Evaluation of Pulp and Papermaking Properties of Melia azedarach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instrument
2.2. Sample Collection, Preparation, and Chemical Composition Determination
2.3. Pulping Process
2.4. Bleaching Process
2.5. Hand Sheet-Making Procedure
2.6. Raw Wood Microscopy
3. Results and Discussion
3.1. Proximate Chemical Analysis of M. azedarach
3.2. Fiber Morphology
3.3. Pulping and Pulp Yield of M. azedarach
3.4. Effect of Pulping on Fiber Morphology
3.5. Bleaching Results
3.6. Paper Sheet Physical Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, L.; Yan, R.; Liu, Y.; Jiang, W. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresour. Technol. 2010, 101, 8217–8223. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Pathak, P.; Bhardwaj, N.K. Facile chemo-refining approach for production of micro-nano fibrillated cellulose from bleached mixed hardwood pulp to improve paper quality. Carbohydr. Polym. 2020, 238, 116186. [Google Scholar] [CrossRef]
- Caparrós, S.; Díaz, M.J.; Ariza, J.; López, F.; Jiménez, L. New perspectives for Paulownia fortunei L. valorization of the auto hydrolysis and pulping processes. Bioresour. Technol. 2008, 99, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Sayed, E.S.; El-Sakhawy, M.; El-Sakhawy, M.A. Non-wood fibers as raw material for pulp and paper industry. Nord. Pulp Pap. Res. J. 2020, 35, 215–230. [Google Scholar] [CrossRef]
- Syarifah, S.M.; Kassim, A.S.M.; Aripin, A.M.; Ishak, N.; Fadilat, A.; Adnan, S. Bio-mechanical pulping of bacteria pre-treatment on oil palm biomass for hand sheet production. Int. J. Eng. Technol. 2019, 8, 177–183. [Google Scholar]
- El-Juhani, L.I. Evaluation of some wood quality measures of eight-year-old Melia azedarach trees. Turk. J. Agric. For. 2011, 35, 165–171. [Google Scholar]
- Bachheti, R.K.; Dwivedi, H.; Rana, V.; Rai, I.; Joshi, A. Characterization of fatty acids in Melia azedarach L. seed oil. Int. J. Curr. Res. Rev. 2012, 4, 108–114. [Google Scholar]
- Sharma, D.; Paul, Y. Preliminary and pharmacological profile of Melia azedarach L.: An overview. J. Appl. Pharm. Sci. 2013, 3, 133–138. [Google Scholar]
- Natalli, N.G.; Cottiglia, F.; Bueno, C.A.; Alché, L.E.; Leonti, M.; Vargiu, S.; Bifulco, E.; Menkissoglu-Spiroudi, U.; Caboni, P. Cytotoxic tirucallane triterpenoids from M. azedarach fruits. Molecules 2010, 15, 5866–5877. [Google Scholar] [CrossRef] [Green Version]
- Ardina, V.; Irwan, B.; Prajitno, D.H.; Roesyadi, A. Active alkali charges effect on kraft pulping process of Acacia mangium and Eucalyptus pellita. In Proceedings of the American Institute of Physics Conference, Surakarta, Indonesia, 12 May 2018; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 2014, p. 020036. [Google Scholar]
- Annex, C. The Stockholm Convention on Persistent Organic Pollutants; United Nations Environmental Programme: Geneva, Switzerland, 2008; Volume 29, pp. 9–26. [Google Scholar]
- Tappi, T. Sampling and Preparing Wood for Analysis; T 257 cm-85; 1985; Available online: https://www.tappi.org/content/sarg/t257.pdf (accessed on 12 August 2021).
- Tappi, T. Preparation of Wood for Chemical Analysis Test Method; T264 cm-07; 1997; Available online: https://tappi.micronexx.com/CD/TESTMETHODS/T264.pdf (accessed on 8 August 2021).
- Tappi, T. Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C; T 211 om-93; 1993; Available online: https://www.tappi.org/content/sarg/t211.pdf (accessed on 12 August 2021).
- Wise, L.E.; Murphy, M.; Daddieco, A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicellulose. Tech. Assoc. Pap. 1946, 29, 210–218. [Google Scholar]
- Tappi, T. Acid-Insoluble Lignin in Wood and Pulp; T 222 om-98; 1998; Available online: https://www.tappi.org/content/SARG/T222.pdf. (accessed on 10 August 2021).
- Tappi, T. Water Solubility of Wood and Pulp; T 207 cm-99; TAPPI Press: Atlanta, GA, USA, 1999. [Google Scholar]
- Tappi, T. One Percent Sodium Hydroxide Solubility of Wood and Pulp; T 212 om-98; TAPPI Press: Atlanta, GA, USA, 1998. [Google Scholar]
- Tappi, T. Solvent Extractives of Wood and Pulp; T 204 cm-97; TAPPI Press: Atlanta, GA, USA, 1997. [Google Scholar]
- Tappi, T. Bursting Strength of Paper; T 403 om-97; TAPPI Press: Atlanta, GA, USA, 1997. [Google Scholar]
- Tappi, T. Freeness of Pulp (Canadian Standard Method); T 227 om-99; TAPPI Press: Atlanta, GA, USA, 1999. [Google Scholar]
- Tappi, T. Internal Tearing Resistance of Paper (Elmendorf-Type Method); T 414 om-98; TAPPI Press: Atlanta, GA, USA, 1998. [Google Scholar]
- Berhanu, H.; Kiflie, Z.; Miranda, I.; Lourenço, A.; Ferreira, J.; Feleke, S.; Yimam, A.; Pereira, H. Characterization of crop residues from false banana/Ensete ventricosum/in Ethiopia in view of a full-resource valorization. PLoS ONE 2018, 13, e0199422. [Google Scholar] [CrossRef]
- Ishiguri, F.; Aiso, H.; Hirano, M.; Yahya, R.; Wahyudi, I.; Ohshima, J.; Iizuka, K.; Yokota, S. Effects of radial growth rate on anatomical characteristics and wood properties of 10-year-old Dysoxylummollissimum trees planted in Bengkulu, Indonesia. Tropics 2016, 25, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Mahesh, S.; Kumar, P.; Ansari, S.A. A rapid and economical method for the maceration of wood fibers in Boswellia serrata Roxb. Trop. Plant Res. 2015, 2, 108–111. [Google Scholar]
- Neelagar, R.; Yathish, R.; Srinivasa, S.; Vasappa, R.K. Characterization of paper and pulp properties from weed species. J. Appl. Biol. 2018, 6, 61–63. [Google Scholar]
- Lal, P.S.; Sharma, A.; Best, V. Pine needle-An evaluation of pulp and paper making potential. J. For. Prod. Ind. 2013, 2, 42–47. [Google Scholar]
- Gómez-Sánchez, M.D.; Sánchez, R.; Espinosa, E.; Rosal, A.; Rodríguez, A. Production of cellulosic pulp from reed (Phragmites australis) to produce paper and paperboard. Bioprocess Eng. 2017, 1, 65–68. [Google Scholar]
- Dutt, D.; Upadhyay, J.S.; Singh, B.; Tyagi, C.H. Studies on Hibiscus cannabinus and Hibiscus sabdariffa as an alternative pulp blend for softwood: An optimization of kraft delignification process. Ind. Crop. Prod. 2009, 1, 16–26. [Google Scholar] [CrossRef]
- Ganie, S.A.; Ara, S.; Agarwal, M.A.; Mehmood, I.M.G.; Mir, S.A. Papermaking potential of Amaranthus hybridus stalks; Sustainable raw material in paper industries. J. Pharmacogn. Phytochem. 2017, 6, 2096–2100. [Google Scholar]
- Shakes, J.; Marandi, M.A.; Zeinaly, F.; Sarafian, A.; Saghafi, T. Tobacco residuals as promising lignocellulosic materials for pulp and paper industry. Bioresources 2011, 6, 4481–4493. [Google Scholar]
- Anupam, K.; Lal, P.S.; Best, V.; Sharma, A.K.; Swaroop, V. Raw material selection for pulping and paper making using Technique for order of preference by similarity to ideal Solution multiple criteria decision-making design. Environ. Prog. Sustain. Energy 2014, 33, 1034–1041. [Google Scholar] [CrossRef]
- Sharma, A.K.; Dutt, D.; Upadhyaya, J.S.; Roy, T.K. Anatomical, morphological, and chemical characterization of Bambusa tulda, Dendrocalamus hamiltonii, Bambu sabalcooa, Malocana baccifera, Bambusa arundinacea and Eucalyptus tereticornis. Bioresources 2011, 6, 5062–5073. [Google Scholar]
- Daraei, M. Evaluation and Prediction of Wood Properties in Pulp and Paper Production: Estimation of Wood Chemical Properties and Pulping Results Using Near-Infrared Spectroscopy: A Case Study in Billerud Korsnäs in Gävle. 2016, pp. 1–69. Available online: https://www.diva-portal.org/smash/get/diva2:941001/FULLTEXT01.pdf (accessed on 5 July 2021).
- Chaurasia, S.K.; Singh, S.P.; Naithani, S.; Srivastava, P. A Comprehensive study on proximate chemical composition of Melocanna baccifera (Muli Bamboo) and its suitability for pulp and paper production. For. Res. 2016, 5, 168. [Google Scholar]
- Emerhi, E.A. Variations in anatomical properties of Rhizophora racemosa (Leech) and Rhizophora harrisonii (G. Mey) in a Nigerian mangrove forest ecosystem. Int. J. For. Soil Eros. 2012, 2, 89–96. [Google Scholar]
- Ververis, C.; Georghiou, K.; Christodoulakis, N.; Santas, P.; Santas, R. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crop. Prod. 2004, 19, 245–254. [Google Scholar] [CrossRef]
- Sangumbe, L.M.V.; Pereira, M.; Carrillo, I.; Mendonça, R.T. An exploratory evaluation of the pulpability of Brachystegia spiciformis and Pericopsis angolensis from the Angolan miombo woodlands. Maderas. Cienc. Y Tecnol. 2018, 20, 183–198. [Google Scholar] [CrossRef] [Green Version]
- Ekhuemelo, D.O.; Aidoko, V.O.; Tembe, E.T. Evaluation of pulp and paper making potentials of Ficus exasperate in Makurdi, Nigeria. South Asian J. Biol. Sci. 2018, 1, 61–78. [Google Scholar]
- Ajala, O.O.; Noah, A.S. Evaluation of fibre characteristics of Aningeria robusta A. Chev. wood for its pulping potentials. J. For. Res. 2019, 16, 90–97. [Google Scholar]
- Tembe, E.T.; Ekhuemelo, D.O.; Aondoaver, B.T. Assessment of fiber characteristics of Spondias mombin L.(Anacardiaceae) for pulp And paper production. Fuma J. Sci. Educ. Res. 2021, 5, 511–516. [Google Scholar]
- Gençer, A.; Ozgul, U.; Onat, S.M.; Gunduz, G.; Yaman, B.; Yazici, H. Chemical and morphological properties of Apricot wood (Prunus armeniaca L.) and fruit endocarp. Bartın Orman Fakültesi Derg. 2018, 20, 205–209. [Google Scholar]
- Riki, J.T.; Oluwafemi, O.A. Fibre Characteristics of Delonix regia (Hook.) Raf. Wood as Indices of its Suitability for Papermaking. Am. Sci. Res. J. Eng. Technol. Sci. 2021, 70, 34–54. [Google Scholar]
- Xu, F.; Zhong, X.C.; Sun, R.S.; Lu, Q. Anatomy, ultrastructure and lignin distribution in cell wall of Caragana korshinskii. Ind. Crop. Prod. 2006, 24, 186–193. [Google Scholar] [CrossRef]
- Sharma, N.; Tripathi, S.K.; Bhardwaj, N.K. Utilization of sarkanda for making pulp and paper using elemental chlorine free and total chlorine free bleaching processes. Ind. Crop. Prod. 2020, 149, 112316. [Google Scholar] [CrossRef]
- Rullifank, K.F.; Roefinal, M.E.; Kostanti, M.; Sartika, L. Pulp and paper industry: An overview on pulping technologies, factors, and challenges. In I.O.P. Conference Series: Materials Science and Engineering, The International Conference on Chemical Engineering and Applied Sciences (ICCHEAS), Banda Aceh, Indonesia, 23–24 October 2019; IOP Science: Bristol, UK, 2020; Volume 845, p. 012005. [Google Scholar]
- Darmawan, A.; Irwan, B.; Ni’mah, H.; Roesyadi, A.; Kurniawansyah, F. Delignification of Abaca Fiber (Musa textilis) as potential substitute for Eucalyptus pellita. In I.O.P. Conference Series: Materials Science and Engineering; The 5th International Conference on Science, Technology and Interdisciplinary Research (IC-STAR 2019), Bandar Lampung, Indonesia, 23–25 September 2019; IOP Science: Bristol, UK, 2020; Volume 857, p. 012021. [Google Scholar]
- Mussatto, S.I.; Rocha, G.J.; Roberto, I.C. Hydrogen peroxide bleaching of cellulose pulps obtained from brewer’s spent grain. Cellulose 2008, 15, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Saikia, C.; Goswami, T.; Ali, F. Evaluation of pulp and paper making characteristics of certain fast-growing plants. Wood Sci.Technol. 1997, 31, 467–475. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Mishra, O.P.; Bhardwaj, N.K.; Varadhan, R. Pulp and paper making properties of bamboo species Melocannabaccifera. Cellul. Chem. Technol. 2018, 52, 81–88. [Google Scholar]
- Neiva, D.; Fernandes, L.; Araújo, S.; Lourenço, A.; Gominho, J.; Simões, R.; Pereira, H. Chemical composition and kraft pulping potential of 12 eucalyptus species. Ind. Crop. Prod. 2015, 66, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Hemmasi, A.H. Manufacturing paper sheets from olive wood by soda, sulphite and kraft pulping. World Appl. Sci. J. 2012, 18, 510–513. [Google Scholar]
Raw Material Biomass | Holocellulose (%) | Klason Lignin (%) | Coldwater Solubility (%) | Hot Water Solubility (%) | Ash (%) | Alcohol Benzene Solubility(%) | 1% NaOH | Reference |
---|---|---|---|---|---|---|---|---|
M. adezerach | 72.95 | 22.14 | 6.34 | 12.46 | 3.67 | 5.25 | 23.48 | Present study |
Pinus densiflora | 51.62 | 43.24 | 2.98 | 7.53 | 4.45 | 5.81 | 47.42 | [27] |
Phragmites australis | 62.56 | 18.25 | - | 18.05 | 7.51 | - | - | [28] |
Hibiscus cannabinus | 71.80 | 18.50 | 4.56 | 6.42 | 1.56 | 4.28 | 28.50 | [29] |
Amaranthus hybridus | 62.41 | 17.55 | - | 20.25 | 11.03 | 6.64 | 40.40 | [30] |
Datura stramonium | 66.55 | 15.79 | 5.4 | 18.29 | 9.57 | 11.66 | 35.34 | [31] |
Eucalyptus globulus | 70.3 | 29.9 | 2.38 | 4.31 | 0.66 | 3.0 | 16.8 | [27] |
Biomass | Fiber Length (mm) | Fiber Width (μm) | Lumen Diameter (μm) | Wall Thickness (μm) | Runkel Ratio | Wall Rigidity (%) | Slenderness Ratio | Flexibility Ratio (%) | References |
---|---|---|---|---|---|---|---|---|---|
M. azedarach | 0.571 | 13.45 | 13.03 | 2.52 | 0.39 | 18.73 | 42.47 | 96.9 | Present study |
Ficus exasperate | 1.86–1.20 | 31.96–20.98 | 18.90–10.42 | 6.95–3.76 | 1.09–0.75 | 25.45–19.52 | 94.7–44.56 | 60.97–49.11 | [39] |
Senna siamea | 1.29 | 19.6 | 12.2 | 4.3 | 0.70 | - | 65.82 | 62.24 | [40] |
Spondi mombin | 0.98–1.0 | 18.22–21.47 | 10.90–12.98 | 3.86–4.60 | 0.66–8.89 | 19.78–22.24 | 43.27–46.5 | 57.22–60.50 | [41] |
Aningeri robusta | 1.76 | 29.47 | 16.18 | 6.61 | 0.79 | - | 57.43 | - | [38] |
Prunus armeniaca | 0.717 | 13.75 | 6.05 | 3.85 | 1.0 | - | 46.22 | - | [42] |
Delonix regiahas | 1.34 | 39.42 | 26.83 | 6.49 | 0.55 | 16.95 | 36.03 | 68.45 | [43] |
Serial Number | Cooking Temperature (°C) | Cooking Active Alkali (%) | Cooking Time (min) | Total Yield (%) | Screened Yield (%) | Kappa Number |
---|---|---|---|---|---|---|
1 | 150 | 10 | 120 | 35.71 | 34.36 | 27.6 |
2 | 160 | 10 | 120 | 37.92 | 37.10 | 23.9 |
3 | 170 | 10 | 120 | 38.32 | 37.67 | 20.4 |
4 | 170 | 10 | 90 | 36.01 | 35.80 | 22.3 |
5 | 170 | 15 | 90 | 42.11 | 41.81 | 15.4 |
6 | 170 | 15 | 120 | 38.43 | 38.12 | 9.1 |
7 | 180 | 15 | 90 | 40.73 | 39.79 | 14.1 |
8 | 180 | 10 | 90 | 37.33 | 37.01 | 14.6 |
9 | 170 | 20 | 90 | 22.33 | 21.76 | 9.4 |
10 | 170 | 20 | 60 | 30.57 | 30.22 | 12.8 |
11 | 160 | 15 | 90 | 40.14 | 39.78 | 16.6 |
12 | 190 | 5 | 90 | 33.45 | 32.75 | 22.6 |
13 | 170 | 5 | 90 | 29.02 | 28.12 | 26.5 |
14 | 150 | 15 | 90 | 34.2 | 33.23 | 19.5 |
15 | 170 | 25 | 90 | 18.3 | 17.43 | 7.3 |
16 | 170 | 15 | 80 | 40.03 | 39.2 | 16.5 |
Serial Number | Chemical Used | Temp. | Time (min.) | Description | Unbleached Pulp Kappa Number | 1st Stage Bleached Kappa Number | 2nd Stage Bleached Kappa Number |
---|---|---|---|---|---|---|---|
1 | Sodium hypochlorite (H) | 40 °C | 120 | Reaction with hypochlorite in alkaline medium | 15.4 | 5.3 | - |
2 | Hydrogen peroxide(P) | 70 °C | 50 | Reaction with H2O2 in alkaline medium | - | 5.3 | 2.4 |
Biomass | Burst Index (kPam2/g) | Tear Index (mNm2/g) | Tensile Index (Nm/g) | References |
---|---|---|---|---|
M. azedarach | 1.4 | 4.0 | 23.3 | Present study |
Hibiscus cannabinus | 3.43 | 5.88 | 37.27 | [49] |
Crotalaria juncea | 3.92 | 9.61 | 47.81 | [49] |
Melocanna baccifera | 1.18–4.95 | 12.2–13.5 | 24–54 | [50] |
Tephrosia candida | 3.43 | 4.32 | 40.45 | [49] |
Eucalyptus globulus | 0.9–10.2 | 2.9–11.8 | 28–43 | [51] |
Neyraudia reynaudiana | 2.75 | 3.73 | 38.15 | [49] |
Iranian olive | 3.67 | 1.99 | - | [52] |
Waste Cotton Blend with Pulp of M. azedarach | Burst Index (kPam2/g) | Tear Index (mNm2/g) | Tensile Index (Nm/g) |
---|---|---|---|
1% | 2.1 | 6.3 | 28.4 |
2% | 3.7 | 6.9 | 35.7 |
3% | 6.4 | 8.7 | 39.2 |
4% | 7.3 | 10.1 | 44.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Megra, M.B.; Bachheti, R.K.; Tadesse, M.G.; Worku, L.A. Evaluation of Pulp and Papermaking Properties of Melia azedarach. Forests 2022, 13, 263. https://doi.org/10.3390/f13020263
Megra MB, Bachheti RK, Tadesse MG, Worku LA. Evaluation of Pulp and Papermaking Properties of Melia azedarach. Forests. 2022; 13(2):263. https://doi.org/10.3390/f13020263
Chicago/Turabian StyleMegra, Megersa Bedo, Rakesh Kumar Bachheti, Mesfin Getachew Tadesse, and Limenew Abate Worku. 2022. "Evaluation of Pulp and Papermaking Properties of Melia azedarach" Forests 13, no. 2: 263. https://doi.org/10.3390/f13020263
APA StyleMegra, M. B., Bachheti, R. K., Tadesse, M. G., & Worku, L. A. (2022). Evaluation of Pulp and Papermaking Properties of Melia azedarach. Forests, 13(2), 263. https://doi.org/10.3390/f13020263