Extractives of Tree Biomass of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Lipophilic Compounds, Stilbenes, and Lignans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tree Biomass Sampling
2.2. Chemical Analyses
2.3. Statistical Analyses
3. Results
3.1. Amounts of Extractives
3.1.1. Totals of Extractives
3.1.2. Compound Groups and Individual Compounds
3.2. Variation of Extractive Contents in Biomass Components
3.2.1. Stem Wood
3.2.2. All Tree Biomass Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Updated Bioeconomy Strategy: A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment; Publications Office of the European Union: Brussels, Belgium, 2018. [Google Scholar]
- The Ministry of Employment and the Economy. The Finnish Bioeconomy Strategy: Sustainable Growth for Bioeconomy; The Ministry of Employment and the Economy: Helsinki, Finland, 2014; p. 31. [Google Scholar]
- Näyhä, A.; Hämäläinen, S.; Pesonen, H.-L. Forest Biorefineries—A Serious Global Business Opportunity. In Biorefining of Forest Resources; Alén, R., Ed.; Paperi ja Puu Oy: Espoo, Finland, 2011; pp. 131–148. [Google Scholar]
- Bergström, D.; Matisons, M. Forest Refine, 2012–2014: Efficient Forest Biomass Supply Chain Management for Biorefineries: Synthesis Report; Rapport 18; Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2014; p. 113. [Google Scholar]
- Holmbom, B. Extraction and Utilisation of Non-Structural Wood and Bark Components. In Biorefining of Forest Resources; Alén, R., Ed.; Paperi ja Puu Oy: Espoo, Finland, 2011; pp. 176–224. [Google Scholar]
- Sjöström, E. Wood Chemistry, Fundamentals and Applications, 2nd ed.; Academic Press: New York, NY, USA, 1993; pp. 114–161. [Google Scholar]
- Alén, R. Structure and Chemical Composition of Different Feedstocks. In Biorefining of Forest Resources; Alén, R., Ed.; Paperi ja Puu Oy: Espoo, Finland, 2011; pp. 17–54. [Google Scholar]
- Hillis, W.E. Distribution, properties and formation of some wood extractives. Wood Sci. Technol. 1971, 5, 272–298. [Google Scholar] [CrossRef]
- Hillis, W.E. Wood Extractives and Their Significance to the Pulp and Paper Industries; Academic Press: New York, NY, USA, 1962; p. 513. [Google Scholar]
- Anderson, A.B. Recovery and utilization of tree extractives. Econ. Bot. 1955, 2, 108. [Google Scholar] [CrossRef]
- Umezawa, T. Chemistry of Extractives. In Wood and Cellulosic Chemistry, 2nd ed.; Hon, D.N.S., Shiraishi, N., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 213–241. [Google Scholar]
- Hakkila, P.; Verkasalo, E. Structure and Properties of Wood and Woody Biomass. In Forest Resources and Sustainable Management, 2nd ed.; Kellomäki, S., Ed.; Paperi ja Puu Oy/Gummerus Oy: Jyväskylä, Finland, 2009; pp. 133–215. [Google Scholar]
- Willför, S.; Hemming, J.; Reunanen, M.; Holmbom, B. Phenolic and lipophilic extractives in Scots pine knots and stem wood. Holzforschung 2003, 57, 359–372. [Google Scholar] [CrossRef]
- Nisula, L. Wood Extractives in Conifers: A Study of Stemwood and Knots of Industrially Important Species; Åbo Akademi University Press: Turku, Finland, 2018. [Google Scholar]
- Metsämuuronen, S.; Sirén, H. Bioactive phenolic compounds, metabolism and properties: A review on valuable chemical compounds in Scots pine and Norway spruce. Phytochem. Rev. 2019, 18, 623–664. [Google Scholar] [CrossRef] [Green Version]
- Latva-Mäenpää, H. Bioactive and Protective Polyphenolics from Roots and Stumps of Conifer Trees (Norway spruce and Scots pine). Ph.D. Thesis, Chemistry Faculty of Science, University of Helsinki, Helsinki, Finland, 2017; p. 74. [Google Scholar]
- Fries, E.; Ericsson, T.; Gref, R. High heritability of wood extractives in Pinus sylvestris progeny tests. Can. J. Res. 2000, 30, 1707–1713. [Google Scholar] [CrossRef]
- Van Ree, R.; Annevelink, B. Status Report Biorefinery; Wageningen University & Research, Agrotechnology & Food Science Group: Wageningen, The Netherlands, 2007; p. 110. [Google Scholar]
- Verkasalo, E.; Möttönen, V.; Roitto, M.; Vepsäläinen, J.; Kumar, A.; Ilvesniemi, H.; Siwale, W.; Julkunen-Tiitto, R.; Sikanen, L.; Raatikainen, O. Extractives of Stemwood and Sawmill Residues of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Phenolic and Resin Acid Compounds. Forests 2021, 12, 192. [Google Scholar] [CrossRef]
- Hakkila, P. Geographical variation of some properties of pine and spruce pulpwood in Finland. Commun. Inst. For. Fenn. 1968, 8, 1–60. [Google Scholar]
- Hovelstad, H.; Leirset, I.; Oyaas, K.; Fiksdahl, A. Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers. Molecules 2006, 11, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Stolter, C.; Ball, J.P.; Niemelä, P.; Julkunen-Tiitto, R. Herbivores and variation in the composition of specific phenolics of boreal coniferous trees: A search for patterns. Chemoecology 2010, 20, 229–242. [Google Scholar] [CrossRef]
- Royer, M.; Houde, R.; Stevanovic, T. Non-wood forest products based on extractives-a new opportunity for Canadian forest industry Part 2: Softwood forest species. J. Food Res. 2013, 5, 164–189. [Google Scholar] [CrossRef] [Green Version]
- Jaakola, L.; Hohtola, A. Effect of latitude on flavonoid synthesis in plants. Plant Cell Environ. 2010, 8, 1239–1247. [Google Scholar] [CrossRef]
- Martz, F.; Peltola, R.; Fontanay, S.; Duval, R.E.; Julkunen-Tiitto, R.; Stark, S. Effect of latitude and altitude on the terpenoid and soluble phenolic composition of juniper (Juniperus communis) needles and evaluation of their antibacterial activity in the boreal zone. J. Agric. Food Chem. 2009, 20, 9575–9584. [Google Scholar] [CrossRef] [PubMed]
- Stark, S.; Julkunen-Tiitto, R.; Holappa, E.; Mikkola, K.; Nikula, A. Concentrations of foliar quercetin in natural populations of white birch (Betula pubescens) increase with latitude. J. Chem. Ecol. 2008, 34, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
- Roitto, M.; Siwale, W.; Tanner, J.; Ilvesniemi, H.; Julkunen-Tiitto, R.; Verkasalo, E. Characterization of Extractives in Tree Biomass and By-products of Plywood and Saw Mills from Finnish Birch in Different Climatic Regions for Value-added Chemical Products. In Proceedings of the 5th International Scientific Conference on Hardwood Processing 2015, Quebec City, QC, Canada, 15–17 September 2015. [Google Scholar]
- Routa, J.; Brännström, H.; Anttila, P.; Mäkinen, M.; Jänis, J.; Asikainen, A. Wood Extractives of Finnish Pine, Spruce and Birch–Availability and Optimal Sources of Compounds; Natural Resources and Bioeconomy Studies 73/2017; Luke Natural Resources Institute Finland: Helsinki, Finland, 2017; p. 55. [Google Scholar]
- Nogueira, J.F.M. Refining and Separation of Crude Tall-Oil Components. Sep. Sci. Technol. 1996, 3, 2307–2316. [Google Scholar] [CrossRef]
- Coll, S.; Udas, S.; Jacobi, W.A. Conversion of the Rosin Acid Fraction of Crude Tall Oil into Fuels and Chemicals. Energy Fuels 2001, 15, 1166–1172. [Google Scholar] [CrossRef]
- Aro, T.; Fatehi, P. Tall oil production from black liquor: Challenges and opportunities. Sep. Purif. Technol. 2017, 175, 469–480. [Google Scholar] [CrossRef]
- Aryan, V.; Kraft, A. The crude tall oil value chain: Global availability and the influence of regional energy policies. J. Clean. Prod. 2021, 280, 124616. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Zanuso, E.; Genisheva, Z.; Rocha, C.M.R.; Teixeira, J.A. Green and sustainable valorization of bioactive phenolic compounds from pinus by-products. Molecules 2020, 25, 2931. [Google Scholar] [CrossRef]
- Kim, K.H.; Daugaard, T.J.; Smith, R.; Mba-Wright, M.; Brown, R.C. Recovery of resin acids from fast pyrolysis of pine. J. Anal. Appl. Pyrol. 2019, 138, 132–136. [Google Scholar] [CrossRef]
- Hassan, M.K.; Villa, A.; Kuittinen, S.; Jänis, J.; Pappinen, A. An assessment of side stream generation from Finnish forest industry. J. Mater. Cycles Waste Manag. 2019, 21, 265–280. [Google Scholar] [CrossRef]
- Jyske, T.; Brännström, H.; Halmemies, E.; Laakso, T.; Kilpeläinen, P.; Hyvönen, J.; Kärkkäinen, K.; Saranpää, P. Does Stilbenoids of Norway spruce bark: Does the variability caused by raw-material processing offset the biological variability? Biomass Conv. Bioref. 2022, 15. [Google Scholar] [CrossRef]
- Jylhä, P.; Halmemies, E.; Hellström, J.; Hujala, M.; Kilpeläinen, P.; Brännström, H. The effect of thermal drying on the contents of condensed tannins and stilbenes in Norway spruce (Picea abie [L. Karst)] sawmill bark. Ind. Crop. Prod. 2021, 173, 327–335. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tzvetkov, N.T.; Balacheva, A.A.; Georgieva, M.G.; Gan, R.-Y.; Jozwik, A.; Pyzel, B.; Horbanczuk, J.W.; Novellino, E.; Durazzo, A.; et al. Lignans: Quantitative Analysis of the Research Literature. Front. Pharmacol. 2020, 11, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cajander, A.K. Forest types and their significance. Acta For. Fenn. 1949, 56, 1–71. [Google Scholar] [CrossRef] [Green Version]
- Örså, F.; Holmbom, B. A convenient method for the determination of wood extractives in papermaking process water and effluents. J. Pulp Pap. Sci. 1994, 20, 361–366. [Google Scholar]
- Saranpää, P.; Nyberg, H. Lipids and sterols of Pinus sylvestris L. sapwood and heartwood. Trees 1987, 1, 82–87. [Google Scholar] [CrossRef]
- Bergström, B. Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry 2003, 76, 45–53. [Google Scholar] [CrossRef]
- Ekeberg, D.; Flaete, P.; Eikenes, M.; Fongen, M.; Andersen, C.F.N. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. Chromatography 2006, 1109, 267–272. [Google Scholar] [CrossRef]
- Nurmi, J. Heating values of the above-ground biomass of small-sized trees. Acta For. Fenn. 1993, 236, 7682. [Google Scholar] [CrossRef] [Green Version]
- Nurmi, J. Heating values of mature trees. Acta For. Fenn. 1997, 256, 7517. [Google Scholar] [CrossRef] [Green Version]
- Szadkowska, D.; Zawadzki, J.; Kozakiewicz, P.; Radomski, A. Identification of Extractives from Various Poplar Species. Forests 2021, 12, 647. [Google Scholar] [CrossRef]
- Siwale, W. Phenolic Compounds in Stem Wood of Scots Pine (Pinus sylvestris L.) Grown in Different North-South Regions in Finland Wood Materials Science. Master’s Thesis, Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland, 2015; p. 49. [Google Scholar]
- Piispanen, R.; Saranpää, P. Neutral lipids and phospholipids in Scots pine (Pinus sylvestris) sapwood and heartwood. Tree Physiol. 2002, 22, 661–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turtola, S.; Manninen, A.-M.; Holopainen, J.K.; Levula, T.; Raitio, H.; Kainulainen, P. Secondary Metabolite Concentrations and Terpene Emissions of Scots Pine Xylem after Long-Term Forest Fertilization. J. Environ. Qual. 2002, 31, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Bridgen, M.R.; Hanover, J.W. Genetic variation in oleoresin physiology of Scotch pine. Forest Sci. 1982, 28, 582–589. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, C.; Ding, S.; Shang, X.; Yang, W.; Fang, S. Effect of light regime and provenance on leaf characteristics, growth and flavonoid accumulation in Cyclocarya paliurus (Batal) Iljinskaja coppices. Bot. Stud. 2016, 57, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, C.L.; Pereira, E.; Soković, M.; Carvalho, A.M.; Barata, A.M.; Lopes, V.; Rocha, F.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R. Phenolic composition and bioactivity of Lavandula pedunculata (Mill.) Cav. samples from different geographical origin. Molecules 2018, 23, 1037. [Google Scholar] [CrossRef] [Green Version]
- Jyske, T.; Brännström, H.; Sarjala, T.; Hellström, J.; Halmemies, E.; Raitanen, J.-E.; Kaseva, J.; Lagerqvist, L.; Eklund, P.; Nurmi, J. Fate of Antioxidative Compounds within Bark during Storage: A Case of Norway Spruce Logs. Molecules 2020, 25, 4228. [Google Scholar] [CrossRef]
- Halmemies, E.S.; Brännström, H.E.; Nurmi, J.; Läspä, O.; Alén, R. Effect of Seasonal Storage on Single-Stem Bark Extractives of Norway spruce (Picea abies). Forests 2021, 12, 736. [Google Scholar] [CrossRef]
- Routa, J.; Brännström, H.; Hellström, J.; Laitila, J. Influence of Storage on the Physical and Chemical Properties of Scots Pine Bark. BioEnergy Res. 2021, 14, 575–587. [Google Scholar] [CrossRef]
- Back, E.L.; Allen, L.H. Pitch Control, Wood Resin and Deresination; TAPPI Press: Peachtree Corners, GA, USA, 2000; p. 286. [Google Scholar]
- Mitchell, G.R.; Biscaia, S.; Mahendra, V.S.; Mateus, A. High value materials from the forests. Adv. Mater. Phys. Chem. 2016, 6, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, A. Tannins: Prospectives and Actual Industrial Applications. Biomolecules 2019, 9, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raitanen, J.E.; Järvenpää, E.; Korpinen, R.; Mäkinen, S.; Hellström, J.; Kilpeläinen, P.; Liimatainen, J.; Ora, A.; Tupasela, T.; Jyske, T. Tannins of Conifer Bark as Nordic Piquancy—Sustainable Preservative and Aroma? Molecules 2020, 25, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakshin, M.Y.; Capanema, E.A.; Sulaeva, I.; Schlee, P.; Huang, Z.; Feng, M.; Borghei, M.; Rojas, O.J.; Potthast, A.; Rosenau, T. New Opportunities in the Valorisation of Technical Lignins. ChemSusChem 2021, 14, 1016. [Google Scholar] [CrossRef] [PubMed]
- Stern, T.; Ledl, C.; Haydn, A.; Koch, S.; Hakala, J.; Hytönen, E.; Schwarzbauer, P. Methods to integrate market orientation in technological development: The case of new technologies to produce bioactive substances from wood. Forest Prod. J. 2015, 65, 139–147. [Google Scholar] [CrossRef]
Compound mg/g dw | Stem Wood—Final Felling | Stem Wood—Thinning | Sawdust | Branch Biomass | Bark | |||
---|---|---|---|---|---|---|---|---|
Butt | Middle | Top | ||||||
FATTY ACIDS | ||||||||
Palmitic acid 16:0 | LN | 0.660 | 0.542 | 0.514 | 0.342 | 0.227 | 1.137 | 1.104 |
LS | 0.441 | 0.437 | 0.505 | 0.339 | 0.265 | 0.563 | 0.908 | |
MF | 0.384 | 0.319 | 0.371 | 0.376 | 0.525 | 0.955 | ||
SF | 0.226 | 0.144 | 0.194 | 0.216 | 0.350 | 0.527 | 0.866 | |
Margaric acid 17:0 | LN | 0.162 | 0.143 | 0.149 | 0.098 | 0.030 | 0.275 | 0.260 |
LS | 0.129 | 0.152 | 0.151 | 0.120 | 0.044 | 0.111 | 0.232 | |
MF | 0.121 | 0.097 | 0.165 | 0.183 | 0.103 | 0.178 | ||
SF | 0.041 | 0.028 | 0.036 | 0.078 | 0.104 | 0.127 | 0.211 | |
Linolenic acid 18:3 | LN | 0.350 | 0.338 | 0.274 | 0.272 | 0.390 | 0.288 | 0.608 |
LS | 0.373 | 0.436 | 0.256 | 0.167 | 0.379 | 0.345 | 0.429 | |
MF | 0.300 | 0.572 | 0.254 | 0.143 | 0.256 | 0.559 | ||
SF | 0.304 | 0.313 | 0.169 | 0.089 | 0.628 | 0.207 | 0.409 | |
Oleic acid 18:1 | LN | 1.045 | 0.998 | 1.010 | 1.025 | 1.715 | 1.622 | 1.342 |
LS | 1.050 | 1.149 | 1.188 | 1.042 | 1.464 | 1.529 | 1.103 | |
MF | 1.568 | 1.797 | 1.584 | 1.392 | 1.297 | 1.104 | ||
SF | 1.389 | 0.952 | 0.701 | 0.780 | 3.013 | 0.834 | 0.703 | |
Stearic acid 18:0 | LN | 0.509 | 0.444 | 0.714 | 0.331 | 0.298 | 1.881 | 1.201 |
LS | 0.747 | 0.667 | 0.992 | 0.407 | 0.503 | 0.330 | 1.018 | |
MF | 0.577 | 0.395 | 0.458 | 0.393 | 0.179 | 1.629 | ||
SF | 0.281 | 0.143 | 0.289 | 0.255 | 0.357 | 0.350 | 1.006 | |
Linoleic acid 18:2 | LN | 1.052 | 1.021 | 0.836 | 0.771 | 1.322 | 0.945 | 0.795 |
LS | 1.168 | 1.195 | 0.860 | 0.568 | 1.266 | 0.976 | 0.576 | |
MF | 1.097 | 1.706 | 0.902 | 0.587 | 0.833 | 0.590 | ||
SF | 1.232 | 1.002 | 0.556 | 0.356 | 2.634 | 0.559 | 0.362 | |
STILBENES | ||||||||
Pinosylvin | LN | 1.464 | 1.314 | 0.409 | 0.664 | 1.067 | 0.377 | 0.043 |
LS | 2.037 | 1.407 | 0.626 | 0.200 | 1.227 | 0.761 | 0.063 | |
MF | 1.991 | 1.311 | 1.326 | 0.091 | 0.350 | 0.000 | ||
SF | 2.202 | 1.167 | 0.945 | 0.374 | 1.741 | 0.260 | 0.037 | |
Pinosylvin monomethyl ether | LN | 1.706 | 2.039 | 0.973 | 1.128 | 1.530 | 1.243 | 0.278 |
LS | 2.726 | 1.930 | 1.041 | 0.283 | 1.665 | 1.759 | 0.294 | |
MF | 2.431 | 1.369 | 2.774 | 0.289 | 1.029 | 0.000 | ||
SF | 2.021 | 1.341 | 1.779 | 0.301 | 1.711 | 0.975 | 0.106 | |
RESIN ACIDS | ||||||||
Dehydroabietic acid | LN | 2.108 | 1.888 | 1.018 | 1.073 | 2.706 | 2.178 | 1.313 |
LS | 2.171 | 1.286 | 0.913 | 0.707 | 2.616 | 3.013 | 1.588 | |
MF | 1.955 | 1.516 | 2.176 | 1.269 | 2.340 | 2.336 | ||
SF | 2.666 | 1.587 | 1.649 | 1.367 | 3.137 | 3.290 | 2.503 | |
Abietic acid | LN | 1.882 | 2.674 | 1.905 | 1.568 | 2.721 | 0.899 | 0.404 |
LS | 3.994 | 1.987 | 1.216 | 0.905 | 3.153 | 1.682 | 0.398 | |
MF | 3.146 | 1.094 | 3.654 | 1.318 | 1.549 | 1.286 | ||
SF | 3.222 | 1.741 | 2.190 | 0.920 | 3.758 | 2.291 | 1.097 | |
Palustric acid | LN | 1.085 | 1.585 | 1.024 | 1.004 | 1.419 | 0.059 | 0.000 |
LS | 2.707 | 1.248 | 0.893 | 0.635 | 1.845 | 0.031 | 0.000 | |
MF | 1.506 | 0.603 | 1.682 | 0.572 | 0.000 | 0.000 | ||
SF | 2.094 | 1.059 | 1.333 | 0.768 | 1.998 | 0.000 | 0.000 | |
Pimaric acid | LN | 1.074 | 1.274 | 0.853 | 0.864 | 1.380 | 0.744 | 0.373 |
LS | 1.731 | 1.073 | 0.888 | 0.582 | 1.494 | 1.206 | 0.583 | |
MF | 1.500 | 0.955 | 1.750 | 0.562 | 1.053 | 0.835 | ||
SF | 1.544 | 0.887 | 1.212 | 0.782 | 1.687 | 1.316 | 0.746 | |
Sandaracopimaric acid | LN | 0.186 | 0.218 | 0.150 | 0.139 | 0.202 | 0.111 | 0.091 |
LS | 0.307 | 0.162 | 0.112 | 0.095 | 0.209 | 0.217 | 0.095 | |
MF | 0.245 | 0.111 | 0.267 | 0.088 | 0.198 | 0.175 | ||
SF | 0.234 | 0.123 | 0.159 | 0.085 | 0.281 | 0.265 | 0.160 | |
Isopimaric acid | LN | 0.512 | 0.636 | 0.341 | 0.239 | 0.721 | 0.670 | 0.312 |
LS | 0.960 | 0.503 | 0.351 | 0.259 | 0.792 | 1.013 | 0.270 | |
MF | 0.502 | 0.243 | 0.486 | 0.106 | 0.865 | 0.499 | ||
SF | 0.751 | 0.383 | 0.623 | 0.264 | 0.896 | 1.135 | 0.433 | |
Levopimaric acid | LN | 1.402 | 2.072 | 1.543 | 1.660 | 1.185 | 0.820 | 0.070 |
LS | 2.796 | 1.721 | 1.699 | 1.273 | 1.878 | 0.180 | 0.012 | |
MF | 1.418 | 0.857 | 1.391 | 0.951 | 0.127 | 0.116 | ||
SF | 2.256 | 1.022 | 1.560 | 1.320 | 1.892 | 0.104 | 0.046 | |
Neoabietic acid | LN | 1.161 | 1.741 | 1.226 | 1.093 | 1.188 | 0.000 | 0.000 |
LS | 2.868 | 1.375 | 0.976 | 0.700 | 1.636 | 0.239 | 0.000 | |
MF | 1.765 | 0.528 | 2.135 | 0.565 | 0.144 | 0.044 | ||
SF | 1.836 | 0.882 | 1.133 | 0.599 | 1.823 | 0.124 | 0.042 | |
STEROLS | ||||||||
Sitosterol | LN | 0.104 | 0.116 | 0.129 | 0.065 | 0.068 | 0.450 | 1.291 |
LS | 0.084 | 0.077 | 0.097 | 0.052 | 0.040 | 0.620 | 1.215 | |
MF | 0.064 | 0.046 | 0.058 | 0.044 | 0.326 | 1.653 | ||
SF | 0.035 | 0.034 | 0.048 | 0.027 | 0.038 | 0.460 | 1.420 | |
Stigmasta-3.5-diene | LN | 0.072 | 0.068 | 0.071 | 0.029 | 0.000 | 0.000 | 0.000 |
LS | 0.053 | 0.052 | 0.031 | 0.030 | 0.000 | 0.000 | 0.000 | |
MF | 0.034 | 0.011 | 0.027 | 0.020 | 0.000 | 0.000 | ||
SF | 0.000 | 0.006 | 0.004 | 0.004 | 0.012 | 0.000 | 0.000 | |
LIGNANS | ||||||||
Nortrachelogenin | LN | 0.029 | 0.596 | 0.245 | 0.051 | 0.207 | 0.155 | 0.000 |
LS | 0.000 | 0.041 | 0.064 | 0.011 | 0.152 | 0.224 | 0.000 | |
MF | 0.130 | 0.000 | 0.669 | 0.000 | 0.229 | 0.000 | ||
SF | 0.000 | 0.005 | 0.604 | 0.000 | 0.000 | 0.131 | 0.000 | |
Matairesinol | LN | 0.033 | 0.164 | 0.020 | 0.015 | 0.083 | 0.031 | 0.000 |
LS | 0.072 | 0.011 | 0.028 | 0.016 | 0.023 | 0.061 | 0.076 | |
MF | 0.011 | 0.000 | 0.085 | 0.000 | 0.000 | 0.000 | ||
SF | 0.000 | 0.005 | 0.020 | 0.004 | 0.000 | 0.044 | 0.000 |
Compound | Source | df | MS | F | p |
---|---|---|---|---|---|
Resin acids | Region | 3 | 24.400 | 1.173 | 0.34 |
Part of stem | 2 | 102.887 | 4.945 | 0.01 ** | |
Interaction | 6 | 42.946 | 2.064 | 0.09 | |
Triglycerides | Region | 3 | 83.278 | 7.629 | 0.00 ** |
Part of stem | 2 | 134.581 | 12.329 | 0.00 ** | |
Interaction | 6 | 25.998 | 2.382 | 0.05 | |
Lignans | Region | 3 | 0.125 | 0.425 | 0.74 |
Part of stem | 2 | 0.519 | 1.772 | 0.19 | |
Interaction | 6 | 0.449 | 1.533 | 0.20 | |
Sterols | Region | 3 | 0.002 | 3.353 | 0.03 * |
Part of stem | 2 | 0.001 | 1.675 | 0.20 | |
Interaction | 6 | 0.001 | 1.100 | 0.39 | |
Steryl esters | Region | 3 | 0.321 | 15.042 | 0.00 ** |
Part of stem | 2 | 0.367 | 17.170 | 0.00 ** | |
Interaction | 6 | 0.014 | 0.666 | 0.68 | |
Fatty acids | Region | 3 | 1.391 | 0.213 | 0.89 |
Part of stem | 2 | 27.875 | 4.259 | 0.02 * | |
Interaction | 6 | 8.155 | 1.246 | 0.31 | |
Total | Region | 3 | 222.208 | 4.062 | 0.02 * |
Part of stem | 2 | 138.940 | 2.540 | 0.10 | |
Interaction | 6 | 111.783 | 2.043 | 0.09 |
Compound | Source | df | MS | F | p |
---|---|---|---|---|---|
FATTY ACIDS | |||||
Palmitic acid 16:0 | Region | 3 | 0.546 | 88.613 | 0.00 ** |
Part of stem | 2 | 0.029 | 4.734 | 0.02 * | |
Interaction | 6 | 0.009 | 1.524 | 0.20 | |
Margaric acid 17:0 | Region | 3 | 1.095 | 70.433 | 0.00 ** |
Part of stem | 2 | 0.024 | 1.542 | 0.23 | |
Interaction | 6 | 0.011 | 0.737 | 0.62 | |
Linolenic acid 18:3 | Region | 3 | 0.042 | 1.399 | 0.26 |
Part of stem | 2 | 0.145 | 4.867 | 0.02 * | |
Interaction | 6 | 0.016 | 0.522 | 0.79 | |
Oleic acid 18:1 | Region | 3 | 0.080 | 6.175 | 0.00 ** |
Part of stem | 2 | 0.012 | 0.925 | 0.41 | |
Interaction | 6 | 0.021 | 1.638 | 0.17 | |
Stearic acid 18:0 | Region | 3 | 0.606 | 14.907 | 0.00 ** |
Part of stem | 2 | 0.178 | 4.389 | 0.02 * | |
Interaction | 6 | 0.014 | 0.337 | 0.68 | |
Linoleic acid 18:2 | Region | 3 | 0.020 | 0.873 | 0.47 |
Part of stem | 2 | 0.104 | 4.516 | 0.02 * | |
Interaction | 6 | 0.017 | 0.732 | 0.63 | |
STILBENES | |||||
Pinosylvin | Region | 3 | 0.028 | 0.224 | 0.88 |
Part of stem | 2 | 0.749 | 5.960 | 0.01 ** | |
Interaction | 6 | 0.071 | 0.568 | 0.75 | |
Pinosylvin monomethyl ether | Region | 3 | 0.003 | 0.022 | 0.10 |
Part of stem | 2 | 0.263 | 2.091 | 0.14 | |
Interaction | 6 | 0.098 | 0.775 | 0.60 | |
RESIN ACIDS | |||||
Dehydroabietic acid | Region | 3 | 0.049 | 3.082 | 0.04 * |
Part of stem | 2 | 0.151 | 9.497 | 0.00 ** | |
Interaction | 6 | 0.038 | 2.360 | 0.06 | |
Abietic acid | Region | 3 | 0.007 | 0.122 | 0.95 |
Part of stem | 2 | 0.234 | 4.060 | 0.03 * | |
Interaction | 6 | 0.117 | 2.028 | 0.09 | |
Palustric acid | Region | 3 | 0.036 | 0.806 | 0.50 |
Part of stem | 2 | 0.181 | 4.107 | 0.03 * | |
Interaction | 6 | 0.105 | 2.374 | 0.05 | |
Pimaric acid | Region | 3 | 0.019 | 0.798 | 0.51 |
Part of stem | 2 | 0.087 | 3.572 | 0.04 * | |
Interaction | 6 | 0.048 | 1.968 | 0.10 | |
Sandaracopimaric acid | Region | 3 | 0.010 | 0.342 | 0.80 |
Part of stem | 2 | 0.178 | 5.958 | 0.01 ** | |
Interaction | 6 | 0.068 | 2.272 | 0.06 | |
Isopimaric acid | Region | 3 | 0.054 | 1.518 | 0.23 |
Part of stem | 2 | 0.193 | 5.466 | 0.01 ** | |
Interaction | 6 | 0.073 | 2.068 | 0.09 | |
Levopimaric acid | Region | 3 | 0.065 | 2.966 | 0.05 * |
Part of stem | 2 | 0.073 | 3.301 | 0.05 | |
Interaction | 6 | 0.057 | 2.578 | 0.04 * | |
Neoabietic acid | Region | 3 | 0.040 | 0.872 | 0.47 |
Part of stem | 2 | 0.234 | 5.059 | 0.01 * | |
Interaction | 6 | 0.126 | 2.749 | 0.03 * | |
STEROLS | |||||
Sitosterol | Region | 3 | 0.534 | 22.381 | 0.00 ** |
Part of stem | 2 | 0.030 | 1.276 | 0.29 | |
Interaction | 6 | 0.011 | 0.474 | 0.82 | |
Stigmasta-3,5-diene | nd | ||||
LIGNANS | |||||
Nortrachelogenin | nd | ||||
Matairesinol | nd |
Total Variance Explained | PC 1 | PC 2 | PC 1 | PC 2 |
---|---|---|---|---|
Stem wood | All biomass | |||
Initial Eigenvalue | 2.52 | 2.07 | 2.77 | 1.79 |
% of variance | 42.01 | 34.47 | 46.20 | 29.76 |
Rotation SSL | 2.33 | 2.26 | 2.75 | 1.81 |
% of variance SSL | 38.79 | 37.69 | 45.87 | 30.09 |
Rotated component matrix | ||||
Fatty acids | 0.955 | - | 0.509 | 0.820 |
Resin acids | 0.930 | - | - | 0.856 |
Lignans | 0.638 | 0.327 | 0.846 | - |
Sterols | - | 0.788 | 0.928 | - |
Steryl esters | - | 0.860 | 0.868 | - |
Triglycerides | - | 0.875 | 0.376 | −0.607 |
Stem Wood—Final Felling | |||||
Resin acids | Triglycerides | Lignans | Sterols | Steryl esters | |
Triglycerides | −0.129 | ||||
Lignans | 0.394 ** | 0.149 | |||
Sterols | 0.269 | 0.538 ** | 0.252 | ||
Steryl esters | 0.116 | 0.607 ** | 0.261 | 0.631 ** | |
Fatty acids | 0.857 ** | −0.429 ** | 0.419 ** | 0.054 | −0.076 |
Stem Wood—Thinning | |||||
Resin acids | Triglycerides | Lignans | Sterols | Steryl esters | |
Triglycerides | 0.209 | ||||
Lignans | 0.699 ** | 0.559 * | |||
Sterols | 0.244 | 0.556 * | 0.402 | ||
Steryl esters | 0.361 | 0.753 ** | 0.731 ** | 0.368 | |
Fatty acids | 0.788 ** | −0.098 | 0.578 * | 0.192 | 0.190 |
Sawdust | |||||
Resin acids | Triglycerides | Lignans | Sterols | Steryl esters | |
Triglycerides | −0.393 | ||||
Lignans | −0.669 * | 0.684 * | |||
Sterols | −0.609 | 0.614 | 0.673 * | ||
Steryl esters | 0.008 | 0.770 ** | 0.295 | 0.194 | |
Fatty acids | 0.861 ** | −0.420 | −0.778 ** | −0.677 * | 0.178 |
Branch biomass | |||||
Resin acids | Triglycerides | Lignans | Sterols | Steryl esters | |
Triglycerides | 0.790 * | ||||
Lignans | −0.382 | −0.445 | |||
Sterols | −0.411 | −0.291 | 0.619 | ||
Steryl esters | −0.127 | −0.018 | 0.415 | 0.936 ** | |
Fatty acids | 0.666 | 0.841 ** | −0.576 | −0.302 | 0.006 |
Bark | |||||
Resin acids | Triglycerides | Lignans | Sterols | Steryl esters | |
Triglycerides | −0.363 | ||||
Lignans | 0.029 | 0.026 | |||
Sterols | 0.252 | −0.414 | 0.773 * | ||
Steryl esters | −0.264 | 0.884 ** | −0.017 | −0.513 | |
Fatty acids | 0.728 * | −0.351 | 0.557 | 0.475 | −0.207 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verkasalo, E.; Roitto, M.; Möttönen, V.; Tanner, J.; Kumar, A.; Kilpeläinen, P.; Sikanen, L.; Ilvesniemi, H. Extractives of Tree Biomass of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Lipophilic Compounds, Stilbenes, and Lignans. Forests 2022, 13, 779. https://doi.org/10.3390/f13050779
Verkasalo E, Roitto M, Möttönen V, Tanner J, Kumar A, Kilpeläinen P, Sikanen L, Ilvesniemi H. Extractives of Tree Biomass of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Lipophilic Compounds, Stilbenes, and Lignans. Forests. 2022; 13(5):779. https://doi.org/10.3390/f13050779
Chicago/Turabian StyleVerkasalo, Erkki, Marja Roitto, Veikko Möttönen, Johanna Tanner, Anuj Kumar, Petri Kilpeläinen, Lauri Sikanen, and Hannu Ilvesniemi. 2022. "Extractives of Tree Biomass of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Lipophilic Compounds, Stilbenes, and Lignans" Forests 13, no. 5: 779. https://doi.org/10.3390/f13050779
APA StyleVerkasalo, E., Roitto, M., Möttönen, V., Tanner, J., Kumar, A., Kilpeläinen, P., Sikanen, L., & Ilvesniemi, H. (2022). Extractives of Tree Biomass of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Lipophilic Compounds, Stilbenes, and Lignans. Forests, 13(5), 779. https://doi.org/10.3390/f13050779