Drought Effects on Morpho-Physiological and Biochemical Traits in Persian Oak and Black Poplar Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survival, Growth and Biomass
2.2. Seedling Quality Index
2.3. Relative Water Content
2.4. Electrolyte Leakage
2.5. Plant Pigment Content
2.6. Malondialdehyde (MDA)
2.7. Proline
2.8. Data Analysis
3. Results
3.1. Survival and Growth
3.2. Biomass and Seedling Quality Index
3.3. Photosynthetic Pigments
3.4. Water Relation and Biochemical Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fenner, M. Seedlings. New Phytol. 1987, 106, 35–47. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On Underestimation of Global Vulnerability to Tree Mortality and Forest Die-off from Hotter Drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Ovalle, J.F.; Arellano, E.C.; Ginocchio, R.; Editors, A.; Altaf Arain, M.; Jokela, E.J. Trade-Offs between Drought Survival and Rooting Strategy of Two South American Mediterranean Tree Species: Implications for Dryland Forests Restoration. Forests 2015, 6, 3733–3747. [Google Scholar] [CrossRef] [Green Version]
- López, B.C.; Holmgren, M.; Sabaté, S.; Gracia, C.A. Estimating Annual Rainfall Threshold for Establishment of Tree Species in Water-Limited Ecosystems Using Tree-Ring Data. J. Arid Environ. 2008, 72, 602–611. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. Sustain. Agric. 2009, 29, 153–188. [Google Scholar] [CrossRef] [Green Version]
- Aspelmeier, S.; Leuschner, C. Genotypic Variation in Drought Response of Silver Birch (Betula pendula Roth): Leaf and Root Morphology and Carbon Partitioning. Trees-Struct. Funct. 2006, 20, 42–52. [Google Scholar] [CrossRef]
- Ruthrof, K.X.; Bader, M.K.F.; Matusick, G.; Jakob, S.; Hardy, G.E.S.J. Promoting Seedling Physiological Performance and Early Establishment in Degraded Mediterranean-Type Ecosystems. New For. 2016, 47, 357–376. [Google Scholar] [CrossRef] [Green Version]
- Bader, M.K.F.; Ehrenberger, W.; Bitter, R.; Stevens, J.; Miller, B.P.; Chopard, J.; Rüger, S.; Hardy, G.E.S.J.; Poot, P.; Dixon, K.W.; et al. Spatio-Temporal Water Dynamics in Mature Banksia menziesii Trees during Drought. Physiol. Plant. 2014, 152, 301–315. [Google Scholar] [CrossRef]
- Oraee, A.; Tehranifar, A. Evaluating the Potential Drought Tolerance of Pansy through Its Physiological and Biochemical Responses to Drought and Recovery Periods. Sci. Hortic. 2020, 265, 109225. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Rasoli, F.; Gohari, G. The Effect of Potassium on the Yield and Concentrations of Microelements in Cowpea (Vigna unguiculata L. Walp.) under Drought Stress. J. Iran. Plant Ecophysiol. Res. 2018, 12, 25–34. [Google Scholar]
- Jafarnia, S.; Akbarinia, M.; Hosseinpour, B.; Modarres Sanavi, S.A.; Salami, S.A. Effect of Drought Stress on Some Growth, Morphological, Physiological, and Biochemical Parameters of Two Different Populations of Quercus brantii. iForest 2018, 11, 212–220. [Google Scholar] [CrossRef]
- Aalipour, H.; Nikbakht, A.; Etemadi, N.; Rejali, F.; Soleimani, M. Biochemical Response and Interactions between Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria during Establishment and Stimulating Growth of Arizona Cypress (Cupressus arizonica G.) under Drought Stress. Sci. Hortic. 2020, 261, 108923. [Google Scholar] [CrossRef]
- Li, Z.; Wu, N.; Liu, T.; Chen, H.; Tang, M. Correction: Sex-Related Responses of Populus cathayana Shoots and Roots to AM Fungi and Drought Stress. PLoS ONE 2015, 10, e0128841. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Singh, A.K.; Singh, S.K.; Khan, I.M. Morphological, Physiological and Biochemical Responses of Poplar Plants to Drought Stress. J. AgriSearch 2018, 5, 184–189. [Google Scholar] [CrossRef]
- Echevarría-Zomeño, S.; Ariza, D.; Jorge, I.; Lenz, C.; del Campo, A.; Jorrín, J.v.; Navarro, R.M. Changes in the Protein Profile of Quercus ilex Leaves in Response to Drought Stress and Recovery. J. Plant Physiol. 2009, 166, 233–245. [Google Scholar] [CrossRef]
- Ashkavand, P.; Tabari Koucheksraei, M.; Zarafshar, M.; Ghanbary, E. Morpho-Physiological Change of Mahaleb Cherry (Prunus mahaleb L.) Seedlings under Silicon Nanoparticles (SiO2NPs) Affected. Appl. Biol. 2017, 29, 45–58. [Google Scholar] [CrossRef]
- Ghasemi, M.; Arzani, K.; Yadollahi, A.; Hokmabadi, H.; Ghasemi, S. Effect of Drought Stress on Abscisic Acid Changes, Leaf Water Potential and Relative Water Content of Some Pistachio Seedling Rootstocks. J. Pist. Sci. Technol. 2020, 4, 120–131. [Google Scholar]
- Azizi, S.; Tabari, K.M.; Hadian, J.; Fallah, N.A.A.; Modarres, S.S.A.M. Physiological Responses of Common Myrtle Seedling (Myrtus communis L.) to Multimicrobial Inoculation under Water Deficit Stress. J. Sol. Biol. 2019, 7, 167–180. [Google Scholar]
- Bhusal, N.; Lee, M.; Reum Han, A.; Han, A.; Kim, H.S. Responses to Drought Stress in Prunus sargentii and Larix kaempferi Seedlings Using Morphological and Physiological Parameters. For. Ecol. Manag. 2020, 465, 118099. [Google Scholar] [CrossRef]
- Sisakht Nejad, M.; Zolfaghari, R. The Effect of Water Stress on Gas Exchange in Two Iranian Oak Species (Quercus brantii) and Vyvl (Quercus libani). Zagros For. Res. 2015, 1, 15–31. [Google Scholar]
- Sadeghzadeh Hallaj, M.H.; Azadfar, D.; Mirzaei Nodoushan, H.; Arzanesh, M.H.; Tohidfar, M. Shade Role in Facilitation Drought Stress Symptoms on Physiology of Mount Atlas Mastic (Pistacia atlantica Desf.) Seedlings. Iran. J. For. Poplar Res. 2017, 25, 332–341. [Google Scholar] [CrossRef]
- Tafreshi, S.A.; Aghaie, P.; Momayez, H.R.; Hejaziyan, S.A. Response of in Vitro-Regenerated Myrtus communis L. Shoots to PEG-Induced Water Stress. Biocatal. Agric. Biotechnol. 2021, 34, 102033. [Google Scholar] [CrossRef]
- Yi, L.; Li, B.; Korpelainen, H.; Yu, F.; Wu, L.; Tong, L.; Liu, M. Mechanisms of Drought Response in Populus. South For. 2020, 82, 359–366. [Google Scholar] [CrossRef]
- Azizi, S.; Tabari Kouchaksaraei, M.; Hadian, J.; Fallah Nosrat Abad, A.R.; Modarres Sanavi, S.A.M.; Ammer, C.; Bader, M.K.F. Dual Inoculations of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Boost Drought Resistance and Essential Oil Yield of Common Myrtle. For. Ecol. Manag. 2021, 497, 119478. [Google Scholar] [CrossRef]
- Aaltonen, H.; Linden, A.; Heinonsalo, J.; Biasi, C.; Pumpanen, J. Effects of Prolonged Drought Stress on Scots Pine Seedling Carbon Allocation. Tree Physiol. 2017, 37, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Jazirehi, M.; Rostaghi, M.E. Zagros Silviculture; University of Tehran Publications: Tehran, Iran, 2003; Volume 264, pp. 560–561. [Google Scholar]
- Wei, H.; Movahedi, A.; Xu, C.; Sun, W.; Li, L.; Wang, P.; Li, D.; Zhuge, Q. Overexpression of PtHMGR Enhances Drought and Salt Tolerance of Poplar. Ann. Bot. 2020, 125, 785–803. [Google Scholar] [CrossRef]
- Tschaplinski, T.J.; Tuskan, G.A.; Gunderson, C.A. Water-Stress Tolerance of Black and Eastern Cottonwood Clones and Four Hybrid Progeny. I. Growth, Water Relations, and Gas Exchange. Can. J. For. Res. 1994, 24, 364–371. [Google Scholar] [CrossRef]
- Bayatkashkoli, A.; Amiri, S.; Soltani, A.; Faezipour, M.; Doosthoseini, K. Assessment of Internal Trade of Iranian Poplar Timber. Iran. J. Nat. Resour. 2009, 1, 1397–1415. [Google Scholar]
- Hosseini, S.S.; Shahnabati, N.; Salami, H.; Yazdani, S.; Calagari, M. Estimating the Demand for Poplar Wood in the Wood and Paper Industries of Iran. Iran. J. For. Poplar Res. 2021, 29, 65–76. [Google Scholar] [CrossRef]
- Vaghefi, S.A.; Keykhai, M.; Jahanbakhshi, F.; Sheikholeslami, J.; Ahmadi, A.; Yang, H.; Abbaspour, K.C. The Future of Extreme Climate in Iran. Sci. Rep. 2019, 9, 1464. [Google Scholar] [CrossRef] [Green Version]
- Zarik, L.; Meddich, A.; Hijri, M.; Hafidi, M.; Ouhammou, A.; Ouahmane, L.; Duponnois, R.; Boumezzough, A. Use of Arbuscular Mycorrhizal Fungi to Improve the Drought Tolerance of Cupressus atlantica G. C. R. Biol. 2016, 339, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.D.; Monserud, R.A. Foliage Height Influences Specific Leaf Area of Three Conifer Species. Can. J. For. Res. 2003, 33, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality Appraisal of White Spruce and White Pine Seedling Stock in Nurseries. For. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Y.; Wang, G.; Yang, L.; Sun, X. Ecophysiological Responses of Abies fabri Seedlings to Drought Stress and Nitrogen Supply. Physiol. Plant. 2010, 139, 335–347. [Google Scholar] [CrossRef]
- Campos, P.S.; Quartin, V.; Ramalho, J.C.; Nunes, M.A. Electrolyte Leakage and Lipid Degradation Account for Cold Sensitivity in Leaves of Coffea sp. Plants. J. Plant Physiol. 2003, 160, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts. I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Engelbrecht, B.M.J.; Kursar, T.A. Comparative Drought-Resistance of Seedlings of 28 Species of Co-Occurring Tropical Woody Plants. Oecologia 2003, 136, 383–393. [Google Scholar] [CrossRef]
- Ghanbary, E.; Fathizadeh, O.; Pazhouhan, I.; Zarafshar, M.; Kouchaksaraei, M.T.; Jafarnia, S.; Parad, G.A.; Bader, M.K.F. Drought and Pathogen Effects on Survival, Leaf Physiology, Oxidative Damage, and Defense in Two Middle Eastern Oak Species. Forests 2021, 12, 247. [Google Scholar] [CrossRef]
- Viger, M.; Smith, H.K.; Cohen, D.; Dewoody, J.; Trewin, H.; Steenackers, M.; Bastien, C.; Taylor, G. Adaptive Mechanisms and Genomic Plasticity for Drought Tolerance Identified in European Black Poplar (Populus nigra L.). Tree Physiol. 2016, 36, 909–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrams, M.D. Adaptations and Responses to Drought in Quercus Species of North America. Tree Physiol. 1990, 7, 227–238. [Google Scholar] [CrossRef]
- Thomas, F.M.; Gausling, T.; For Sci, A.; Thomas, F.; Gausling, T. Morphological and Physiological Responses of Oak Seedlings (Quercus petraea and Q. robur) to Moderate Drought. Ann. For. Sci. 2000, 57, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Muller, B.; Pantin, F.; Génard, M.; Turc, O.; Freixes, S.; Piques, M.; Gibon, Y. Water Deficits Uncouple Growth from Photosynthesis, Increase C Content, and Modify the Relationships between C and Growth in Sink Organs. J. Exp. Bot. 2011, 62, 1715–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Körner, C. Paradigm Shift in Plant Growth Control. Curr. Opin. Plant Biol. 2015, 25, 107–114. [Google Scholar] [CrossRef]
- Tardieu, F. Plant Response to Environmental Conditions: Assessing Potential Production, Water Demand, and Negative Effects of Water Deficit. Front. Physiol. 2013, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global Convergence in the Vulnerability of Forests to Drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef] [Green Version]
- Padilla, F.M.; Pugnaire, F.I. Rooting Depth and Soil Moisture Control Mediterranean Woody Seedling Survival during Drought. Funct. Ecol. 2007, 21, 489–495. [Google Scholar] [CrossRef]
- Manes, F.; Vitale, M.; Donato, E.; Giannini, M.; Puppi, G. Different Ability of Three Mediterranean Oak Species to Tolerate Progressive Water Stress. Photosynthetica 2006, 44, 387–393. [Google Scholar] [CrossRef]
- Grossnickle, S.C.; El-Kassaby, Y.A. Bareroot versus Container Stocktypes: A Performance Comparison. New For. 2016, 47, 1–51. [Google Scholar] [CrossRef]
- Dixon, R.K.; Pallardy, S.G.; Garrett, H.E.; Cox, G.S.; Sander, I.L. Comparative Water Relations of Container-Grown and Bare-Root Ectomycorrhizal and Nonmycorrhizal Quercus velutina Seedlings. Can. J. Bot. 1983, 61, 1559–1565. [Google Scholar] [CrossRef]
- Larcher, W. Physiological Plant Ecology; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Luis Quero, J.; Villar, R.; Marañón, T.; Zamora, R.; Quero, J.L. Interactions of Drought and Shade Effects on Seedlings of Four Quercus Species: Physiological and Structural Leaf Responses. New Phytol. 2006, 170, 819–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monclus, R.; Dreyer, E.; Villar, M.; Delmotte, F.M.; Delay, D.; Petit, J.-M.; Barbaroux, C.; le Thiec, D.; Bréchet, C.; Brignolas, F. Impact of Drought on Productivity and Water Use Efficiency in 29 Genotypes of Populus deltoides × Populus nigra. New Phytol. 2006, 169, 765–777. [Google Scholar] [CrossRef]
- Zhao, C.; Si, J.; Feng, Q.; Yu, T.; Luo, H.; Qin, J.; Sepahvand, T.; Etemad, V.; Matinizadeh, M.; Shirvany, A. Ecophysiological Responses to Drought Stress in Populus euphratica. Sci. Cold Arid Reg. 2021, 13, 326–336. [Google Scholar] [CrossRef]
- Sepahvand, T.; Etemad, V.; Matinizadeh, M.; Shirvany, A. Symbiosis of AMF with Growth Modulation and Antioxidant Capacity of Caucasian Hackberry (Celtis caucasica L.) Seedlings under Drought Stress. Cent. Asian J. Environ. Sci. Technol. Innov. 2021, 1, 20–35. [Google Scholar]
- Rooki, M.; Tabari Kouchaksaraei, M.; Ehsan, S. The Role of Rhizobacteria Pseudomonas Fluorescens in Improving Morphological Traits of Cupressus sempervirens Var. Horizontalis Seedling under Water Deficit. J. For. Wood Prod. 2019, 72, 205–213. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf Chlorophyll Content as a Proxy for Leaf Photosynthetic Capacity. Glob. Chang. Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef]
- Tatari, M.; Jafari, A.; Shirmardi, M.; Mohamadi, M. Using Morphological and Physiological Traits to Evaluate Drought Tolerance of Pear Populations (Pyrus spp.). Int. J. Fruit Sci. 2020, 20, 837–854. [Google Scholar] [CrossRef]
- Ramel, F.; Birtic, S.; Cuiné, S.; Triantaphylidès, C.; Ravanat, J.L.; Havaux, M. Chemical Quenching of Singlet Oxygen by Carotenoids in Plants. Plant Physiol. 2012, 158, 1267. [Google Scholar] [CrossRef] [Green Version]
- Ghanbary, E.; Kouchaksaraei, M.T.; Guidi, L.; Mirabolfathy, M.; Etemad, V.; Sanavi, S.A.; Struve, D. Change in Biochemical Parameters of Persian Oak (Quercus brantii Lindl.) Seedlings Inoculated by Pathogens of Charcoal Disease under Water Deficit Conditions. Trees 2018, 32, 1595–1608. [Google Scholar] [CrossRef]
- Xiao, X.; Xu, X.; Xiao, F.Y.; Xu, X.; Yang, X. Adaptive Responses to Progressive Drought Stress in Two Populus cathayana Populations. Silva Fenn. 2008, 42, 705–719. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Yang, F.; Zhang, S.; Korpelainen, H.; Li, C. Physiological and Proteomic Responses of Two Contrasting Populus cathayana Populations to Drought Stress. Physiol. Plant. 2009, 136, 150–168. [Google Scholar] [CrossRef]
- Karimi, M.; KIAN, E.F.; Zahedi, S.M.; Karimi, K.A. Determination of the Most Important Traits Affecting the Electrolyte Leakage of Wild Pear (Pyrus biossieriana Buhse) under Drought Stress Conditions Using Multivariate Statistical Methods. J. Plant Environ. Physiol. 2018, 13, 83–94. [Google Scholar]
- Seki, M.; Umezawa, T.; Urano, K.; Shinozaki, K. Regulatory Metabolic Networks in Drought Stress Responses. Curr. Opin. Plant Biol. 2007, 10, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of Proline under Changing Environments: A Review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaleel, C.A.; Manivannan, P.; Sankar, B.; Kishorekumar, A.; Gopi, R.; Somasundaram, R.; Panneerselvam, R. Induction of Drought Stress Tolerance by Ketoconazole in Catharanthus roseus Is Mediated by Enhanced Antioxidant Potentials and Secondary Metabolite Accumulation. Colloids Surf. B Biointerfaces 2007, 60, 201–206. [Google Scholar] [CrossRef]
- Ghanbary, E.; Tabari Kouchaksaraei, M.; Zarafshar, M.; Bader, K.F.M.; Mirabolfathy, M.; Ziaei, M. Differential Physiological and Biochemical Responses of Quercus infectoria and Q. libani to Drought and Charcoal Disease. Physiol. Plant. 2020, 168, 876–892. [Google Scholar] [CrossRef]
- O’Brien, M.J.; Leuzinger, S.; Philipson, C.D.; Tay, J.; Hector, A. Drought Survival of Tropical Tree Seedlings Enhanced by Non-Structural Carbohydrate Levels. Nat. Clim. 2014, 4, 710–714. [Google Scholar] [CrossRef]
- Bhusal, N.; Lee, M.; Lee, H.; Adhikari, A.; Han, A.R.; Han, A.; Kim, H.S. Evaluation of Morphological, Physiological, and Biochemical Traits for Assessing Drought Resistance in Eleven Tree Species. Sci. Total Environ. 2021, 779, 146466. [Google Scholar] [CrossRef]
- Khaleghi, A.; Naderi, R.; Brunetti, C.; Maserti, B.E.; Salami, S.A.; Babalar, M. Morphological, Physiochemical and Antioxidant Responses of Maclura pomifera to Drought Stress. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Regier, N.; Streb, S.; Cocozza, C.; Schaub, M.; Cherubini, P.; Zeeman, S.C.; Frey, B. Drought Tolerance of Two Black Poplar (Populus nigra L.) Clones: Contribution of Carbohydrates and Oxidative Stress Defence. Plant Cell Environ. 2009, 32, 1724–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojović, M.M.; Borišev, M.; Župunski, M. Clonal Differences of Black Poplar Cuttings for Morpho-Physiological and Biochemical Responses to Soil Water Deficits. Artic. J. Anim. Plant Sci. 2013, 23, 1725–1732. [Google Scholar]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and Artifacts. Plant Physiol. 2019, 180, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimi, A.; Tabari, M.; Javanmard, Z.; Bader, M.K.-F. Drought Effects on Morpho-Physiological and Biochemical Traits in Persian Oak and Black Poplar Seedlings. Forests 2022, 13, 399. https://doi.org/10.3390/f13030399
Karimi A, Tabari M, Javanmard Z, Bader MK-F. Drought Effects on Morpho-Physiological and Biochemical Traits in Persian Oak and Black Poplar Seedlings. Forests. 2022; 13(3):399. https://doi.org/10.3390/f13030399
Chicago/Turabian StyleKarimi, Amir, Masoud Tabari, Zeinab Javanmard, and Martin Karl-Friedrich Bader. 2022. "Drought Effects on Morpho-Physiological and Biochemical Traits in Persian Oak and Black Poplar Seedlings" Forests 13, no. 3: 399. https://doi.org/10.3390/f13030399
APA StyleKarimi, A., Tabari, M., Javanmard, Z., & Bader, M. K. -F. (2022). Drought Effects on Morpho-Physiological and Biochemical Traits in Persian Oak and Black Poplar Seedlings. Forests, 13(3), 399. https://doi.org/10.3390/f13030399