Investigating Antimicrobial Characteristics/Advantages of Australian Wood Species for Use in Food Packaging—A Feasibility Study
Abstract
:1. Introduction
1.1. Environmental and Economic Benefits
1.2. Timber Properties
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
4. Conclusions and Future Work
- -
- Investigating the effect of species/anatomy on the rate of bacterial growth, potential contamination delays due to the porous structure of the timber, type of cell (size, frequency, density, shape, etc.) and the species chemistry and level of extractives.
- -
- Study of the potential effects of heartwood versus sapwood exposed to the contamination and their possible differences in different species.
- -
- Investigating the effects of timber surface roughness (smoother and rougher) given that there are studies showing that the roughness of a surface that microorganisms contact could influence the rate and scale of growth. Additionally, the potential effects of surface finishes and the roughness variations between plastic and timber surfaces needs to be investigated for Australian timber species. Previous studies have shown great potential for a lower survival rate of bacteria on timber surfaces in comparison with smooth plastic surfaces in a hospital environment [14,34].
- -
- Using different monitoring methods that could provide opportunities to observe the pattern and rate of growth and the survival rate of bacteria on the wood surface needs to be studied.
- -
- The advantages of using timber in terms of breathability and moisture management as well as any potential leaching issues from and to wood sections for different food products will also need to be considered as a future direction.
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mendes, A.C.; Pedersen, G.A. Perspectives on sustainable food packaging:–is bio-based plastics a solution? Trends Food Sci. Technol. 2021, 112, 839–846. [Google Scholar] [CrossRef]
- Aviat, F.; Gerhards, C.; Rodriguez-Jerez, J.-J.; Michel, V.; Le Bayon, I.; Ismail, R.; Federighi, M. Microbial Safety of Wood in Contact with Food: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Guillard, V.; Gaucel, S.; Fornaciari, C.; Angellier-Coussy, H.; Buche, P.; Gontard, N. The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Front. Nutr. 2018, 5, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, T. ‘Six to Solve’: How Australia Could Halve the Amount of Plastic Waste Leaked into the Environment, in NS Packaging 2020: NS Packaging-Analysis. Available online: https://www.nspackaging.com/analysis/australia-plastic-waste/ (accessed on 10 February 2022).
- López-Goldar, X.; Villari, C.; Bonello, P.; Borg-Karlson, A.K.; Grivet, D.; Sampedro, L.; Zas, R. Genetic variation in the constitutive defensive metabolome and its inducibility are geographically structured and largely determined by demographic processes in maritime pine. J. Ecol. 2019, 107, 2464–2477. [Google Scholar] [CrossRef] [Green Version]
- Grow International—A Lightwood Packaging Sector Organisation. 2021. Available online: https://www.grow-international.eu/ (accessed on 10 February 2022).
- Filip, S.; Fink, R.; Oder, M.; Jevšnik, M. Hygienic acceptance of wood in food industry. Wood Sci. Technol. 2011, 46, 657–665. [Google Scholar] [CrossRef]
- Khademi Kord, H.; Pazirandeh, A. Comparison of Different Packaging Materials and Solutions on a Cost Basis for Volvo Logistic Corporation; University of Borås/School of Engineering: Borås, Sweden, 2008. [Google Scholar]
- Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial food packaging: Potential and pitfalls. Front. Microbiol. 2015, 6, 611. [Google Scholar] [CrossRef] [Green Version]
- Milling, A.; Kehr, R.; Wulf, A.; Smalla, K. Survival of bacteria on wood and plastic particles: Dependence on wood species and environmental conditions. Holzforschung 2005, 59, 72–81. [Google Scholar] [CrossRef]
- Ripolles-Avila, C.; Hascoët, A.; Ríos-Castillo, A.; Rodríguez-Jerez, J. Hygienic properties exhibited by single-use wood and plastic packaging on the microbial stability for fish. LWT 2019, 113, 108309. [Google Scholar] [CrossRef]
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Chiavari, C.; Benevelli, M.; Grazia, L.; Lanciotti, R. Survival of Spoilage and Pathogenic Microorganisms on Cardboard and Plastic Packaging Materials. Front. Microbiol. 2017, 8, 2606. [Google Scholar] [CrossRef] [Green Version]
- Becerra, J.; Flores, C.; Mena, J.; Aqueveque, P.; Alarcón, J.; Bittner, M.; Hernandez, V.; Hoeneisen, M.; Ruiz, E.; Silva, M. Antifungal and antibacterial activity of diterpenes Isolated from wood extractables of chilean podocarpaceae. Boletín Soc. Chil. Química 2002, 47, 151–157. [Google Scholar] [CrossRef]
- Munir, M.T. Wood and Hospital Hygiene: Investigating the Hygienic Safety and Antimicrobial Properties of Wood Materials. Doctoral Dissertation, École Centrale de Nantes, Nantes, France, 2021; p. 226. [Google Scholar]
- Vainio-Kaila, T.; Kyyhkynen, A.; Rautkari, L.; Siitonen, A. Antibacterial Effects of Extracts of Pinus sylvestris and Picea abies against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Streptococcus pneumoniae. BioResources 2015, 10, 7763–7771. [Google Scholar] [CrossRef]
- Nada, A.M.A.; El-Diwany, A.I.; Elshafei, A.M. Infrared and antimicrobial studies on different lignins. Acta Biotechnol. 1989, 9, 295–298. [Google Scholar] [CrossRef]
- Dong, X.; Dong, M.; Lu, Y.; Turley, A.; Jin, T.; Wu, C. Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind. Crop. Prod. 2011, 34, 1629–1634. [Google Scholar] [CrossRef]
- Rautio, M.; Sipponen, A.; Peltola, R.; Lohi, J.; Jokinen, J.J.; Papp, A.; Carlson, P.; Sipponen, P. Antibacterial effects of home-made resin salve from Norway spruce (Picea abies). APMIS 2007, 115, 335–340. [Google Scholar] [CrossRef]
- Johnston, W.H.; Karchesy, J.J.; Constantine, G.H.; Craig, A.M. Antimicrobial activity of some Pacific Northwest woods against anaerobic bacteria and yeast. Phytotherapy Res. 2001, 15, 586–588. [Google Scholar] [CrossRef]
- Omar, S.; Lemonnier, B.; Jones, N.; Ficker, C.; Smith, M.; Neema, C.; Towers, G.; Goel, K.; Arnason, J. Antimicrobial activity of extracts of eastern North American hardwood trees and relation to traditional medicine. J. Ethnopharmacol. 2000, 73, 161–170. [Google Scholar] [CrossRef]
- Laireiter, C.M.; Schnabel, T.; Köck, A.; Stalzer, P.; Petutschnigg, A.; Oostingh, G.J.; Hell, M. Active Anti-Microbial Effects of Larch and Pine Wood on Four Bacterial Strains. BioResources 2013, 9, 273–281. [Google Scholar] [CrossRef]
- Munir, M.T.; Aviat, F.; Pailhories, H.; Eveillard, M.; Irle, M.; Federighi, M.; Belloncle, C. Direct screening method to assess antimicrobial behavior of untreated wood. Eur. J. Wood Wood Prod. 2019, 77, 319–322. [Google Scholar] [CrossRef]
- Vainio-Kaila, T.; Zhang, X.; Hänninen, T.; Kyyhkynen, A.; Johansson, L.-S.; Willför, S.; Österberg, M.; Siitonen, A.; Rautkari, L. Antibacterial effects of wood structural components and extractives from Pinus sylvestris and Picea abies on methicillin-resistant Staphylococcus aureus and Escherichia coli O157:H7. BioResources 2017, 12, 7601–7614. [Google Scholar] [CrossRef]
- Munir, M.T.; Pailhories, H.; Eveillard, M.; Aviat, F.; Lepelletier, D.; Belloncle, C.; Federighi, M. Antimicrobial Characteristics of Untreated Wood: Towards a Hygienic Environment. Health 2019, 11, 152–170. [Google Scholar] [CrossRef] [Green Version]
- Munir, M.T.; Pailhories, H.; Eveillard, M.; Irle, M.; Aviat, F.; Dubreil, L.; Federighi, M.; Belloncle, C. Testing the Antimicrobial Characteristics of Wood Materials: A Review of Methods. Antibiotics 2020, 9, 225. [Google Scholar] [CrossRef]
- Bertaud, F.; Holmbom, B. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci. Technol. 2004, 38, 245–256. [Google Scholar] [CrossRef]
- Papadopoulou, C.; Soulti, K.; Roussis, I.G. Potential antimicrobial activity of red and white wine phenolic extracts against strains of Staphylococcus aureus, Escherichia coli and Candida albicans. Food Technol. Biotechnol. 2005, 43, 41–46. [Google Scholar]
- Munir, M.; Pailhoriès, H.; Aviat, F.; Lepelletier, D.; Pape, P.; Dubreil, L.; Irle, M.; Buchner, J.; Eveillard, M.; Federighi, M.; et al. Hygienic Perspectives of Wood in Healthcare Buildings. Hygiene 2021, 1, 12–23. [Google Scholar] [CrossRef]
- Munir, M.T.; Belloncle, C.; Pailhoriès, H.; Eveillard, M.; Aviat, F.; Federighi, M. Survival of Nosocomial pathogens on Maritime pine and European fir wood. In Proceedings of the 5th International Conference on Processing Technologies for the Forest and Bio-Based Products Industries, Freising/Munich, Germany, 20–21 September 2018; pp. 213–217. [Google Scholar]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [Green Version]
- Neely, A.N.; Maley, M.P. Survival of Enterococci and Staphylococci on Hospital Fabrics and Plastic. J. Clin. Microbiol. 2000, 38, 724–726. [Google Scholar] [CrossRef] [Green Version]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Pailhoriès, H.; Munir, M.T.; Aviat, F.; Federighi, M.; Belloncle, C.; Eveillard, M. Oak in Hospitals, the worst enemy of Staphylococcus aureus? Infect. Control Hosp. Epidemiol. 2017, 38, 382–384. [Google Scholar] [CrossRef] [Green Version]
- Munir, M.T.; Aviat, F.; Lepelletier, D.; Pape, P.L.; Dubreil, L.; Irle, M.; Federighi, M.; Belloncle, C.; Eveillard, M.; Pailhoriès, H. Wood materials for limiting the bacterial reservoir on surfaces in hospitals: Would it be worthwhile to go further? Future Microbiol. 2020, 15, 1431–1437. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirmohammadi, M. Investigating Antimicrobial Characteristics/Advantages of Australian Wood Species for Use in Food Packaging—A Feasibility Study. Forests 2022, 13, 334. https://doi.org/10.3390/f13020334
Shirmohammadi M. Investigating Antimicrobial Characteristics/Advantages of Australian Wood Species for Use in Food Packaging—A Feasibility Study. Forests. 2022; 13(2):334. https://doi.org/10.3390/f13020334
Chicago/Turabian StyleShirmohammadi, Maryam. 2022. "Investigating Antimicrobial Characteristics/Advantages of Australian Wood Species for Use in Food Packaging—A Feasibility Study" Forests 13, no. 2: 334. https://doi.org/10.3390/f13020334
APA StyleShirmohammadi, M. (2022). Investigating Antimicrobial Characteristics/Advantages of Australian Wood Species for Use in Food Packaging—A Feasibility Study. Forests, 13(2), 334. https://doi.org/10.3390/f13020334