Above-and-Belowground Carbon Stocks in Two Contrasting Peatlands in the Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Sites
2.1.1. The Undisturbed Site
2.1.2. The Disturbed Site
2.2. Aboveground Biomass Measurement
2.3. Soil Samples Collection
2.4. Soil Carbon Flux Measurement
2.5. Data Analysis
3. Results
3.1. The Aboveground Biomass at the Sites
3.2. The Aboveground Biomass per Species
3.3. The Aboveground Carbon Content
3.4. Soil Carbon Content
3.5. Soil Carbon Fluxes
4. Discussions
4.1. The Aboveground Biomass at the Sites
4.2. The Aboveground Biomass per Species
4.3. The Aboveground Carbon Content
4.4. Soil Carbon Content
4.5. Soil Carbon Fluxes
4.6. Global Importance of Tropical Peatlands
4.7. Implications for Peatland Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wösten, J.H.M.; Clymans, E.; Page, S.E.; Rieley, J.O.; Limin, S.H. Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena 2008, 73, 212–224. [Google Scholar] [CrossRef]
- Hooijer, A.; Page, S.; Canadell, J.G.; Silvius, M.; Kwadijk, J.; Wösten, H.; Jauhiainen, J. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 2010, 7, 1505–1514. [Google Scholar] [CrossRef] [Green Version]
- Verwer, C.; Van Der Meer, P.; Nabuurs, G.-J. Review of Carbon Flux Estimates and Other Greenhouse Gas Emissions from Oil Palm Cultivation on Tropical Peatlands-Identifying the Gaps in Knowledge; Wageningen Environmental Research (Alterra): Wageningen, The Netherlands, 2008. [Google Scholar]
- Parish, F.; Sirin, A.; Charman, D.; Joosten, H.; Minayeva, T.; Silvius, M.; Stringer, L. Assessment on Peatlands, Biodiversity and Climate Change: Main Report; Global Environment Centre, Kuala Lumpur and Wetlands International: Wageningen, The Netherlands, 2008; ISBN SBN978-983-43751-0-2. [Google Scholar]
- Hergoualc’h, K.; Verchot, L.V. Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 789–807. [Google Scholar] [CrossRef]
- Yu, Z.; Loisel, J.; Brosseau, D.P.; Beilman, D.W.; Hunt, S.J. Global peatland dynamics since the last glacial maximum. Geophys. Res. Lett. 2010, 37, 37. [Google Scholar] [CrossRef]
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, M.; Wieder, K.; Halsey, L.; Vitt, D. Current disturbance and the diminishing peatland carbon sink. Geophys. Res. Lett. 2002, 29, 21-1–21-4. [Google Scholar] [CrossRef] [Green Version]
- Page, S.E.; Rieley, J.O.; Wust, R. Chapter 7 Lowland tropical peatlands of Southeast Asia. Dev. Earth Surf. Process. 2006, 9, 145–172. [Google Scholar]
- Hernández-Delgado, E.A. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies. Mar. Pollut. Bull. 2015, 101, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Veloo, R.; Paramananthan, S.; Van Ranst, E. Classification of tropical lowland peats revisited: The case of Sarawak. Catena 2014, 118, 179–185. [Google Scholar] [CrossRef]
- Sangok, F.E.; Maie, N.; Melling, L.; Watanabe, A. Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation. Sci. Total Environ. 2017, 587–588, 381–388. [Google Scholar] [CrossRef]
- Tonks, A.J.; Aplin, P.; Beriro, D.J.; Cooper, H.; Evers, S.; Vane, C.H.; Sjögersten, S. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma 2017, 289, 36–45. [Google Scholar] [CrossRef]
- Leng, L.Y.; Ahmed, O.H.; Jalloh, M.B. Brief review on climate change and tropical peatlands. Geosci. Front. 2019, 10, 373–380. [Google Scholar] [CrossRef]
- Leifeld, J.; Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 2018, 9, 1071. [Google Scholar] [CrossRef] [Green Version]
- Dohong, A.; Aziz, A.A.; Dargusch, P. A review of the drivers of tropical peatland degradation in South-East Asia. Land Use Policy 2017, 69, 349–360. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Hergoualc’h, K.; Verchot, L. V Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc. Natl. Acad. Sci. USA 2010, 107, 19655–19660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueda, G.H.; Lasco, R.D.; Ann, P.; Sanchez, J.; Pasicolan, S.A. Greenhouse gas fluxes of different vegetation cover in Bambanin peatland, Victoria, Oriental Mindoro, Philippines during wet Season. Internet J. Soc. Soc. Manag. Syst. 2019, 12, sms19-8317. [Google Scholar]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 2018, 160, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Groot, A. Physical effects of site disturbance on peatlands. Can. J. Soil Sci. 1998, 78, 45–50. [Google Scholar] [CrossRef]
- Säurich, A.; Tiemeyer, B.; Don, A.; Fiedler, S.; Bechtold, M.; Amelung, W.; Freibauer, A. Drained organic soils under agriculture—The more degraded the soil the higher the specific basal respiration. Geoderma 2019, 355, 113911. [Google Scholar] [CrossRef]
- Holden, J.; Chapman, P.J.; Labadz, J.C. Artificial drainage of peatlands: Hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geogr. 2004, 28, 95–123. [Google Scholar] [CrossRef] [Green Version]
- Maljanen, M.; Sigurdsson, B.D.; Guömundsson, J.; Öskarsson, H.; Huttunen, J.T.; Martikainen, P.J. Greenhouse gas balances of managed peatlands in the Nordic countries present knowledge and gaps. Biogeosciences 2010, 7, 2711–2738. [Google Scholar] [CrossRef] [Green Version]
- Tiemeyer, B.; Albiac Borraz, E.; Augustin, J.; Bechtold, M.; Beetz, S.; Beyer, C.; Drösler, M.; Ebli, M.; Eickenscheidt, T.; Fiedler, S.; et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Chang. Biol. 2016, 22, 4134–4149. [Google Scholar] [CrossRef] [PubMed]
- Aribal, L.G.; Fernando, E.S. Plant diversity and structure of the Caimpugan peat swamp forest on Mindanao Island, Philippines. Mires Peat 2018, 22, 1–16. [Google Scholar] [CrossRef]
- Rueda, G.H. Community knowledge and awareness on the ecological services of peatland in Victoria, Oriental Mindoro, Philippines. J. Nat. Stud. 2021, 20, 1–15. [Google Scholar]
- Decena, S.C.P.; Villacorta-Parilla, S.; Arribado, A.O.; Macasait, D.R.; Arguelles, M.S.; Salamia, S.S.; Relevo, E.S. Impact of land use conversion on carbon stocks and selected peat physico-chemical properties in the leyte sab-a basin peatland, Philippines. Wetlands 2022, 42, 2. [Google Scholar] [CrossRef]
- Alibo, V.; Lasco, R.D. Carbon storage of Caimpugan peatland in Agusan Marsh, Philippines and its role in greenhouse gas mitigation. J. Environ. Sci. Manag. 2012, 15, 50–58. [Google Scholar]
- Andres, A. Site Nomination for Peat Site Profiles in Southeast Asia: Naujan Lake National Park, Philippines. Available online: http://www.aseanpeat.net/site_nomination_view.cfm?sid=52 (accessed on 1 February 2022).
- Johnson, W. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 1999.
- Turner, T.E.; Billett, M.F.; Baird, A.J.; Chapman, P.J.; Dinsmore, K.J.; Holden, J. Regional variation in the biogeochemical and physical characteristics of natural peatland pools. Sci. Total Environ. 2016, 545–546, 84–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, S.; Schroeder, P.; Birdsey, R. Aboveground Biomass Distribution of US Eastern Hardwood Forests and the Use of Large Trees as an Indicator of Forest Development; Wiley: Hoboken, NJ, USA, 1997; Volume 96. [Google Scholar]
- Lasco, R.D.; Macdicken, G.; Pulhin, F.; Guillermo, I.Q.; Sales, R.F.; Cruz, R.V.O. Carbon Stocks Assessment of a Selectively Logged Dipterocarp Forest and Wood Processing Mill in the Philippines; Forest Research Institute: Kuala Lumpur, Malaysia, 2006; Volume 18. [Google Scholar]
- Aguilos, M.; Brown, C.; Minick, K.; Fischer, M.; Ile, O.J.; Hardesty, D.; Kerrigan, M.; Noormets, A.; King, J. Millennial-scale carbon storage in natural pine forests of the north carolina lower coastal plain: Effects of artificial drainage in a time of rapid sea level rise. Land 2021, 10, 1294. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; Chapman and Hall/CRC: London, UK, 2020; ISBN 9781138331457. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 2007, 12, 1–20. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: https://www.r-project.org/ (accessed on 1 February 2022).
- Dayathilake, D.D.T.L.; Lokupitiya, E.; Wijeratne, V.P.I.S. Estimation of aboveground and belowground carbon stocks in urban freshwater wetlands of Sri Lanka. Carbon Balance Manag. 2020, 15, 17. [Google Scholar] [CrossRef]
- Jaafar, W.S.W.M.; Said, N.F.S.; Maulud, K.N.A.; Uning, R.; Latif, M.T.; Kamarulzaman, A.M.M.; Mohan, M.; Pradhan, B.; Saad, S.N.M.; Broadbent, E.N.; et al. Carbon emissions from oil palm induced forest and peatland conversion in sabah and Sarawak, Malaysia. Forests 2020, 11, 1285. [Google Scholar] [CrossRef]
- Miettinen, J.; Liew, S.C. Status of peatland degradation and development in Sumatra and Kalimantan. Ambio 2010, 39, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Gabay, R.; Pittman, U.; Danin, A. Factors affecting the dominance of Silybum marianum L.(Asteraceae) in its specific habitats. Flora 1994, 189, 201–206. [Google Scholar] [CrossRef]
- Whitmore, T.C.; Timothy, C. An Introduction to Tropical Rain Forests; Oxford University Press: Oxford, UK, 1998; ISBN 019850148X. [Google Scholar]
- Polak, B. Character and occurrence of peat deposits in the Malaysian tropics. Mod. Quat. Res. 1975, 2, 71–81. [Google Scholar]
- Bruenig, E.F. Ecological Studies of Kerangas Forest of Sarawak and Brunei; Borneo Literature Bureau for Sarawak Forest Department: Kuching, Malaysia, 1974. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2021-3. Available online: https://www.iucnredlist.org (accessed on 1 February 2022).
- Lim, T.K. Nauclea orientalis. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Petty, A.M.; Douglas, M.M. Scale relationships and linkages between woody vegetation communities along a large tropical floodplain river, north Australia. J. Trop. Ecol. 2010, 26, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Ponlawat, P.; Kittichate, S. The floodplain vegetation of the Trang River basin, peninsular Thailand: The threatened remnants of the freshwater swamp vegetation. Thai For. Bull. 2011, 39, 120–139. [Google Scholar]
- Putri, R.F.; Istyadji, M.; Hayati, F. The Use of Bangkal Trees (Nauclea sp.) in the Perspective of Wetland Ethnics. In Proceedings of the 1st International Conference on Mathematics, Science & Computer Education 2019 Universitas Lambung Mangkurat, Banjarsamin, Indonesia, 7–8 August 2019; ISBN 978-623-7533-15-3. [Google Scholar]
- Cararting, R.B.; Galanta, R.G.; Bacatio, C.D. The soils of the lowlands. In The Soils of the Philippines; World Soils Book Series; Springer: Dordecht, The Netherlands, 2014. [Google Scholar]
- Page, S.E.; Rieley, J.O.; Shotyk, O.W.; Weiss, D. Interdependence of peat and vegetation in a tropical peat swamp forest. Philos. Trans. R. Soc. Lond. B 1999, 345, 1885–1897. [Google Scholar] [CrossRef] [PubMed]
- Rieley, J.O.; Page, S.E. Carbon Budgets under Different Land Uses on Tropical Peatland. Tropical Peatlands. 2008, pp. 245–249. Available online: https://peatlands.org/assets/uploads/2019/06/ipc2008p245-249-rieley-carbon-budgets-under-different-land-uses-on-tropical-peatland.pdf (accessed on 31 December 2008).
- Minick, K.J.; Mitra, B.; Li, X.; Fischer, M.; Aguilos, M.; Prajapati, P.; Noormets, A.; King, J.S. Wetland microtopography alters response of potential net CO2 and CH4 production to temperature and moisture: Evidence from a laboratory experiment. Geoderma 2021, 402, 115367. [Google Scholar] [CrossRef]
- Agus, F. Measuring Carbon Stock in Peat Soils: Practical Guidelines; World Agroforestry Centre (ICRAF): Bogor Regency, Indonesia, 2011; ISBN 9789793198668. [Google Scholar]
- Moore, S.; Evans, C.D.; Page, S.E.; Garnett, M.H.; Jones, T.G.; Freeman, C.; Hooijer, A.; Wiltshire, A.J.; Limin, S.H.; Gauci, V. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 2013, 493, 660–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilos, M.; Takagi, K.; Liang, N.; Watanabe, Y.; Teramoto, M.; Goto, S.; Takahashi, Y.; Mukai, H.; Sasa, K. Sustained large stimulation of soil heterotrophic respiration rate and its temperature sensitivity by soil warming in a cool-temperate forested peatland. Tellus Ser. B Chem. Phys. Meteorol. 2013, 65, 65. [Google Scholar] [CrossRef]
- Worrall, F.; Rowson, J.G.; Evans, M.G.; Pawson, R.; Daniels, S.; Bonn, A. Carbon fluxes from eroding peatlands—The carbon benefit of revegetation following wildfire. Earth Surf. Process. Landf. 2011, 36, 1487–1498. [Google Scholar] [CrossRef]
- Chimner, R.A.; Ewel, K.C. Differences in carbon fluxes between forested and cultivated micronesian tropical peatlands. Wetl. Ecol. Manag. 2004, 12, 419–427. [Google Scholar] [CrossRef]
- Aguilos, M.; Takagi, K.; Liang, N.; Ueyama, M.; Fukuzawa, K.; Nomura, M.; Kishida, O.; Fukazawa, T.; Takahashi, H.; Kotsuka, C.; et al. Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest. Agric. For. Meteorol. 2014, 197, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Aguilos, M.; Mitra, B.; Noormets, A.; Minick, K.; Prajapati, P.; Gavazzi, M.; Sun, G.; McNulty, S.; Li, X.; Domec, J.C.; et al. Long-term carbon flux and balance in managed and natural coastal forested wetlands of the Southeastern USA. Agric. For. Meteorol. 2020, 288–289, 108022. [Google Scholar] [CrossRef]
- Ross, S.M.; Malcolm, D.C. Modelling Nutrient Mobilisation in Intensively Mixed Peaty Heathland Soil; Kluwer Academic Publishers: Canterbury, UK, 1988; Volume 107. [Google Scholar]
- Brake, M.; Ho, H.; Joergensen, R.G. Land use-induced changes in activity and biomass of microorganisms in raised bog peats at different depths. Soil Biol. Biochem. 1999, 31, 1489–1497. [Google Scholar] [CrossRef]
- Amador, J.A.; Jon, R.D. Nutrient limitations on microbial respiration in peat soils with different total phosphorus content. Soil Biol. Biochem. 1993, 25, 793–801. [Google Scholar] [CrossRef]
- Brouns, K.; Keuskamp, J.A.; Potkamp, G.; Verhoeven, J.T.A.; Hefting, M.M. Peat origin and land use effects on microbial activity, respiration dynamics and exo-enzyme activities in drained peat soils in the Netherlands. Soil Biol. Biochem. 2016, 95, 144–155. [Google Scholar] [CrossRef]
- Laiho, R. Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem. 2006, 38, 2011–2024. [Google Scholar] [CrossRef]
- Lopes-Mazzetto, J.M.; Schellekens, J.; Vidal-Torrado, P.; Buurman, P. Impact of drainage and soil hydrology on sources and degradation of organic matter in tropical coastal podzols. Geoderma 2018, 330, 79–90. [Google Scholar] [CrossRef]
- Langner, A.; Miettinen, J.; Siegert, F. Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob. Chang. Biol. 2007, 13, 2329–2340. [Google Scholar] [CrossRef]
- Hooijer, A.; Silvius, M.; Page, S. PEAT-CO2, Assessment of CO2 Emissions from Drained Peatlands in SE Asia. Delft Hydraulics Report Q3934. 2006. Available online: http://np-net.pbworks.com/f/Hooijer,%20Silvius%20et%20al%20(2006)%20PEAT%20CO2%20Assement%20of%20CP2%20emissions%20from%20drained%20wetlands%20in%20SE%20Asia.pdf (accessed on 7 December 2006).
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate Change, Deforestation, and the Fate of the Amazon. Science. 2008, 319, 169–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Werf, G.R.; Dempewolf, J.; Trigg, S.N.; Randerson, J.T.; Kasibhatla, P.S.; Giglio, L.; Murdiyarso, D.; Peters, W.; Morton, D.C.; Collatz, G.J.; et al. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl. Acad. Sci. USA 2008, 105, 20350–20355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.D.V.; Jaya, A.; Limin, S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orella, J.; Africa, D.R.; Bustillo, C.H.; Pascua, N.; Marquez, C.; Adornado, H.; Aguilos, M. Above-and-Belowground Carbon Stocks in Two Contrasting Peatlands in the Philippines. Forests 2022, 13, 303. https://doi.org/10.3390/f13020303
Orella J, Africa DR, Bustillo CH, Pascua N, Marquez C, Adornado H, Aguilos M. Above-and-Belowground Carbon Stocks in Two Contrasting Peatlands in the Philippines. Forests. 2022; 13(2):303. https://doi.org/10.3390/f13020303
Chicago/Turabian StyleOrella, Joel, Diana Riza Africa, Catherine Hope Bustillo, Noel Pascua, Conrado Marquez, Henry Adornado, and Maricar Aguilos. 2022. "Above-and-Belowground Carbon Stocks in Two Contrasting Peatlands in the Philippines" Forests 13, no. 2: 303. https://doi.org/10.3390/f13020303
APA StyleOrella, J., Africa, D. R., Bustillo, C. H., Pascua, N., Marquez, C., Adornado, H., & Aguilos, M. (2022). Above-and-Belowground Carbon Stocks in Two Contrasting Peatlands in the Philippines. Forests, 13(2), 303. https://doi.org/10.3390/f13020303