Potential Geographical Distribution of Medicinal Plant Ephedra sinica Stapf under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Species Distribution Data
2.2. Acquisition of Environment Variable Data
2.3. Build MaxEnt Model
3. Results
3.1. Geographical Distribution
3.2. MaxEnt Model Accuracy Test
3.3. Contribution Percentage of Environment Variables
3.4. Threshold Analysis of Important Environmental Variables
3.5. Evaluation of Potential Geographical Distribution and Suitable Areas
3.6. Future Trends in the Barycentre of Suitable Habitat
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flora of China. Available online: http://www.iplant.cn/foc (accessed on 2 September 2022).
- Ibragic, S.; Sofic, E. Chemical composition of various ephedra species. Bosn. J. Basic Med. Sci. 2015, 15, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Q.; Wang, J.H.; Zhu, J.M. Atlas of Desert Plants in China, 1st ed.; China Forestry Publishing House: Beijing, China, 2012; p. 16. [Google Scholar]
- Pharmacopoeia of the People’s Republic of China. Available online: https://db.ouryao.com/yd2020/ (accessed on 2 September 2022).
- Yeom, M.J.; Lee, H.C.; Kim, G.H.; Lee, H.J.; Shim, I.; Oh, S.K.; Kang, S.K.; Hahm, D.H. Anti-arthritic effects of Ephedra sinica STAPF herb-acupuncture: Inhibition of lipopolysaccharide-induced inflammation and adjuvant-induced polyarthritis. J. Pharmacol. Sci. 2006, 100, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.Y.; Ding, X.Y.; Zhang, D.; An, Q.; Jin, Y.; Zhan, Z.L.; Zheng, Y.G. Herbal textual research on ephedrae herba in famous classical formulas. Chin. J. Exp. Tradit. Med. Formulae 2022, 28, 102–110. [Google Scholar]
- Zhang, B.B.; Zeng, M.N.; Zhang, Q.Q.; Jia, J.F.; Wang, R.; Guo, P.L.; Liu, M.; Jian, L.H.; Feng, W.S.; Zheng, X.K. Intervention effects of Ephedra sinica Stapf, Ephedra intermedia Schrenk et C. A. Mey., and Ephedra equisetina Bge. on rat model of fenghanbiaozheng. Pharmacol. Clin. Chin. Mater. Med. 2022, 38, 121–127. [Google Scholar]
- Jia, J.F.; Zeng, M.N.; Zhang, B.B.; Guo, P.L.; Liu, M.; Zhang, Q.Q.; Wang, R.; Zheng, X.K.; Feng, W.S. Study on the differences of immune effects of water extracts of Ephedra sinica Stapf, Ephedra intermedia Schrenk et C. A. Mey., Ephedra equisetina Bge. on wind-cold superficies syndrome in rats. Chem. Life 2021, 41, 2265–2273. [Google Scholar]
- He, P.; Li, J.Y.; Li, Y.F.; Xu, N.; Gao, Y.; Guo, L.F.; Huo, T.T.; Peng, C.; Meng, F.Y. Habitat protection and planning for three Ephedra using the MaxEnt and Marxan models. Ecol. Indic. 2021, 133, 108399. [Google Scholar] [CrossRef]
- Yan, X.Y.; Wang, S.C.; Duan, Y.; Han, J.; Huang, D.H.; Zhou, J. Current and future distribution of the deciduous shrub Hydrangea macrophylla in China estimated by MaxEnt. Ecol. Evol. 2021, 11, 16099–16112. [Google Scholar] [CrossRef]
- Zhang, Y.; An, M.T.; Wu, J.Y.; Liu, F.; Wang, W. Geographical distribution pattern and dominant climatic factors of the Paphiopedilum Subgen. Brachypetalum in China. Chin. J. Plant Ecol. 2022, 46, 40–50. [Google Scholar]
- Banerjee, A.K.; Mukherjee, A.; Guo, W.X.; Ng, W.L.; Huang, Y.L. Combining ecological niche modeling with genetic lineage information to predict potential distribution of Mikania micrantha Kunth in South and Southeast Asia under predicted climate change. Glob. Ecol. Cons. 2019, 20, e00800. [Google Scholar] [CrossRef]
- Antúnez, P. Main environmental variables influencing the abundance of plant species under risk category. J. For. Res. 2021, 33, 1209–1217. [Google Scholar] [CrossRef]
- Alkhalifah, D.H.M.; Damra, E.; Khalaf, S.M.H.; Hozzein, W.N. Biogeography of black mold Aspergillus niger: Global situation and future perspective under several climate change scenarios using MaxEnt modeling. Diversity 2022, 14, 845. [Google Scholar] [CrossRef]
- Nzei, J.M.; Ngarega, B.K.; Mwanzia, V.M.; Kurauka, J.K.; Wang, Q.F.; Chen, J.M.; Li, Z.Z.; Pan, C. Assessment of climate change and land use effects on Water Lily (Nymphaea L.) habitat suitability in South America. Diversity 2022, 14, 830. [Google Scholar] [CrossRef]
- Cunningham, M.A. Climate change, Agriculture, and Biodiversity: How does shifting agriculture affect habitat availability? Land 2022, 11, 1257. [Google Scholar] [CrossRef]
- Buendía-Espinoza, J.C.; Martínez-Ochoa, E.D.C.; Díaz-Aguilar, I.; Cahuich-Damián, J.E.; Zamora-Elizalde, M.C. Identifying potential planting sites for three non-native plants to be used for soil rehabilitation in the Tula Watershed. Forests 2022, 13, 270. [Google Scholar] [CrossRef]
- Kim, W.; Lee, W.; Huh, E.; Choi, E.; Jang, Y.P.; Kim, Y.-K.; Lee, T.-H.; Oh, M.S. Ephedra sinica Stapf and gypsum attenuates heat-induced hypothalamic inflammation in mice. Toxins 2020, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-J.; Shon, D.-H.; Ryu, Y.-H.; Ko, Y. Extract of Ephedra sinica Stapf induces browning of mouse and human white adipocytes. Foods 2022, 11, 1028. [Google Scholar] [CrossRef]
- Lv, M.; Wang, Y.; Wan, X.; Han, B.; Yu, W.; Liang, Q.; Xiang, J.; Wang, Z.; Liu, Y.; Qian, Y.; et al. Rapid screening of proanthocyanidins from the roots of Ephedra sinica Stapf and its preventative effects on dextran-sulfate-sodium-induced ulcerative colitis. Metabolites 2022, 12, 957. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Eco. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Wei, C.H.; Liang, C.T.; Yu, J.H.; Wang, H.M.; Wang, W.J. Future climatic adaption of 12 dominant tree species in Northeast China under 3 climatic scenarios by using MaxEnt modeling. Acta Ecol. Sin. 2022, 42, 1–14. [Google Scholar]
- Ma, S.M.; Zhang, M.L.; Chen, X. Potential geographical distribution of Genus Ammopitanthus (Leguminosae) in the Eastern Central Asian Desert and its determinant environmental factors. J. Desert. Res. 2012, 32, 1301–1307. [Google Scholar]
- Fungjanthuek, J.; Huang, M.J.; Hughes, A.C.; Huang, J.F.; Chen, H.H.; Gao, J.; Peng, Y.Q. Ecological niche overlap and prediction of the potential distribution of two sympatric ficus (Moraceae) species in the Indo-Burma Region. Forests 2022, 13, 1420. [Google Scholar] [CrossRef]
- Liu, M.L.; Sun, H.Y.; Jiang, X.; Zhou, T.; Zhang, Q.J.; Su, Z.D.; Zhang, Y.N.; Liu, J.N.; Li, Z.H. Simulation and prediction of the potential geographical distribution of Acer cordatum Pax in different climate scenarios. Forests 2022, 13, 1380. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, S.; Yang, T.; Cheng, J.; Jin, J. Maximum entropy niche-based modeling for predicting the potential suitable habitats of a traditional medicinal plant (Rheum nanum) in Asia under climate change conditions. Agriculture 2022, 12, 610. [Google Scholar] [CrossRef]
- Meng, Y.; Ma, J.M.; Wang, Y.Q.; Mo, Y.H. Prediction of distribution area of Loropetalum chinense based on Maxent model. Acta Ecol. Sin. 2020, 40, 8287–8296. [Google Scholar]
- Qi, S.; Luo, W.; Chen, K.-L.; Li, X.; Luo, H.L.; Yang, Z.Q.; Yin, D.M. The prediction of the potentially suitable distribution area of Cinnamomum mairei H. Lév in China based on the MaxEnt model. Sustainability 2022, 14, 7682. [Google Scholar] [CrossRef]
- Wan, J.N.; Mbari, M.J.; Wang, S.W.; Liu, B.; Mwangi, B.N.; Rasoarahona, J.R.E.; Xin, H.P.; Zhou, Y.D.; Wang, Q.F. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Divers. 2021, 43, 117–124. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Y.Q.; Wang, J.N.; Zhou, Q.; Liu, F.G.; Chen, Q.; Liu, F. The potential geographical distribution of Lycium ruthenicum Murr under differernt climate change scenarios. Chin. J. Appl. Envion. Biol. 2020, 26, 969–978. [Google Scholar]
- Zhang, L.X.; Chen, X.L.; Xin, X.G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Clim. Change Res. 2019, 15, 519–525. [Google Scholar]
- Wang, Y.; Li, H.X.; Wang, H.J.; Sun, B.; Chen, H.P. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5. Acta Meteorol. Sin. 2021, 79, 369–386. [Google Scholar]
- Xia, S.; Liu, P.; Jiang, Z.H.; Cheng, J. Simulation evaluation of AMO and PDO with CMIP5 and CMIP6 models in historical experiment. Adv. Earth Sci. 2021, 36, 58–68. [Google Scholar]
- Hu, T.; Lv, S.H.; Chang, Y.; Yang, M.X.; Luo, J.X.; Cheng, X.Q. Analysis and prediction of permafrost changes in Qinghai-Xizang Plateau by CMIP6 climate models. Plateau Meteorol. 2022, 41, 363–375. [Google Scholar]
- Antúnez, P. Influence of physiography, soil and climate on taxus globosa. Nord. J. Bot. 2021, 39, 03058. [Google Scholar] [CrossRef]
- Kaky, E.; Nolan, V.; Alatawi, A.; Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 2020, 60, 101150. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A., Jr. A partical guide to MaxEnt for modeling species’ distribution: What it does, and why inputs and settings matter. Ecography 2013, 36, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, H.X.; Wang, H. Potential geographical distribution of Populus euphratica in China under future climate change scenarios based on MaxEnt model. Acta Ecol. Sin. 2020, 40, 6552–6563. [Google Scholar]
- Yan, H.; Ma, S.M.; Wei, B.; Zhang, H.X.; Zhang, D. Historical distribution patterns and environmental drivers of relict shrub Amygdalus pedunculata. Chin. J. Plant Ecol. 2022, 46, 766. [Google Scholar] [CrossRef]
- Ying, L.X.; Liu, Y.; Chen, S.T.; Shen, Z.H. Simulation of the potential range of Pistacia weinmannifolia in Southwest China with climate change based on the maximum-entropy model. Biodivers. Sci. 2016, 24, 453–461. [Google Scholar] [CrossRef]
- Chu, J.M.; Li, Y.F.; Zhang, L.; Li, B.; Gao, M.Y.; Tang, X.Q.; Ni, J.W.; Xu, X.Q. Potential distribution range and conservation strategies for the endangered species Amygdalus pedunculata. Biodivers. Sci. 2017, 25, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Kim, G.-Y.; Do, Y.; Park, H.-S.; Joo, G.-J. Relative importance of hydrological variables in predicting the habitat suitability of Euryale ferox Salisb. J. Plant Ecol. 2018, 11, 169–179. [Google Scholar]
- Xiong, Q.L.; He, Y.L.; Deng, F.Y.; Li, T.Y.; Yu, L. Assessment of alpine mean response to climate change in Southwest China based on MaxEnt model. Acta Ecol. Sin. 2019, 39, 9033–9043. [Google Scholar]
- Venne, S.; Currie, D.J. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Divers. Distrib. 2021, 27, 873–886. [Google Scholar] [CrossRef]
- Zhang, W.P.; Hu, Y.Y.; Li, Z.H.; Feng, X.P.; Li, D.W. Predicting suitable distribution areas of Juniperus przewalskii in Qinghai Province under climate change scenarios. Chin. J. Appl. Ecol. 2021, 32, 2514–2524. [Google Scholar]
- Liu, Z.L.; Hu, L.L. Prediction of potential distribution and climate change of rare species Cephalotaxus oliveri. For. Resour. Wanagement 2022, 1, 35–42. [Google Scholar]
- Cotto, O.; Wessely, J.; Georges, D.; Klonner, G.; Schmid, M.; Dullinger, S.; Thuiller, W.; Guillaume, F. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 2017, 8, 15399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.-D.; Anwar, E.; Zhou, J.; He, D.; Gao, Y.-C.; Lv, G.-H.; Cao, Y.-E. Higher association and integration among functional traits in small tree than shrub in resisting drought stress in an arid desert. Environ. Exp. Bot. 2022, 201, 104993. [Google Scholar] [CrossRef]
- Wang, Q.L.; Wang, R.L.; Zhang, L.P.; Han, Y.J.; Wang, M.T.; Chen, H.; Chen, J.; Guo, W. Climatic ecological suitability and potential distribution of Trichlolma matsutake in western Sichuan Plateau, China Based on MaxEnt model. Chin. J. Appl. Ecol. 2021, 32, 2525–2533. [Google Scholar]
- Ma, Y.-P.; Chen, G.; Grumbine, R.E.; Dao, Z.; Sun, W.; Guo, H. Conserving plant species with extremely small populations (psesp) in china. Biodivers. Conserv. 2013, 22, 803–809. [Google Scholar] [CrossRef]
AUC Value of Ten Simulations | ||
---|---|---|
No. | Training | Test |
1 | 0.94 | 0.94 |
2 | 0.95 | 0.88 |
3 | 0.89 | 0.91 |
4 | 0.95 | 0.91 |
5 | 0.89 | 0.91 |
6 | 0.90 | 0.94 |
7 | 0.94 | 0.91 |
8 | 0.93 | 0.88 |
9 | 0.94 | 0.82 |
10 | 0.94 | 0.94 |
Bioclimate Variable | Contribution (%) | Permutation Importance | |
---|---|---|---|
BIO15 | Precipitation Seasonality (Coefficient of Variation) | 23.30 | 14.50 |
BIO4 | Temperature Seasonality (standard deviation × 100) | 21.00 | 0.70 |
BIO13 | Precipitation of Wettest Month | 19.30 | 26.70 |
BIO6 | Min Temperature of Coldest Month | 8.60 | 1.30 |
BIO5 | Max Temperature of Warmest Month | 5.30 | 0.40 |
BIO19 | Precipitation of Coldest Quarter | 4.80 | 0.50 |
BIO12 | Annual Precipitation | 3.00 | 4.40 |
BIO16 | Precipitation of Wettest Quarter | 2.70 | 17.60 |
BIO3 | Isothermality (BIO2/BIO7) (×100) | 2.50 | 1.00 |
BIO2 | Mean Diurnal Range (Mean of monthly (max temp—min temp)) | 2.00 | 2.60 |
BIO18 | Precipitation of Warmest Quarter | 1.80 | 12.70 |
BIO8 | Mean Temperature of Wettest Quarter | 1.70 | 9.10 |
BIO14 | Precipitation of Driest Month | 1.30 | 0.60 |
BIO17 | Precipitation of Driest Quarter | 1.10 | 4.00 |
BIO10 | Mean Temperature of Warmest Quarter | 0.70 | 0.70 |
BIO7 | Temperature Annual Range (BIO5–BIO6) | 0.40 | 1.10 |
BIO9 | Mean Temperature of Driest Quarter | 0.40 | 1.70 |
BIO1 | Annual Mean Temperature | 0.00 | 0.10 |
BIO11 | Mean Temperature of Coldest Quarter | 0.00 | 0.20 |
Shared Socio-Economic Pathways | Time Periods | Area (×104 km2) |
---|---|---|
Historical | 1970–2000 | 291.76 |
SSP126 | 2021–2040 | 611.40 |
2041–2060 | 617.67 | |
2061–2080 | 624.19 | |
2081–2100 | 644.53 | |
SSP585 | 2021–2040 | 630.14 |
2041–2060 | 648.23 | |
2061–2080 | 621.06 | |
2081–2100 | 644.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Liu, Z.; Abdukeyum, N.; Ling, Y. Potential Geographical Distribution of Medicinal Plant Ephedra sinica Stapf under Climate Change. Forests 2022, 13, 2149. https://doi.org/10.3390/f13122149
Zhang K, Liu Z, Abdukeyum N, Ling Y. Potential Geographical Distribution of Medicinal Plant Ephedra sinica Stapf under Climate Change. Forests. 2022; 13(12):2149. https://doi.org/10.3390/f13122149
Chicago/Turabian StyleZhang, Kai, Zhongyue Liu, Nurbiya Abdukeyum, and Yibo Ling. 2022. "Potential Geographical Distribution of Medicinal Plant Ephedra sinica Stapf under Climate Change" Forests 13, no. 12: 2149. https://doi.org/10.3390/f13122149
APA StyleZhang, K., Liu, Z., Abdukeyum, N., & Ling, Y. (2022). Potential Geographical Distribution of Medicinal Plant Ephedra sinica Stapf under Climate Change. Forests, 13(12), 2149. https://doi.org/10.3390/f13122149