Analysis of Water Deer Roadkills Using Point Process Modeling in Chungcheongnamdo, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition, Processing, and Analyses
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milner, J.M.; Bonenfant, C.; Mysterud, A.; Gaillard, J.M.; Csányi, S.; Stenseth, N.C. Temporal and spatial development of red deer harvesting in Europe: Biological and cultural factors. J. Appl. Ecol. 2006, 43, 721–734. [Google Scholar] [CrossRef]
- Bissonette, J.A.; Rosa, S.A. Road zone effects in small-mammal communities. Ecol. Soc. 2009, 14, 27. [Google Scholar] [CrossRef] [Green Version]
- Reijnen, R.; Foppen, R. The effects of car traffic on breeding bird populations in woodland. IV. Influence of population size on the reduction of density close to a highway. J. Appl. Ecol. 1995, 32, 481–491. [Google Scholar]
- Périquet, S.; Roxburgh, L.; le Roux, A.; Collinson, W.J. Testing the value of citizen science for roadkill studies: A case study from South Africa. Front. Ecol. Evol. 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Forman, R.T.T.; Alexander, L.E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 1998, 29, 207–231. [Google Scholar] [CrossRef] [Green Version]
- Gunson, K.E.; Mountrakis, G.; Quackenbush, L.J. Spatial wildlife-vehicle collision models: A review of current work and its application to transportation mitigation projects. J. Environ. Manag. 2011, 92, 1074–1082. [Google Scholar] [CrossRef]
- Conover, M.R.; Pitt, W.C.; Kessler, K.K.; DuBow, T.J.; Sanborn, W.A. Review of human injuries, illnesses and economic losses caused by wildlife in the U.S. Wildl. Soc. Bull. 1995, 23, 407–414. [Google Scholar]
- Saint-Andrieux, C.; Calenge, C.; Bonenfant, C. Comparison of environmental, biological and anthropogenic causes of wildlife–vehicle collisions among three large herbivore species. Popul. Ecol. 2020, 62, 64–79. [Google Scholar] [CrossRef]
- Geist, V. Deer of the World: Their Evolution, Behaviour, and Ecology; Stackpole Books: Mechanicsburg, PA, USA, 1998. [Google Scholar]
- Kim, B.J.; Oh, D.H.; Chun, S.H.; Lee, S.D. Distribution, density, and habitat use of the Korean water deer (Hydropotes inermis argyropus) in Korea. Landsc. Ecol. Eng. 2011, 7, 291–297. [Google Scholar] [CrossRef]
- Harris, R.B.; Duckworth, J.W. Hydropotes inermis. The IUCN Red List of Threatened Species 2015: E.T10329A22163569. Available online: https://www.iucnredlist.org/species/10329/22163569 (accessed on 14 September 2021).
- Choi, T.-Y. Estimation of the water deer (Hydropotes inermis) roadkill frequency in South Korea. Ecol. Resilient Infrastruct. 2016, 3, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.P.; Anthony, J.; Lin, W.C.; Lien, W.Y.; Petway, J.R.; Lin, T.E. Spatiotemporal identification of roadkill probability and systematic conservation planning. Landsc. Ecol. 2019, 34, 717–735. [Google Scholar] [CrossRef]
- Santos, R.A.L.; Ascensão, F. Assessing the effects of road type and position on the road on small mammal carcass persistence time. Eur. J. Wildl. Res. 2019, 65, 8. [Google Scholar] [CrossRef]
- Yue, S.; Bonebrake, T.C.; Gibson, L. Informing snake roadkill mitigation strategies in Taiwan using citizen science. J. Wildl. Manag. 2019, 83, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.L.; Boyce, M.S. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 2006, 43, 405–412. [Google Scholar] [CrossRef]
- Hastie, T.; Fithian, W. Inference from presence-only data; the ongoing controversy. Ecography 2013, 36, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Warton, D.I.; Shepherd, L.C. Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology. Ann. Appl. Stat. 2010, 4, 1383–1402. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Ho, T.K. Random Decision Forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995. [Google Scholar]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Baddeley, A.; Rubak, E.; Turner, R. Spatial Point Pattens: Methodology and Applications with R; CRC Prees: Boca Raton, FL, USA, 2016. [Google Scholar]
- Jang, W.; Eskelson, B.N.; Murray, T.; Crosby, K.B.; Wagner, S.; Gorby, E.; Aven, N.W. Relationships between invasive plant species occurrence and socio-economic variables in urban green spaces of southwestern British Columbia, Canada. Urban For. Urban Green. 2020, 47, 126527. [Google Scholar] [CrossRef]
- Renner, I.W.; Warton, D.I. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 2013, 69, 274–281. [Google Scholar] [CrossRef]
- Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P.E.; McCarthy, M.A.; Tingley, R.; Wintle, B.A. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 2015, 24, 276–292. [Google Scholar] [CrossRef]
- Ministry of Land Infrastructure and Transport Statistics System. Available online: https://kosis.kr/index/index.do (accessed on 12 August 2021).
- Korea Forest Service. Statistical Yearbook of Forestry 2018; Korea Forest Service: Daejeon, Korea, 2018. [Google Scholar]
- Korea Meteorological Administration. Available online: https://www.weather.go.kr/w/index.do (accessed on 12 August 2021).
- Baddeley, A.; Turner, R.; Rubak, E. Package ‘spatstat’: Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests, version 2.2-0; 2021. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, ver. 3.6.1; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Pokorny, B. Roe deer-vehicle collisions in Slovenia: Situation, mitigation strategy and countermeasures. Vet. Arhiv 2006, 76 (Suppl.), 177–187. [Google Scholar]
- Seiler, A. Predicting locations of moose–vehicle collisions in Sweden. J. Appl. Ecol. 2005, 42, 371–382. [Google Scholar] [CrossRef]
- Choi, T.-Y. Road-Kill Mitigation Strategies for Mammals in Korea: Data Based on Surveys of Road-Kill, Non-Wildlife Passage Use, and Home-Range. Ph.D. Dissertation, Seoul National University, Seoul, Korea, 2007. [Google Scholar]
- Song, W.K.; Kim, E.Y. A Comparison of machine learning species distribution methods for habitat analysis of the Korea water deer (Hydropotes inermis argyropus). Korean J. Remote Sens. 2012, 28, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Gunson, K.E.; Clevenger, A.P.; Ford, A.T.; Bissonette, J.A.; Hardy, A. A comparison of data sets varying in spatial accuracy used to predict the locations of wildlife-vehicle collisions. Environ. Manag. 2009, 44, 268–277. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Chruszcz, B.; Gunson, K.E. Spatial patterns and factors influencing small vertebrate fauna road-kill aggregations. Biol. Conserv. 2003, 109, 15–26. [Google Scholar] [CrossRef]
- Ramp, D.; Caldwell, J.; Edwards, K.A.; Warton, D.; Croft, D.B. Modelling of wildlife fatality hotspots along the snowy mountain highway in New South Wales, Australia. Biol. Conserv. 2005, 126, 474–490. [Google Scholar] [CrossRef]
- Kanda, L.L.; Fuller, T.K.; Sievert, P.R. Landscape associations of road-killed Virginia opossums (Didelphis virginiana) in central Massachusetts. Am. Midl. Nat. 2006, 156, 128–134. [Google Scholar] [CrossRef]
- Bashore, T.L.; Tzilkowski, W.M.; Bellis, E.D. Analysis of deer-vehicle collision sites in Pennsylvania. J. Wildl. Manag. 1985, 49, 769–774. [Google Scholar] [CrossRef]
- Teixeira, F.Z.; Kindel, A.; Hartz, S.M.; Mitchell, S.; Fahrig, L. When road-kill hotspots do not indicate the best sites for road-kill mitigation. J. Appl. Ecol. 2017, 54, 1544–1551. [Google Scholar] [CrossRef] [Green Version]
- Choi, T.-Y.; Lee, Y.-W.; Whang, K.-Y.; Kim, S.-M.; Park, M.-S.; Park, G.-R.; Cho, B.-J.; Park, C.-H.; Lee, M.-W. Monitoring the wildlife use of culverts and underpasses using snow tracking in Korea. Korean J. Environ. Ecol. 2006, 20, 340–344. [Google Scholar]
- Wilson, S.; Anderson, E.M.; Wilson, A.S.; Bertam, D.F.; Arcese, P. Citizen science reveals an extensive shift in the winter distribution of migratory western grebes. PLoS ONE 2013, 8, e65408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, J.G.; Christensen, H.S. Point processes on directed linear networks. Methodol. Comput. Appl. Probab. 2021, 23, 647–667. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, A.; Nair, G.; Rakshit, S.; McSwiggan, G. “Stationary” point processes are uncommon on linear networks. Stat 2017, 6, 68–78. [Google Scholar] [CrossRef]
- McSwiggan, G.; Baddeley, A.; Nair, G. Kernel density estimation on a linear network. Scand. J. Stat. 2017, 44, 324–345. [Google Scholar] [CrossRef]
Variables | Unit | Notation | Note | Source 1 |
---|---|---|---|---|
Roadkill Area of the nearest forest Diameter class Distance to the forest edge Distance to the water channel Elevation Road-side slope Human population density Road density Road speed limit Road width Water deer occurrence | m2 m m m % people ha−2 road ha−2 km h−1 lanes points ha−2 | RD_KILL F_AREA D_CLS D_FOR D_WAR ELEV SLOPE POP_DEN RD_DEN RD_SPD RD_WID WD_KER | point data log-transformed categorical data log-transformed log-transformed log-transformed log-transformed kernel density | CWARC KFS KFS KNGII KNGII KNGII KNGII KNGII KNGII KNGII KNGII CI |
Variables | Unit | Mean | Mean of the Province |
---|---|---|---|
Distance to the forest edge Distance to the water channel Elevation Road-side slope Human population density Road density Road width Water deer occurrence | m m m % people km−2 road ha−2 km h−1 points ha−2 | 227 1730 52 4.3 737 3.6 2.14 0.13 | 202 1789 98 7.2 248 2.4 2.0 0.07 |
Rank | Model Form | AIC |
---|---|---|
1 2 3 4 5 | RD_DEN + log(POP_DEN) + SLOPE + RD_WID + WD_KER + ELEV RD_DEN + log(POP_DEN) + SLOPE + RD_WID RD_DEN + log(POP_DEN) + SLOPE + RD_WID + log(D_WAR) RD_DEN + log(POP_DEN) + SLOPE RD_DEN + log(POP_DEN) + log(D_FOR)data | 14,537 14,576 14,576 14,580 14,593 |
Variable | Estimates | SE | z Value | |
---|---|---|---|---|
Intercept RD_DEN log(POP_DEN) SLOPE RD_WID WD_KER ELEV | −18.604 0.070 0.273 −0.037 0.211 3.209 −0.004 | 0.273 0.025 0.047 0.015 0.084 0.560 0.001 | −68.099 2.820 5.819 −2.546 2.505 5.728 −4.068 | *** ** *** * * *** *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, W.; Kim, B.; Chung, O.-S.; Lee, J.K. Analysis of Water Deer Roadkills Using Point Process Modeling in Chungcheongnamdo, South Korea. Forests 2022, 13, 209. https://doi.org/10.3390/f13020209
Jang W, Kim B, Chung O-S, Lee JK. Analysis of Water Deer Roadkills Using Point Process Modeling in Chungcheongnamdo, South Korea. Forests. 2022; 13(2):209. https://doi.org/10.3390/f13020209
Chicago/Turabian StyleJang, Woongsoon, Bongkyun Kim, Ok-Sik Chung, and Jong Koo Lee. 2022. "Analysis of Water Deer Roadkills Using Point Process Modeling in Chungcheongnamdo, South Korea" Forests 13, no. 2: 209. https://doi.org/10.3390/f13020209
APA StyleJang, W., Kim, B., Chung, O. -S., & Lee, J. K. (2022). Analysis of Water Deer Roadkills Using Point Process Modeling in Chungcheongnamdo, South Korea. Forests, 13(2), 209. https://doi.org/10.3390/f13020209