Tree Girdling for Potential Bat Roost Creation in Northwestern West Virginia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Tree Girdling
2.2.1. Frilling
2.2.2. Double Chainsaw Girdling
2.3. Decay States
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Silvis, A.; Perry, R.; Ford, W.M. Relationships of Three Species of Bats Impacted by White-Nose Syndrome to Forest Condition and Management; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2016; p. SRS-GTR-214.
- Timpone, J.C.; Boyles, J.G.; Murray, K.L.; Aubrey, D.P.; Robbins, L.W. Overlap in Roosting Habits of Indiana Bats (Myotis sodalis) and Northern Bats (Myotis septentrionalis). Am. Midl. Nat. 2010, 163, 115–123. [Google Scholar] [CrossRef]
- Rabe, M.J.; Morrell, T.E.; Green, H.; deVos, J.C.; Miller, C.R. Characteristics of Ponderosa Pine Snag Roosts Used by Reproductive Bats in Northern Arizona. J. Wildl. Manag. 1998, 62, 612. [Google Scholar] [CrossRef]
- Perry, R.W.; Thill, R.E. Roost selection by male and female northern long-eared bats in a pine-dominated landscape. For. Ecol. Manag. 2007, 247, 220–226. [Google Scholar] [CrossRef]
- Cryan, P.M.; Bogan, M.A.; Yanega, G.M. Roosting habits of four bat species in the Black Hills of South Dakota. Acta Chiropterologica 2001, 3, 43–52. [Google Scholar]
- Waldien, D.L.; Hayes, J.P.; Arnett, E.B. Day-Roosts of Female Long-Eared Myotis in Western Oregon. J. Wildl. Manag. 2000, 64, 785. [Google Scholar] [CrossRef]
- Humphrey, S.R.; Richter, A.R.; Cope, J.B. Summer Habitat and Ecology of the Endangered Indiana Bat, Myotis sodalis. J. Mammal. 1977, 58, 334–346. [Google Scholar] [CrossRef]
- Racey, P.A. Ecology of Bat Reproduction. In Ecology of Bats; Springer: Boston, MA, USA, 1982; pp. 57–104. ISBN 978-0-306-40950-9. [Google Scholar]
- Carter, T.C.; Feldhamer, G.A. Roost tree use by maternity colonies of Indiana bats and northern long-eared bats in southern Illinois. For. Ecol. Manag. 2005, 219, 259–268. [Google Scholar] [CrossRef]
- Callahan, E.V.; Drobney, R.D.; Clawson, R.L. Selection of summer roosting sites by Indiana bats (Myotis sodalis) in Missouri. J. Mammal. 1997, 78, 818–825. [Google Scholar] [CrossRef]
- Watrous, K.S.; Donovan, T.M.; Mickey, R.M.; Darling, S.R.; Hicks, A.C.; Oettingen, S.L.V. Predicting Minimum Habitat Characteristics for the Indiana Bat in the Champlain Valley. J. Wildl. Manag. 2006, 70, 1228–1237. [Google Scholar] [CrossRef]
- Kurta, A.; Kennedy, J. The Indiana Bat: Biology and Management of an Endanagered Species; Bat Conservation International: Austin, TX, USA, 2002. [Google Scholar]
- Foster, R.W.; Kurta, A. Roosting Ecology of the Northern Bat (Myotis septentrionalis) and comparisions with the endangered Indiana bat (Myotis sodalis). J. Mammal. 1999, 80, 659–672. [Google Scholar] [CrossRef]
- Schroder, E.S.; Ekanayake, D.B.; Romano, S.P. Indiana bat maternity roost habitat preference within Midwestern United States upland Oak-Hickory (Quercus-Carya) forests. For. Ecol. Manag. 2017, 404, 65–74. [Google Scholar] [CrossRef]
- Gardner, J.E.; Garner, J.D.; Hofman, J.E. Summer Roost Selection and Roosting Behavior of Myotis sodalis, Indiana Bat, in Illinois; Illinois Natural History Survey: Champaign, IL, USA, 1991; p. 56. [Google Scholar]
- Carter, T.C. Summer habitat use of roost trees by the endangered Indiana bat (Myotis sodalis) in the Shawnee National Forest of Southern Illinois. Ph.D. Thesis, Southern Illinois University, Carbondale, IL, USA, 2003. [Google Scholar]
- Lewis, J.C. Creating Snags and Wildlife Trees in Commercial Forest Landscapes. West. J. Appl. For. 1998, 13, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Barry, A.M.; Hagar, J.C.; Rivers, J.W. Long-term dynamics and characteristics of snags created for wildlife habitat. For. Ecol. Manag. 2017, 403, 145–151. [Google Scholar] [CrossRef]
- Conner, R.N.; Dickson, J.G.; Locke, B.A. Herbicide-Killed Trees Infected by Fungi: Potential Cavity Sites for Woodpeckers. Wildl. Soc. Bull. 2006, 9, 308–310. [Google Scholar]
- McComb, W.C.; Rumsey, R.L. Characteristics and Cavity-Nesting Bird Use of Picloram-Created Snags in the Central Appalachians. South. J. Appl. For. 1983, 7, 34–37. [Google Scholar] [CrossRef]
- Rose, C.L.; Marcot, B.G.; Mellen, T.K.; Ohmann, J.L.; Waddell, K.L.; Lindley, D.L.; Schreiber, B. Decaying Wood in Pacific Northwest Forests: Concepts and Tools for Habitat Management. In Wildlife-Habiat Relationships in Oregon and Washington; Oregon State University Press: Corvallis, OR, USA, 2001; pp. 580–621. ISBN 0-87071-488-0. [Google Scholar]
- Fassnacht, K.S.; Steele, T.W. Snag dynamics in northern hardwood forests under different management scenarios. For. Ecol. Manag. 2016, 363, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Weiss, S.A.; Corace, R.G.; Toman, E.L.; Herms, D.A.; Goebel, P.C. Wildlife implications across snag treatment types in jack pine stands of Upper Michigan. For. Ecol. Manag. 2018, 409, 407–416. [Google Scholar] [CrossRef]
- Thomas, J.W. Wildlife Habitats in Managed Forests the Blue Mountains of Oregon and Washington; Forest Service: Portland, OR, USA, 1979; p. 512.
- Bull, E.L.; Partridge, A.D. Methods of Killing Trees for Use by Cavity Nesters. Wildl. Soc. Bull. 1986, 14, 5. [Google Scholar]
- Hallett, J.G.; Lopez, T.; O’Connell, M.A.; Borysewicz, M.A. Decay Dynamics and Avian Use of Artificially Created Snags. Northwest Sci. 2001, 75, 9. [Google Scholar]
- Russell, R.E.; Saab, V.A.; Dudley, J.G.; Rotella, J.J. Snag longevity in relation to wildfire and postfire salvage logging. For. Ecol. Manag. 2006, 232, 179–187. [Google Scholar] [CrossRef]
- Arno, S.F.; Harrington, M.G.; Fiedler, C.E.; Carlson, C.E. Restoring Fire-Dependent Ponderosa Pine Forests in Western Montana. Ecol. Restor. 1995, 13, 32–36. [Google Scholar] [CrossRef]
- Bull, E.; Patridge, A.; Williams, W. Creating Snags with Explosives; USDA Forest Service: LaGrande, OR, USA, 1991; p. 4.
- Carey, A.B.; Sanderson, H.R. Routing to Accelerate Tree-Cavity Formation. Wildl. Soc. Bull. 2006, 9, 14–21. [Google Scholar]
- Bull, E.L.; Partridge, A.D. Trees and Logs Important to Wildlife in the Interior Columbia River Basin; USDA Forest Service: LaGrande, OR, USA, 1997; p. 55.
- Chambers, C.L.; Carrigan, T.; Sabin, T.E.; Tappeiner, J.; McComb, W.C. Use of Artificially Created Douglas-Fir Snags by Cavity-Nesting Birds. West. J. Appl. For. 1997, 12, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Stihler, C. State Update: West Virginia; The Northeast Bat Working Group: State College, PA, USA, 2019. [Google Scholar]
- US Climate Data Climate Harrisville-West Virginia. Available online: https://www.usclimatedata.com/climate/harrisville/west-virginia/united-states/uswv1-0 (accessed on 21 November 2021).
- United States Fish and Wildlife Service Range-Wide Indiana Bat Survey Guidelines. Available online: https://www.fws.gov/midwest/endangered/mammals/inba/surveys/pdf/FINAL%20Range-wide%20IBat%20Survey%20Guidelines%203.23.20.pdf (accessed on 1 November 2021).
- Neitro, W.A.; Binkley, V.W.; Cline, S.P.; Mannan, R.W.; Marcot, B.G.; Taylor, D.; Wagner, F.F. Snags (wildlife trees). In Management of Wildlife and Fish Habitats in Forests of Western Oregon and Washington; USDA Forest Service Pulication: Portland, OR, USA, 1985; pp. 129–169. [Google Scholar]
- Kilroy, B.; Windell, K. Tree Girdling Tools; USDA Forest Service: Missoula, MT, USA, 1999; pp. 1–4.
- Parks, C.G.; Conklin, D.A.; Bednar, L.; Maffei, H. Woodpecker Use and Fall Rates of Snags Created by Killing Ponderosa Pine Infected with Dwarf Mistletoe; United States Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1999; p. 11.
- Ritchie, M.W.; Knapp, E.E.; Skinner, C.N. Snag longevity and surface fuel accumulation following post-fire logging in a ponderosa pine dominated forest. For. Ecol. Manag. 2013, 287, 113–122. [Google Scholar] [CrossRef]
- Cruz, J.L.D.L.; Ward, R.L.; Schroder, E.S. Landscape Characteristics Related to Use of Artificial Roosts by Northern Long-Eared Bats in North-Central West Virginia. Northeast. Nat. 2018, 25, 487–501. [Google Scholar] [CrossRef]
- Mering, E.D.; Chambers, C.L. Artificial roosts for tree-roosting bats in northern Arizona. Wildl. Soc. Bull. 2012, 36, 765–772. [Google Scholar] [CrossRef]
- Ritzi, C.M.; Everson, B.L.; Whitaker, J.O. Use of Bat Boxes by a Maternity Colony of Indiana Myotis (Myotis sodalis). Northeast. Nat. 2005, 12, 217–220. [Google Scholar] [CrossRef]
- Adams, J.; Gumbert, M.; Sewell, P.; Roby, P.; Schwierjohann, J. BrandenBarkTM: Artificial Bark Designed for Roost Use by Indiana Bats (Myotis sodalis). J. Am. Soc. Min. Reclam. 2013, 4, 15. [Google Scholar]
- Hoeh, J.P.S.; Bakken, G.S.; Mitchell, W.A.; O’Keefe, J.M. In artificial roost comparison, bats show preference for rocket box style. PLoS ONE 2018, 13, e0205701. [Google Scholar] [CrossRef]
- Brittingham, M.C.; Williams, L.M. Bat Boxes as Alternative Roosts for Displaced Bat Maternity Colonies. Wildl. Soc. Bull. 2000, 28, 197–207. [Google Scholar]
- Crawford, R.D.; O’Keefe, J.M. Avoiding a conservation pitfall: Considering the risks of unsuitably hot bat boxes. Conserv. Sci. Pract. 2021, 3, 1–8. [Google Scholar] [CrossRef]
- Corace, R.G.; Stout, A.T.; Goebel, P.C.; Hix, D.M. Snag Benchmarks and Treatment Options for Mixed-Pine Forest Restoration in Eastern Upper Michigan: Snags and Mixed-Pine Restoration. Restor. Ecol. 2013, 21, 608–616. [Google Scholar] [CrossRef]
- Dickson, J.G.; Conner, R.N.; Williamson, J.H. Snag Retention Increases Bird Use of a Clear-Cut. J. Wildl. Manag. 1983, 47, 799. [Google Scholar] [CrossRef]
- Lacki, M.J.; Hayes, J.P.; Kurta, A. Bats in Forests; The John Hopkins University Press: Baltimore, MD, USA, 2007. [Google Scholar]
Genus/Treatment Type | Number of Trees |
---|---|
Maple DC | 10 |
Maple Frill | 10 |
Hickory DC | 9 |
Hickory Frill | 9 |
Oak DC | 11 |
Oak Frill | 11 |
Treatments | * 2016 | * 2017 | * 2018 | * 2019 | * 2020 | * 2021 |
---|---|---|---|---|---|---|
Maple DC | 0% | 0% | 0% | 63% | 100% | 100% |
Maple Frill | 80% | 90% | 90% | 90% | 100% | 100% |
Hickory DC | 11% | 56% | 67% | 89% | 100% | 100% |
Hickory Frill | 89% | 89% | 100% | 100% | 100% | 100% |
Oak DC | 27% | 45% | 91% | 91% | 91% | 91% |
Oak Frill | 91% | 91% | 100% | 100% | 100% | 100% |
Group 1 | Group 2 | Mean | Standard Error | q-Stat | df | q-Crit | Lower | Upper | p-Value | Mean-Crit |
---|---|---|---|---|---|---|---|---|---|---|
Maple frill | Oak frill | 0.55 | 0.18 | 3.09 | 84.3 | 4.12 | −0.18 | 1.27 | 0.25 | 0.73 |
Maple frill | Hickory frill | 0.02 | 0.23 | 0.09 | 111.5 | 4.10 | −0.91 | 0.95 | 1 | 0.93 |
Maple frill | Maple DC | 0.11 | 0.29 | 0.39 | 101.11 | 4.10 | −1.09 | 1.32 | 0.99 | 1.21 |
Maple frill | Oak DC | 0.94 | 0.20 | 4.72 | 111.10 | 4.10 | 0.12 | 1.75 | 0.01 | 0.81 |
Maple frill | Hickory DC | 0.37 | 0.28 | 1.29 | 95.83 | 4.11 | −0.79 | 1.52 | 0.94 | 1.16 |
Oak frill | Hickory frill | 0.57 | 0.18 | 3.20 | 75.78 | 4.13 | −0.16 | 1.30 | 0.22 | 0.73 |
Oak frill | Maple DC | 0.43 | 0.26 | 1.67 | 69.99 | 4.14 | −0.63 | 1.50 | 0.84 | 1.07 |
Oak frill | Oak DC | 0.39 | 0.14 | 2.80 | 110.32 | 4.10 | −0.18 | 0.97 | 0.35 | 0.57 |
Oak frill | Hickory DC | 0.18 | 0.24 | 0.74 | 64.20 | 4.15 | −0.83 | 1.19 | 0.99 | 1.01 |
Hickory frill | Maple DC | 0.14 | 0.30 | 0.47 | 99.87 | 4.10 | −1.07 | 1.35 | 0.99 | 1.21 |
Hickory frill | Oak DC | 0.96 | 0.20 | 4.81 | 101.48 | 4.10 | 0.14 | 1.78 | 0.01 | 0.82 |
Hickory frill | Hickory DC | 0.39 | 0.28 | 1.37 | 94.49 | 4.11 | −0.77 | 1.55 | 0.92 | 1.16 |
Maple DC | Oak DC | 0.83 | 0.27 | 3.01 | 85.18 | 4.12 | −0.30 | 1.95 | 0.28 | 1.13 |
Maple DC | Hickory DC | 0.25 | 0.34 | 0.73 | 111.99 | 4.10 | −1.14 | 1.64 | 0.99 | 1.39 |
Oak DC | Hickory DC | 0.58 | 0.26 | 2.20 | 79.75 | 4.12 | −0.50 | 1.65 | 0.62 | 1.07 |
Group | Mean | Size | Variance |
---|---|---|---|
Maple Frill | 4.20 | 60 | 3.08 |
Oak Frill | 3.65 | 66 | 0.75 |
Hickory Frill | 4.22 | 54 | 2.82 |
Maple DC | 4.08 | 60 | 7.33 |
Oak DC | 3.26 | 66 | 1.86 |
Hickory DC | 3.83 | 54 | 5.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schroder, E.S.; Ward, R.L. Tree Girdling for Potential Bat Roost Creation in Northwestern West Virginia. Forests 2022, 13, 274. https://doi.org/10.3390/f13020274
Schroder ES, Ward RL. Tree Girdling for Potential Bat Roost Creation in Northwestern West Virginia. Forests. 2022; 13(2):274. https://doi.org/10.3390/f13020274
Chicago/Turabian StyleSchroder, Eric S., and Ryan L. Ward. 2022. "Tree Girdling for Potential Bat Roost Creation in Northwestern West Virginia" Forests 13, no. 2: 274. https://doi.org/10.3390/f13020274
APA StyleSchroder, E. S., & Ward, R. L. (2022). Tree Girdling for Potential Bat Roost Creation in Northwestern West Virginia. Forests, 13(2), 274. https://doi.org/10.3390/f13020274