2021, 11, 543. [Google Scholar] [CrossRef]
- Gonzalez-pena, M.M.; Curling, S.F.; Hale MD, C. On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym. Degrad. Stab. 2009, 94, 2184–2193. [Google Scholar] [CrossRef]
- Nuopponen, M.; Vuorinen, T.; Jämsä, S.; Viitaniemi, P. Thermal Modifications in Softwood Studied by FT-IR and UV Resonance Raman Spectroscopies. J. Wood Chem. Technol. 2004, 24, 13–26. [Google Scholar] [CrossRef]
- Akgül, M.; Gümüşkaya, E.; Korkut, S. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludağ fir [Abies nordmanniana (Stev.) subsp.bornmuelleriana (Mattf.)] wood. Wood Sci. Technol. 2007, 41, 281–289. [Google Scholar] [CrossRef]
- Birinci, E.; Karamanoğlu, M.; Kesik, H.I.; Kaymakci, A. Effect of heat treatment parameters on the physical, mechanical, and crystallinity index properties of Scots pine and beech wood. BioResources 2019, 17, 4713–4729. [Google Scholar] [CrossRef]
- Cheng, F.; Zhao, X.; Hu, Y. Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: A comparison study of solvents. Bioresour. Technol. 2018, 249, 969–975. [Google Scholar] [CrossRef]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by ftir. Maderas Cienc. Y Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Spiridon, I.; Teacǎ, C.A.; Bodîrlǎu, R. Structural changes evidenced by ftir spectroscopy in cellulosic materials after pre-treatment with ionic liquid and enzymatic hydrolysis. BioResources 2011, 6, 400–413. [Google Scholar] [CrossRef]
- Lee, S.H.; Ashaari, Z.; Ang, A.F.; Halip, J.A.; Lum, W.C.; Dahali, R.; Halis, R. Effects of two-step post heat-treatment in palm oil on the properties of oil palm trunk particleboard. Ind. Crops Prod. 2018, 116, 249–258. [Google Scholar] [CrossRef]
- Lee, S.H.; Ashaari, Z.; Lum, W.C.; Ang, A.F.; Halip, J.A.; Halis, R. Chemical, physico-mechanical properties and biological durability of rubberwood particleboards after post heat-treatment in palm oil. Holzforschung 2018, 72, 159–167. [Google Scholar] [CrossRef]
- Gelbrich, J.; Mai, C.; Militz, H. Chemical changes in wood degraded by bacteria. Int. Biodeterior. Biodegrad. 2008, 61, 24–32. [Google Scholar] [CrossRef]
- Shi, J.; Lu, Y.; Zhang, Y.; Cai, L.; Shi, S.Q. Effect of thermal treatment with water, H2SO4 and NaOH aqueous solution on color, cell wall and chemical structure of poplar wood. Sci. Rep. 2018, 8, 17735. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Horikawa, Y.; Sugiyama, J.; Watanabe, T.; Kobayashi, Y.; Takabe, K. Effect of thermochemical pretreatment on lignin alteration and cell wall microstructural degradation in Eucalyptus globulus: Comparison of acid, alkali, and water pretreatments. J. Wood Sci. 2016, 62, 276–284. [Google Scholar] [CrossRef]
- Rosu, D.; Teaca, C.A.; Bodirlau, R.; Rosu, L. FTIR and color change of the modified wood as a result of artificial light irradiation. J. Photochem. Photobiol. B Biol. 2010, 99, 144–149. [Google Scholar] [CrossRef]
- Salehian, P.; Karimi, K.; Zilouei, H.; Jeihanipour, A. Improvement of biogas production from pine wood by alkali pretreatment. Fuel 2013, 106, 484–489. [Google Scholar] [CrossRef]
Group | Temp. in °C | Extractives (%) | Holocellulose (%) | Cellulose (%) | Hemicellulose (%) | Lignin (%) |
---|---|---|---|---|---|---|
Control | - | 2.59 i (0.27) | 77.38 a (0.54) | 37.41 h (0.46) | 39.97 a (0.52) | 28.13 bcde (0.90) |
pH 4 | 160 °C | 4.78 gh (0.25) | 74.49 de (0.63) | 45.89 de (0.58) | 28.59 ef (0.60) | 30.96 ab (0.55) |
180 °C | 7.30 de (0.24) | 72.14 fghi (0.54) | 51.42 ab (0.48) | 20.72 hi (0.27) | 30.18 abc (1.60) | |
200 °C | 9.80 b (0.64) | 70.51 i (0.30) | 47.06 cd (1.00) | 23.45 g (0.63) | 32.16 a (1.20) | |
pH 6 | 160 °C | 4.52 h (0.49) | 75.23 bcd (0.58) | 37.63 h (1.10) | 37.60 b (0.55) | 29.13 abcd (1.18) |
180 °C | 6.91 def (0.60) | 73.03 efg (0.69) | 46.23 de (0.53) | 26.80 f (0.48) | 28.56 bcd (0.53) | |
200 °C | 8.13 cd (0.38) | 71.41 ghi (0.52) | 42.03 g (0.85) | 29.38 de (0.36) | 29.00 abcd (1.00) | |
Tap water (pH 7.23) | 160 °C | 7.07 de (0.25) | 74.82 cd (0.21) | 45.33 def (0.85) | 29.49 de (0.99) | 29.20 abcd (1.58) |
180 °C | 9.93 b (0.67) | 72.61 fgh (0.60) | 53.83 a (0.79) | 18.78 i (0.82) | 27.12 cde (1.17) | |
200 °C | 12.01 a (0.63) | 70.96 hi (0.61) | 49.06 bc (0.86) | 21.90 gh (0.31) | 31.09 ab (1.08) | |
pH 8 | 160 °C | 4.93 gh (0.43) | 76.83 ab (0.77) | 37.33 h (0.85) | 39.50 ab (0.26) | 29.00 abcd (0.99) |
180 °C | 6.18 efg (0.51) | 74.41 de (0.38) | 43.23 fg (0.99) | 31.18 cd (0.60) | 29.00 abcd (1.02) | |
200 °C | 8.9 bc (0.52) | 71.76 ghi (0.49) | 39.08 h (1.04) | 32.68 c (0.98) | 27.12 cde (1.10) | |
pH 10 | 160 °C | 5.56 fgh (0.53) | 76.23 abc (0.69) | 37.8 h (0.58) | 38.43 ab (0.78) | 27.00 cde (0.98) |
180 °C | 7.86 cd (0.57) | 73.63 def (0.60) | 44.56 ef (1.16) | 29.07 de (0.92) | 25.00 e (0.52) | |
200 °C | 9.18 bc (0.54) | 71.16 hi (0.55) | 38.78 h (0.65) | 32.38 c (0.70) | 27.00 de (0.57) |
Group | Temp. in °C | Relative Degree of Crystallinity (%) |
---|---|---|
Control | - | 50.0 |
pH4 | 160 | 57.04 |
180 | 69.91 | |
200 | 65.90 | |
pH6 | 160 | 53.64 |
180 | 68.87 | |
200 | 65.7 | |
Tap water (pH 7.43) | 160 | 56.06 |
180 | 70.4 | |
200 | 66.8 | |
pH8 | 160 | 51.58 |
180 | 65.0 | |
200 | 62.03 | |
pH10 | 160 | 53.05 |
180 | 66.33 | |
200 | 61.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.R.; Abdullah, U.H.; Gerardin, P.; Ashaari, Z.; Hamid, N.H.; Kamarudin, S.H. Chemical, Crystallinity and Morphological Changes of Rubberwood (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) Hydrothermally Treated in Different Buffered Media. Forests 2023, 14, 203. https://doi.org/10.3390/f14020203
Ali MR, Abdullah UH, Gerardin P, Ashaari Z, Hamid NH, Kamarudin SH. Chemical, Crystallinity and Morphological Changes of Rubberwood (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) Hydrothermally Treated in Different Buffered Media. Forests. 2023; 14(2):203. https://doi.org/10.3390/f14020203
Chicago/Turabian StyleAli, Md. Rowson, Ummi Hani Abdullah, Philippe Gerardin, Zaidon Ashaari, Norul Hisham Hamid, and Siti Hasnah Kamarudin. 2023. "Chemical, Crystallinity and Morphological Changes of Rubberwood (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) Hydrothermally Treated in Different Buffered Media" Forests 14, no. 2: 203. https://doi.org/10.3390/f14020203
APA StyleAli, M. R., Abdullah, U. H., Gerardin, P., Ashaari, Z., Hamid, N. H., & Kamarudin, S. H. (2023). Chemical, Crystallinity and Morphological Changes of Rubberwood (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) Hydrothermally Treated in Different Buffered Media. Forests, 14(2), 203. https://doi.org/10.3390/f14020203