Soil Property, Rather than Climate, Controls Subsoil Carbon Turnover Time in Forest Ecosystems across China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Global Environmental Variables
2.3. Subsoil τ Calculation
2.4. Data Analysis
3. Results
3.1. Subsoil τ Varied with Forest Types and Climate Zones
3.2. Influencing Factors on Subsoil τ
4. Discussion
4.1. Subsoil τ in China’s Forests
4.2. Influence of Environmental Factors on Subsoil τ
4.2.1. Climatic Effects
4.2.2. Vegetation Effects
4.2.3. Soil Effects
4.3. Implications for Biogeochemical Modeling
4.4. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Forest Types | df | Mean | Standard Deviation | Minimum | Maximum | Coefficient of Variance (%) |
---|---|---|---|---|---|---|
DBF | 154 | 82.9 | 68.7 | 10.1 | 411.0 | 82.9% |
DNF | 55 | 75.3 | 78.6 | 2.85 | 312.0 | 104% |
EBF | 148 | 59.9 | 40.7 | 4.59 | 221.0 | 68% |
ENF | 53 | 77.6 | 60.8 | 13.0 | 311.0 | 78.4% |
NBF | 220 | 71.3 | 80.9 | 2.32 | 896.2 | 113% |
Climate zones | ||||||
Boreal | 79 | 89.5 | 68.6 | 16.4 | 318.0 | 76.7% |
Subtropical | 285 | 60.1 | 41.0 | 2.32 | 253.0 | 68.2% |
Temperate | 192 | 92.2 | 96.8 | 9.25 | 896.2 | 105% |
Tropical | 74 | 49.7 | 45.6 | 4.59 | 221.0 | 91.8% |
Forest origin | ||||||
Natural | 337 | 78.2 | 73.2 | 2.32 | 896.2 | 93.6% |
Plantation | 293 | 65.6 | 62.6 | 2.85 | 481.0 | 95.3% |
Forest age (486 observations) | ||||||
Young | 233 | 67.5 | 60.3 | 2.32 | 411.0 | 89.4% |
Middle-aged | 152 | 71.1 | 57.7 | 12.2 | 315.0 | 81.1% |
Mature | 101 | 92.3 | 111 | 14.8 | 896.2 | 121% |
All | 630 | 72.4 | 68.6 | 2.32 | 896.2 | 94.8% |
Variable | Slope | 95% CI | R2 (m/c) |
---|---|---|---|
MAT | −0.014 *** | (−0.018, −0.010) | 0.09/0.10 |
Log (MAP) | −0.367 *** | (−0.469, −0.266) | 0.07/0.09 |
Log (RH) | −0.558 *** | (−0.684, −0.432) | 0.11/0.13 |
Log (GPP) | −0.370 *** | (−0.474, −0.265) | 0.07/0.43 |
Log (EVI) | −0.769 *** | (−1.048, −0.443) | 0.04/0.43 |
Log (NDVI) | −0.816 *** | (−1.130, −0.502) | 0.04/0.44 |
Log (Soil C:N) | 0.672 *** | (0.465, 0.665) | 0.44/0.56 |
Log (SMC) | 0.485 *** | (0.362, 0.609) | 0.09/0.34 |
Log (SMN) | 0.454 *** | (0.301, 0.607) | 0.05/0.32 |
Variable | Slope | 95% CI | R2 (m/c) |
---|---|---|---|
MAT | −0.016 *** | (−0.020, −0.012) | 0.10/0.23 |
Log (MAP) | −0.367 *** | (−0.469, −0.266) | 0.07/0.07 |
Log (RH) | −0.601 *** | (−0.739, −0.461) | 0.12/0.12 |
Log (GPP) | −0.370 *** | (−0.475, −0.266) | 0.07/0.07 |
Log (EVI) | −0.769 *** | (−1.076, −0.463) | 0.04/0.04 |
Log (NDVI) | −0.816 *** | (−1.130, −0.503) | 0.04/0.04 |
Log (Soil C:N) | 0.675 *** | (0.628, 0.732) | 0.44/0.69 |
Log (SMC) | 0.512 *** | (0.389, 0.635) | 0.10/0.12 |
Log (SMN) | 0.521 *** | (0.365, 0.676) | 0.06/0.06 |
Variable | Loading Factor |
---|---|
Climate | |
MAT (°C) | 0.96 |
Log (MAP) (mm) | 0.93 |
Log (RH) (%) | 0.99 |
Cumulative variance explained (%) | 92% |
Vegetation | |
Log (NDVI) | 0.97 |
Log (GPP) (g C m−2 year−1) | 0.90 |
Log (EVI) | 0.98 |
Cumulative variance explained (%) | 91% |
Soil variables | |
Log (SMC) (g C m−2) | 0.82 |
Log (C:N) | 0.50 |
Log (SMN) (g N m−2) | 0.79 |
Cumulative variance explained (%) | 63% |
References
- Morland, C.; Schier, F.; Janzen, N.; Weimar, H. Supply and demand functions for global wood markets: Specification and plausibility testing of econometric models within the global forest sector. For. Policy Econ. 2018, 92, 92–105. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Carvalhais, N. Aspects of Forest Biomass in the Earth System: Its Role and Major Unknowns. Surv. Geophys. 2019, 40, 693–707. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, J.G.; Canadell, S.L. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Yao, H.; Zou, J.; Shi, Y. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Glob. Planet. Chang. 2013, 100, 99–108. [Google Scholar] [CrossRef]
- Yan, L.; Sun, S.; Yang, Z.; Xia, X.; Bai, R. Soil organic carbon storage and its spatial-temporal variation in the central and western area of Ji Lin. Quat. Sci. 2011, 31, 9–13. [Google Scholar]
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, G.; Wang, E. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat. Commun. 2019, 10, 3688. [Google Scholar] [CrossRef] [Green Version]
- Rumpel, C.; Kogel-Knabner, I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil. 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Jastrow, J.D.; Amonette, J.E.; Bailey, V.L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim. Chang. 2007, 80, 5–23. [Google Scholar] [CrossRef]
- Fan, N.; Koirala, S.; Reichstein, M.; Thurner, M.; Carvalhais, N. Apparent ecosystem carbon turnover time: Uncertainties and robust features. Earth Syst. Sci. Data 2020, 12, 2517–2536. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Mu, M.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Qi, Q.; Zhang, D.; Zhang, M.; Tong, S.; Wang, W.; An, Y. Spatial distribution of soil organic carbon and total nitrogen in disturbed Carex tussock wetland. Ecol. Indic. 2021, 120, 106930. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Yang, J.; Banger, K.; Huntzinger, D.N.; Schwalm, C.R.; Michalak, A.M.; Cook, R.; Ciais, R.; Hayes, D.; et al. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Glob. Biogeochem. Cycles 2015, 29, 775–792. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Damien Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 2011, 116, G00J07. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sun, J.; Xia, J.; He, N.; Li, M.; Niu, S. Soil and vegetation carbon turnover times from tropical to boreal forests. Funct. Ecol. 2017, 32, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Chen, J.M.; Liu, J.; Deng, F.; Sun, R. Application of a new leaf area index algorithm to China’s landmass using MODIS data for carbon cycle research. J. Environ. Manag. 2007, 85, 649–658. [Google Scholar] [CrossRef]
- Middinti, S.; Thumaty, K.C.; Gopalakrishnan, R.; Jha, C.S.; Thatiparthi, B.R. Estimating the leaf area index in Indian tropical forests using Landsat-8 OLI data. Int. J. Remote Sens. 2017, 38, 6769–6789. [Google Scholar] [CrossRef]
- Amendola, D.; Mutema, M.; Rosolen, V.; Chaplot, V. Soil hydromorphy and soil carbon: A global data analysis. Geoderma 2018, 324, 9–17. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.U.; Lang, B.; Kgel-Knabner, I. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N.; Wang, Q.; Ge, J. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef] [PubMed]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Den Dool, H.; Huang, J.; Fan, Y. Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981–2001. J. Geophys. Res. Atmos. 2003, 108, 8617. [Google Scholar] [CrossRef]
- Xu, X.; Shi, Z.; Li, D.; Rey, A.; Ruan, H.; Craine, J.M.; Liang, J.; Zhou, J.; Luo, Y. Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis. Geoderma 2016, 262, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Global Soil Data Task Group. Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS); ORNL Distributed Active Archive Center: Oak Ridge, TN, USA, 2000. [Google Scholar]
- Yan, Y.; Zhou, X.; Jiang, L.; Luo, Y. Effects of carbon turnover time on terrestrial ecosystem carbon storage. Biogeosciences 2017, 14, 5441–5454. [Google Scholar] [CrossRef] [Green Version]
- Schenk, H.J.; Jackson, R.B. The global biogeography of roots. Ecol. Monogr. 2002, 72, 311–328. [Google Scholar] [CrossRef]
- Hanusz, Z.; Tarasinska, J.; Zielinski, W. Shapiro–Wilk test with known mean. REVSTAT-Stat. J. 2016, 14, 89–100. [Google Scholar]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.; White, J.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H.; O’Hara, R.B. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Grace, J.B.; Bollen, K.A. Interpreting the Results from Multiple Regression and Structural Equation Models. Bull. Ecol. Soc. Am. 2005, 86, 283–295. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L.; Victoria Ochoa, V.; Beatriz Gozalo, B.; García-Gómez, M.; Soliveres, S.; et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef]
- Chen, L.; Liang, J.; Qin, S.; Liu, L.; Fang, K.; Xu, Y.; Ding, J.; Li, F.; Luo, Y.; Yang, Y.; et al. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat. Commun. 2016, 7, 13046. [Google Scholar] [CrossRef]
- Tang, X.; Du, J.; Shi, Y.; Lei, N.; Chen, G.; Cao, L.; Pei, X. Global patterns of soil heterotrophic respiration–A meta-analysis of available dataset. Catena 2020, 191, 104574. [Google Scholar] [CrossRef]
- Schermelleh-Engel, K.; Moosbrugger, H.; Müller, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. 2003, 8, 23–74. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.r-project.org/ (accessed on 1 May 2020).
- Chen, G.; Yang, Y.; Yang, Z.; Xie, J.; Guo, J.; Gao, R.; Yin, Y.; Robinson, D. Accelerated soil carbon turnover under tree plantations limits soil carbon storage. Sci. Rep. 2016, 6, 19693. [Google Scholar] [CrossRef] [Green Version]
- Giardina, C.P.; Ryan, M.G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef]
- Yan, D.; Li, J.; Pei, J.; Cui, J.; Nie, M.; Fang, C. The temperature sensitivity of soil organic carbon decomposition is greater in subsoil than in topsoil during laboratory incubation. Sci. Rep. 2017, 7, 5181. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Agren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M. Temperature and soil organic matter decomposition rates–Synthesis of current knowledge and a way forward. Glob. Chang. Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Banza, J.; Casals, P.; Cheng, Y.; Gru¨nzweig, J.M.; Irvine, J.; et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob. Biogeochem. Cycles 2003, 17, 1104. [Google Scholar] [CrossRef]
- Street, L.E.; Garnett, M.H.; Subke, J.; Baxter, R.; Dean, J.F.; Wookey, P.A. Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Glob. Chang. Biol. 2020, 26, 4559–4571. [Google Scholar] [CrossRef]
- Vesterdal, L.; Elberling, B.; Christiansen, J.R.; Callesen, I.; Schmidt, I.K. Soil respiration and rates of soil carbon turnover differ among six common European tree species. For. Ecol. Manag. 2012, 264, 185–196. [Google Scholar] [CrossRef]
- Barrett, D.J. Steady state turnover time of carbon in the Australian terrestrial biosphere. Glob. Biogeochem. Cycles 2002, 16, 55-1–55-21. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Yu, Z.; Li, Y.; Tian, D.; Wang, B.; Li, Z.; Niu, S. Vegetation type controls root turnover in global grasslands. Glob. Ecol. Biogeogr. 2019, 28, 442–455. [Google Scholar] [CrossRef]
- Cheng, J.; Lee, X.; Theng, B.K.G.; Zhang, L.; Fang, B.; Li, F. Biomass accumulation and carbon sequestration in an age-sequence of Zanthoxylum bungeanum plantations under the Grain for Green Program in karst regions, Guizhou province. Agric. For. Meteorol. 2015, 203, 88–95. [Google Scholar] [CrossRef]
- Peichl, M.; Arain, M.A. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 2007, 253, 68–80. [Google Scholar] [CrossRef]
- Gray, A.N.; Whittier, T.R.; Harmon, M.E. Carbon stocks and accumulation rates in Pacific Northwest forests: Role of stand age, plant community, and productivity. Ecosphere 2016, 7, e01224. [Google Scholar] [CrossRef]
- Tang, J.; Luyssaert, S.; Richardson, A.D.; Kutsch, W.; Janssens, I.A. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proc. Natl. Acad. Sci. USA 2014, 111, 8856–8860. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.Y.; Pan, J.J.; Sun, B. The relative impact of land use and soil properties on sizes and turnover rates of soil organic carbon pools in Subtropical China. Soil Use Manag. 2013, 29, 510–518. [Google Scholar] [CrossRef]
- Laganiere, J.; Angers, D.A.; Pare, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Chang. Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Tang, X.; Yu, P.; Xu, L.; Chen, G.; Cao, L.; Song, C.; Cai, C.; Li, J. Subsoil organic carbon turnover is dominantly controlled by soil properties in grasslands across China. Catena 2021, 207, 105654. [Google Scholar] [CrossRef]
- Barrett, J.E.; Burke, I.C. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient. Soil Biol. Biochem. 2000, 32, 1707–1716. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, H.; Zhang, Y. Soil microbial activities and carbon and nitrogen fixation. Res. Microbiol. 2003, 154, 393–398. [Google Scholar] [CrossRef]
- Martinez-Vilalta, J.; Lloret, F. Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics. Glob. Planet. Chang. 2016, 144, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yan, F.; Tuo, D.; Yao, B.; Chen, J. The effect of climatic and edaphic factors on soil organic carbon turnover in hummocks based on delta (13)C on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 741, 140141. [Google Scholar] [CrossRef]
- Wang, S.; Fan, J.; Song, M.; Yu, G.; Zhou, L.; Liu, J.; Zhong, H.; Gao, L.; Hu, H.; Wu, W.; et al. Patterns of SOC and soil 13C and their relations to climatic factors and soil characteristics on the Qinghai–Tibetan Plateau. Plant Soil 2012, 363, 243–255. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplans, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Koarashi, J.; Hockaday, W.C.; Masiello, C.A.; Trumbore, S.E. Dynamics of decadally cycling carbon in subsurface soils. J. Geophys. Res.-Biogeosci. 2012, 117, G03033. [Google Scholar] [CrossRef] [Green Version]
- Ota, M.; Nagai, H.; Koarashi, J. Root and dissolved organic carbon controls on subsurface soil carbon dynamics: A model approach. J. Geophys. Res.-Biogeosci. 2013, 118, 1646–1659. [Google Scholar] [CrossRef]
- Kramer, C.; Trumbore, S.; Fröberg, M.; Cisneros Dozal, L.M.; Zhang, D.; Xu, X.; Santos, G.M.; Hanson, P.J. Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol. Biochem. 2010, 42, 1028–1037. [Google Scholar]
- Rasse, D.P.; Rumpel, C.; Dignac, M.F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
df | SS | MS | F Value | p | |
---|---|---|---|---|---|
Forest types | 4 | 15.9 | 3.96 | 3.67 | <0.01 |
Climatic zones | 3 | 55.4 | 18.45 | 17.09 | <0.001 |
Forest types: Climatic zones | 10 | 33.1 | 3.31 | 3.07 | <0.001 |
Variable | Slope | 95% CI | R2 (m/c) |
---|---|---|---|
MAT | −0.016 *** | (−0.020, −0.012) | 0.10/0.12 |
Log (MAP) | −0.366 *** | (−0.468, −0.265) | 0.07/0.07 |
Log (RH) | −0.560 *** | (−0.740, −0.460) | 0.12/0.13 |
Log (GPP) | −0.370 *** | (−0.475, −0.265) | 0.07/0.07 |
Log (EVI) | −0.770 *** | (−1.076, −0.463) | 0.04/0.04 |
Log (NDVI) | −0.817 *** | (−1.130, −0.503) | 0.04/0.04 |
Log (Soil C:N) | 0.672 *** | (0.615, 0.730) | 0.44/0.56 |
Log (SMC) | 0.509 *** | (0.386, 0.632) | 0.09/0.12 |
Log (SMN) | 0.516 *** | (0.361, 0.672) | 0.07/0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Shi, Y.; Li, J.; Zhang, X.; Deng, Y.; Du, M.; Fan, S.; Cai, C.; Han, Y.; Li, Z.; et al. Soil Property, Rather than Climate, Controls Subsoil Carbon Turnover Time in Forest Ecosystems across China. Forests 2022, 13, 2061. https://doi.org/10.3390/f13122061
Yu P, Shi Y, Li J, Zhang X, Deng Y, Du M, Fan S, Cai C, Han Y, Li Z, et al. Soil Property, Rather than Climate, Controls Subsoil Carbon Turnover Time in Forest Ecosystems across China. Forests. 2022; 13(12):2061. https://doi.org/10.3390/f13122061
Chicago/Turabian StyleYu, Peng, Yuehong Shi, Jingji Li, Xin Zhang, Ye Deng, Manyi Du, Shaohui Fan, Chunju Cai, Yuxuan Han, Zhou Li, and et al. 2022. "Soil Property, Rather than Climate, Controls Subsoil Carbon Turnover Time in Forest Ecosystems across China" Forests 13, no. 12: 2061. https://doi.org/10.3390/f13122061
APA StyleYu, P., Shi, Y., Li, J., Zhang, X., Deng, Y., Du, M., Fan, S., Cai, C., Han, Y., Li, Z., Gao, S., & Tang, X. (2022). Soil Property, Rather than Climate, Controls Subsoil Carbon Turnover Time in Forest Ecosystems across China. Forests, 13(12), 2061. https://doi.org/10.3390/f13122061