The Genetic Differences and Structure of Selected Important Populations of the Endangered Taxus baccata in the Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Populations and Their Sampling
2.2. DNA Extraction and Microsatellite Genotyping
2.3. Genetic Diversity and Differentiation in Tested Populations
3. Results
3.1. Genetic Diversity
3.2. Genetic Differentiation
3.3. Genetic Structure of the Populations
4. Discussion
4.1. Genetic Diversity
4.2. Genetic Differentiation and Genetic Structure
4.3. Implications for Conservation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sisak, L.; Riedl, M.; Dudik, R. Non-market non-timber forest products in the Czech Republic—Their socio-economic effects and trends in forest land use. Land Use Policy 2016, 50, 390–398. [Google Scholar] [CrossRef]
- Sarli, S.; Ghasemi, N. Optimization of biosynthesized Zn nanoparticles by poisonous Taxus baccata leaves extract and evaluation of their effect on the bacterias and MCF-7 cancer cells. Eurasian Chem. Commun. 2020, 2, 302–318. [Google Scholar] [CrossRef] [Green Version]
- Úradníček, L.; Čáp, J.; Jelínek, B.; Koutecký, T.; Maděra, P.; Řepka, R.; Tichá, S.; Vahalík, P. Červená Kniha Dřevin České Republiky; Lesnická Práce: Kostelec nad Černými Lesy, Czech Republic, 2017; ISBN 80-7458-098-9. [Google Scholar]
- Iszkuło, G.; Didukh, Y.; Giertych, M.J.; Jasińska, A.K.; Sobierajska, K.; Szmyt, J. Weak competitive ability may explain decline of Taxus baccata. Ann. For. Sci. 2012, 69, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Grulich, V.; Chobot, K. Červený seznam ohrožených druhů České republiky. Cévnaté rostliny. Příroda 2017, 35, 1–178. [Google Scholar]
- Thomas, P.A.; Polwart, A. Taxus baccata L. J. Ecol. 2003, 91, 489–524. [Google Scholar] [CrossRef]
- Farris, E.; Filigheddu, R. Effects of Browsing in Relation to Vegetation Cover on Common Yew (Taxus baccata L.) Recruitment in Mediterranean Environments. Plant Ecol. 2008, 199, 309–318. [Google Scholar] [CrossRef]
- Garbarino, M.; Weisberg, P.J.; Bagnara, L.; Urbinati, C. Sex-related spatial segregation along environmental gradients in the dioecious conifer, Taxus baccata. For. Ecol. Manag. 2015, 358, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Young, A.; Boyle, T.; Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 1996, 11, 413–418. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Eldridge, M.D.B.; Lacy, R.C.; Ralls, K.; Dudash, M.R.; Fenster, C.B. Predicting the Probability of Outbreeding Depression. Conserv. Biol. 2011, 25, 465–475. [Google Scholar] [CrossRef]
- Miao, Y.-C.; Su, J.-R.; Zhang, Z.-J.; Lang, X.-D.; Liu, W.-D.; Li, S.-F. Microsatellite markers indicate genetic differences between cultivated and natural populations of endangered Taxus yunnanensis. Bot. J. Linn. Soc. 2015, 177, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Novotný, P.; Tomec, J.; Fulín, M.; Čáp, J.; Dostál, J.; Hrozek, A.; Hrozková, L.; Skaloš, J. Changes in the development of highly endangered common yew (Taxus Baccata L.) population in the Lužické Hory (Lusatian Mountains) after 20 years of intensified proteciton (1999–2019). Zprávy Lesn. Výzk. 2020, 65, 135–145. [Google Scholar]
- Novotný, P.; Hrozek, A. Proposing of methodology for common yew (Taxus baccata L.) genetic resources conservation and reproduction in the protected landscape area Lužické Mts. Zprávy Lesn. Výzk. 2010, 55, 273–281. [Google Scholar] [CrossRef]
- Máchová, P.; Trčková, O.; Cvrčková, H. Use of Nuclear Microsatellite Loci for Evaluating Genetic Diversity of Selected Populations of Picea abies (L.) Karsten in the Czech Republic. Forests 2018, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Bínová, Z.; Korecký, J.; Dvořák, J.; Bílý, J.; Zádrapová, D.; Jansa, V.; Lstibůrek, M. Genetic Structure of Norway Spruce Ecotypes Studied by SSR Markers. Forests 2020, 11, 110. [Google Scholar] [CrossRef] [Green Version]
- Mei, L.; Wen, X.; Fan, F.; Yang, Z.; Xie, W.; Hong, Y. Genetic diversity and population structure of masson pine (Pinus massoniana Lamb.) superior clones in South China as revealed by EST-SSR markers. Genet. Resour. Crop Evol. 2021, 68, 1987–2002. [Google Scholar] [CrossRef]
- Mason, A.S. SSR Genotyping. In Plant Genotyping: Methods and Protocols; Batley, J., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; pp. 77–89. ISBN 978-1-4939-1966-6. [Google Scholar]
- Winter, P.; Kahl, G. Molecular marker technologies for plant improvement. World J. Microbiol. Biotechnol. 1995, 11, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A.K. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011, 177, 309–334. [Google Scholar] [CrossRef]
- Dubreuil, M.; Riba, M.; González-Martínez, S.C.; Vendramin, G.G.; Sebastiani, F.; Mayol, M. Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am. J. Bot. 2010, 97, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Zatloukal, V.; Holá, Š.; Kačmar, M. European yew (Taxus baccata) in the Czech Republic Inventory 2007–2012; Folia Forestalia Bohemica, 1st ed.; Lesnická Práce: Kostelec nad Černými Lesy, Czech Republic, 2013; ISBN 978-80-7458-042-0. [Google Scholar]
- Chybicki, I.J.; Oleksa, A.; Burczyk, J. Increased inbreeding and strong kinship structure in Taxus baccata estimated from both AFLP and SSR data. Heredity 2011, 107, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Dubreuil, M.; Sebastiani, F.; Mayol, M.; González-Martínez, S.C.; Riba, M.; Vendramin, G.G. Isolation and characterization of polymorphic nuclear microsatellite loci in Taxus baccata L. Conserv. Genet. 2008, 9, 1665–1668. [Google Scholar] [CrossRef]
- Guichoux, E.; Lagache, L.; Wagner, S.; Chaumeil, P.; Léger, P.; Lepais, O.; Lepoittevin, C.; Malausa, T.; Revardel, E.; Salin, F.; et al. Current trends in microsatellite genotyping. Mol. Ecol. Resour. 2011, 11, 591–611. [Google Scholar] [CrossRef]
- Chapuis, M.-P.; Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007, 24, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef]
- Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 2009, 9, 1322–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberto, F.; Niort, J.; Derory, J.; Lepais, O.; Vitalis, R.; Galop, D.; Kremer, A. Population differentiation of sessile oak at the altitudinal front of migration in the French Pyrenees. Mol. Ecol. 2010, 19, 2626–2639. [Google Scholar] [CrossRef]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Nei, M. Genetic Distance between Populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- Chapuis, M.-P.; Lecoq, M.; Michalakis, Y.; Loiseau, A.; Sword, G.A.; Piry, S.; Estoup, A. Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Mol. Ecol. 2008, 17, 3640–3653. [Google Scholar] [CrossRef]
- Wright, S. The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating. Evolution 1965, 19, 395–420. [Google Scholar] [CrossRef]
- Jianping, H.; Zhang, W.; Cao, H.; Chen, S.; Wang, Y. Genetic diversity and biogeography of the traditional Chinese medicine, Gardenia jasminoides, based on AFLP markers. Biochem. Syst. Ecol. 2007, 35, 138–145. [Google Scholar] [CrossRef]
- Aguinagalde, I.; Hampe, A.; Mohanty, A.; Martín, J.P.; Duminil, J.; Petit, R.J. Effects of Life-History Traits and Species Distribution on Genetic Structure at Maternally Inherited Markers in European Trees and Shrubs. J. Biogeogr. 2005, 32, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Chybicki, I.J.; Oleksa, A. Seed and pollen gene dispersal in Taxus baccata, a dioecious conifer in the face of strong population fragmentation. Ann. Bot. 2018, 122, 409–421. [Google Scholar] [CrossRef]
- Guo, B.; Hao, X.; Han, L.; Zhai, Y.; Zhou, S.; Chen, S.; Ren, D.; An, X. Unraveling the genetic diversity and structure of Quercus liaotungensis population through analysis of microsatellite markers. PeerJ 2021, 9, e10922. [Google Scholar] [CrossRef]
- Ahn, J.-Y.; Lee, J.-W.; Hong, K.-N. Genetic Diversity and Structure of Pinus densiflora Siebold & Zucc. Populations in Republic of Korea Based on Microsatellite Markers. Forests 2021, 12, 750. [Google Scholar] [CrossRef]
- González-Martínez, S.C.; Dubreuil, M.; Riba, M.; Vendramin, G.G.; Sebastiani, F.; Mayol, M. Spatial genetic structure of Taxus baccata L. in the western Mediterranean Basin: Past and present limits to gene movement over a broad geographic scale. Mol. Phylogenet. Evol. 2010, 55, 805–815. [Google Scholar] [CrossRef]
- Gargiulo, R.; Saubin, M.; Rizzuto, G.; West, B.; Fay, M.F.; Kallow, S.; Trivedi, C. Genetic diversity in British populations of Taxus baccata L.: Is the seedbank collection representative of the genetic variation in the wild? Biol. Conserv. 2019, 233, 289–297. [Google Scholar] [CrossRef]
- Mayol, M.; Riba, M.; González-Martínez, S.C.; Bagnoli, F.; de Beaulieu, J.-L.; Berganzo, E.; Burgarella, C.; Dubreuil, M.; Krajmerová, D.; Paule, L.; et al. Adapting through glacial cycles: Insights from a long-lived tree (Taxus baccata). New Phytol. 2015, 208, 973–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litkowiec, M.; Lewandowski, A.; Wachowiak, W. Genetic variation in Taxus baccata L.: A case study supporting Poland’s protection and restoration program. For. Ecol. Manag. 2018, 409, 148–160. [Google Scholar] [CrossRef]
- Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 2004, 13, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Maroso, F.; Vera, M.; Ferreiro, J.; Mayol, M.; Riba, M.; Ramil-Rego, P.; Martínez, P.; Bouza, C. Genetic diversity and structure of Taxus baccata from the Cantabrian-Atlantic area in northern Spain: A guide for conservation and management actions. For. Ecol. Manag. 2021, 482, 118844. [Google Scholar] [CrossRef]
- Myking, T.; Vakkari, P.; Skrøppa, T. Genetic variation in northern marginal Taxus baccata L. populations. Implications for conservation. For. Int. J. For. Res. 2009, 82, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Cvrčková, H.; Máchová, P.; Poláková, L.; Trčková, O. Evaluation of the genetic diversity of selected Fagus sylvatica L. populations in the Czech Republic using nuclear microsatellites. J. For. Sci. 2017, 63, 53–61. [Google Scholar] [CrossRef] [Green Version]
Location | Source Population Size (Trees More Than 1 m) 1 | Code of Population | Geographic Coordinates (WGS84) | Individuals Analysed | |
---|---|---|---|---|---|
Seed Orchard Mařeničky | PLA Lužické (Lusatian) Mountains | 150 | TS_L | 50°49′4.49776″ N; 14°50′58.00724″ E | 40 |
NM Jílovské yews | 385 | TS_J | 50°45′21.87152″ N; 14°5′52.63455″ E | 40 | |
Natural Populations | NNR Březinské yews | 176 | TS_B | 50°45′13.11222″ N; 14°15′1.90919″ E | 40 |
PLA Moravský Kras (Moravian Karst) | app. 2500 | TS_M | 49°20′ 54.11839″ N; 16°43′0.07176″ E | 45 |
SSR | Repeat Structure | Allele Size (bp) | PCR Conditions | Fluorescent Dye | |
---|---|---|---|---|---|
Multiplex 1 | TAX23 | (GT)21 | 153–183 | 58 °C/40 s | PET |
TAX26 | (GT)30 | 208–284 | 58 °C/40 s | NED | |
TAX36 | (GT)25 | 126–262 | 58 °C/40 s | VIC | |
TAX86 | (GT)34 | 152–304 | 58 °C/40 s | FAM | |
Multiplex 2 | TAX92 | (GT)24 | 160–280 | 58 °C/40 s | NED |
TS09 | (TC)12 | 217–247 | 58 °C/40 s | VIC | |
TAX362 | (CA)19 | 85–119 | 61 °C/40 s | FAM |
Locus | Na | Ar | I | Ho | He | F | Fnull |
---|---|---|---|---|---|---|---|
TAX23 | 6.50 | 8.19 | 1.42 | 0.63 | 0.69 | 0.10 *** | 0.03 |
TAX26 | 13.0 | 17.26 | 1.83 | 0.49 | 0.75 | 0.34 *** | 0.13 |
TAX36 | 14.5 | 19.43 | 2.23 | 0.63 | 0.86 | 0.27 *** | 0.13 |
TAX86 | 13.3 | 16.53 | 2.17 | 0.39 | 0.85 | 0.54 *** | 0.25 |
TAX92 | 19.3 | 25.75 | 2.42 | 0.42 | 0.86 | 0.51 *** | 0.23 |
TS09 | 9.00 | 12.60 | 1.76 | 0.43 | 0.78 | 0.45 *** | 0.20 |
TAX362 | 9.25 | 11.30 | 1.66 | 0.42 | 0.73 | 0.44 *** | 0.19 |
Population | Na | Ne | I | Priv. Alleles | Ho | He |
---|---|---|---|---|---|---|
TS_L | 12.3 | 5.81 | 1.96 | 2.86 | 0.44 | 0.80 |
TS_J | 10.1 | 4.62 | 1.74 | 1.71 | 0.51 | 0.76 |
TS_B | 10.1 | 5.00 | 1.78 | 1.71 | 0.42 | 0.77 |
TS_M | 17.0 | 7.99 | 2.30 | 4.57 | 0.57 | 0.84 |
FST Using ENA Correction. | |||
---|---|---|---|
TS_B | TS_M | TS_J | |
TS_M | 0.034 | ||
TS_J | 0.096 | 0.058 | |
TS_L | 0.045 | 0.038 | 0.087 |
FST without Using ENA Correction. | |||
TS_B | TS_M | TS_J | |
TS_M | 0.042 | ||
TS_J | 0.108 | 0.062 | |
TS_L | 0.050 | 0.048 | 0.097 |
Source of Variation | df | SS | Variance Components | % Variation |
---|---|---|---|---|
Among populations | 3 | 61.71 | 0.22 | 7 * |
Within populations | 326 | 914.66 | 2.81 | 93 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komárková, M.; Novotný, P.; Cvrčková, H.; Máchová, P. The Genetic Differences and Structure of Selected Important Populations of the Endangered Taxus baccata in the Czech Republic. Forests 2022, 13, 137. https://doi.org/10.3390/f13020137
Komárková M, Novotný P, Cvrčková H, Máchová P. The Genetic Differences and Structure of Selected Important Populations of the Endangered Taxus baccata in the Czech Republic. Forests. 2022; 13(2):137. https://doi.org/10.3390/f13020137
Chicago/Turabian StyleKomárková, Martina, Petr Novotný, Helena Cvrčková, and Pavlína Máchová. 2022. "The Genetic Differences and Structure of Selected Important Populations of the Endangered Taxus baccata in the Czech Republic" Forests 13, no. 2: 137. https://doi.org/10.3390/f13020137
APA StyleKomárková, M., Novotný, P., Cvrčková, H., & Máchová, P. (2022). The Genetic Differences and Structure of Selected Important Populations of the Endangered Taxus baccata in the Czech Republic. Forests, 13(2), 137. https://doi.org/10.3390/f13020137