Rewetting Tropical Peatlands Reduced Net Greenhouse Gas Emissions in Riau Province, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Measurements of Greenhouse Gas Emissions
2.3. Monitoring of the Groundwater Level
2.4. Statistical Analysis
3. Results
3.1. Effects of Rewetting on Greenhouse Gas Fluxes
3.2. Global Warming Potential and Net Greenhouse Gas Emissions
4. Discussion
4.1. The Interplay between Vegetation and Anoxic Soil Environment
4.2. Net Emissions and Global Warming
4.3. Subnational Mitigation Actions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallego-Sala, A.V.; Charman, D.J.; Brewer, S.; Page, S.E.; Prentice, I.C.; Friedlingstein, P.; Moreton, S.; Amesbury, M.J.; Beilman, D.W.; Björck, S.; et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Chang. 2018, 8, 907–913. [Google Scholar] [CrossRef] [Green Version]
- Loisel, J.; Gallego-Sala, A.V.; Amesbury, M.J.; Magnan, G.; Anshari, G.; Beilman, D.W.; Benavides, J.C.; Blewett, J.; Camill, P.; Charman, D.J.; et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Chang. 2021, 11, 70–77. [Google Scholar] [CrossRef]
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef] [Green Version]
- Gumbricht, T.; Roman-Cuesta, R.M.; Verchot, L.; Herold, M.; Wittmann, F.; Householder, E.; Herold, N.; Murdiyarso, D. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Chang. Biol. 2017, 23, 3581–3599. [Google Scholar] [CrossRef] [Green Version]
- Page, S.; Rieley, J. Tropical peat swamp forests of Southeast Asia. In The Wetland Book; II: Distribution, Description and Conservation; Springer: Dordrecht, The Netherlands, 2018; pp. 1753–1761. [Google Scholar] [CrossRef]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
- Hergoualc’h, K.; Verchot, L.V. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Glob. Biogeochem. Cycles 2011, 25, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hergoualc’h, K.; Verchot, L.V. Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 789–807. [Google Scholar] [CrossRef]
- Eickenscheidt, T.; Heinichen, J.; Drösler, M. The greenhouse gas balance of a drained fen peatland is mainly controlled by land-use rather than soil organic carbon content. Biogeosciences 2015, 12, 5161–5184. [Google Scholar] [CrossRef] [Green Version]
- Giesen, W.; Sari, E.N.N. Tropical Peatland Restoration Report: The Indonesian Case; Berbak Green Prosperity Partnership/Kemitraan Kesejatheraan Hijau (Kehijau Berbak): Wageningen, The Netherlands, 2018; Available online: https://www.researchgate.net/publication/323676663_Tropical_Peatland_Restoration_Report_the_Indonesian_case?channel=doi&linkId=5aa3a4c745851543e63d9011&showFulltext=true (accessed on 28 February 2018).
- Taufik, M.; Minasny, B.; Mcbratney, A.B.; Van Dam, J.C.; Jones, P.D.; Van Lanen, H.A.J. Human-induced changes in Indonesian peatlands increase drought severity. Environ. Res. Lett. 2020, 15, 084013. [Google Scholar] [CrossRef]
- Taufik, M.; Setiawan, B.I.; Van Lanen, H.A.J. Increased fire hazard in human-modified wetlands in Southeast Asia. Ambio 2019, 48, 363–373. [Google Scholar] [CrossRef]
- Taufik, M.; Widyastuti, M.T.; Sulaiman, A.; Murdiyarso, D.; Santikayasa, I.P.; Minasny, B. An improved drought-fire assessment for managing fire risks in tropical peatlands. Agric. For. Meteorol. 2022, 312, 108738. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Lestari, I.; Hanggara, B.B.; Saragi-Sasmito, M.; Basuki, I.; Taufik, M. Managing Water Regimes. In Wetland Carbon and Environmental Management; American Geophysical Union: Washington, DC, USA, 2021; pp. 355–369. [Google Scholar] [CrossRef]
- Ritzema, H.; Limin, S.; Kusin, K.; Jauhiainen, J.; Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena 2014, 114, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Dohong, A.; Abdul Aziz, A.; Dargusch, P. A Review of techniques for effective tropical peatland restoration. Wetlands 2018, 38, 275–292. [Google Scholar] [CrossRef]
- Sutikno, S.; Rinaldi, R.; Saputra, E.; Kusairi, M.; Saharjo, B.H.; Putra, E.I. Water management for hydrological restoration and fire prevention in tropical peatland. IOP Conf. Ser. Mater. Sci. Eng. 2020, 933. [Google Scholar] [CrossRef]
- Urzainki, I.; Laurén, A.; Palviainen, M.; Haahti, K.; Budiman, A.; Basuki, I.; Netzer, M.; Hökkä, H. Canal blocking optimization in restoration of drained peatlands. Biogeosciences 2020, 17, 4769–4784. [Google Scholar] [CrossRef]
- Rixen, T.; Baum, A.; Wit, F.; Samiaji, J. Carbon leaching from tropical peat soils and consequences for carbon balances. Front. Earth Sci. 2016, 4, 74. [Google Scholar] [CrossRef] [Green Version]
- Jauhiainen, J.; Limin, S.; Silvennoinen, H.; Vasander, H. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 2008, 89, 3503–3514. [Google Scholar] [CrossRef]
- Hergoualc’h, K.; Hendry, D.T.; Murdiyarso, D.; Verchot, L.V. Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry 2017, 135, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Murdiyarso, D.; Saragi-Sasmito, M.F.; Rustini, A. Greenhouse gas emissions in restored secondary tropical peat swamp forests. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 507–520. [Google Scholar] [CrossRef]
- Swails, E.; Hergoualc’h, K.; Verchot, L.; Novita, N.; Lawrence, D. Spatio-temporal variability of peat CH4 and N2O fluxes and their contribution to peat GHG budgets in Indonesian forests and oil palm plantations. Front. Environ. Sci. 2021, 9, 48. [Google Scholar] [CrossRef]
- Hirano, T.; Segah, H.; Kusin, K.; Limin, S.; Takahashi, H.; Osaki, M. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Chang. Biol. 2012, 18, 3410–3422. [Google Scholar] [CrossRef]
- Evans, C.D.; Peacock, M.; Baird, A.J.; Artz, R.R.E.; Burden, A.; Callaghan, N.; Chapman, P.J.; Cooper, H.M.; Coyle, M.; Craig, E.; et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 2021, 593, 548–552. [Google Scholar] [CrossRef]
- Norman, J.M.; Garcia, R.; Verma, S.B. Soil surface CO2 fluxes and the carbon budget of a grassland. J. Geophys. Res. 1992, 97, 845–853. [Google Scholar] [CrossRef]
- Davidson, E.A.; Savage, K.; Verchot, L.V.; Navarro, R. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 2002, 113, 21–37. [Google Scholar] [CrossRef]
- Verchot, L.V.; Davidson, E.A.; Cattânio, J.H.; Ackerman, I.L.; Erickson, H.E.; Keller, M. Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Glob. Biogeochem. Cycles 1999, 13, 31–46. [Google Scholar] [CrossRef]
- Loftfield, N.; Flessa, H.; Augustin, J.; Beese, F. Automated gas chromatographic system for rapid analysis of the atmospheric trace gases methane, carbon dioxide, and nitrous oxide. J. Environ. Qual. 1997, 26, 560–564. [Google Scholar] [CrossRef]
- Husin, Y.A.; Murdiyarso, D.; Khalil, M.A.K.; Rasmussen, R.A.; Shearer, M.J.; Sabiham, S.; Sunar, A.; Adijuwana, H. Methane flux from Indonesian wetland rice: The effects of water management and rice variety. Chemosphere 1995, 31, 3153–3180. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate Change 2013—The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar] [CrossRef]
- Comeau, L.P.; Hergoualc’h, K.; Hartill, J.; Smith, J.; Verchot, L.V.; Peak, D.; Salim, A.M. How do the heterotrophic and the total soil respiration of an oil palm plantation on peat respond to nitrogen fertilizer application? Geoderma 2016, 268, 41–51. [Google Scholar] [CrossRef]
- Couwenberg, J.; Dommain, R.; Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Chang. Biol. 2010, 16, 1715–1732. [Google Scholar] [CrossRef]
- Husnain, H.; Wigena, I.G.P.; Dariah, A.; Marwanto, S.; Setyanto, P.; Agus, F. CO2 emissions from tropical drained peat in Sumatra, Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 845–862. [Google Scholar] [CrossRef]
- Marwanto, S.; Agus, F. Is CO2 flux from oil palm plantations on peatland controlled by soil moisture and/or soil and air temperatures? Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 809–819. [Google Scholar] [CrossRef]
- Khasanah, N.; van Noordwijk, M. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra, Indonesia. Mitig. Adapt. Strateg. Glob. Chang.. 2019, 24, 147–163. [Google Scholar] [CrossRef] [Green Version]
- Batubara, S.F.; Agus, F.; Rauf, A.; Elfiati, D. Impact of soil collar insertion depth on microbial respiration measurements from tropical peat under an oil palm plantation. Mires Peat 2019, 24, 1–11. [Google Scholar] [CrossRef]
- Swails, E.; Hertanti, D.; Hergoualc’h, K.; Verchot, L.; Lawrence, D. The response of soil respiration to climatic drivers in undrained forest and drained oil palm plantations in an Indonesian peatland. Biogeochemistry 2019, 142, 37–51. [Google Scholar] [CrossRef]
- Wakhid, N.; Hirano, T.; Okimoto, Y.; Nurzakiah, S.; Nursyamsi, D. Soil carbon dioxide emissions from a rubber plantation on tropical peat. Sci. Total Environ. 2017, 581–582, 857–865. [Google Scholar] [CrossRef] [Green Version]
- Tata, H.L. Mixed farming systems on peatlands in Jambi and Central Kalimantan provinces, Indonesia: Should they be described as paludiculture? Mires Peat 2019, 25, 1–17. [Google Scholar] [CrossRef]
- Posa, M.R.C.; Wijedasa, L.S.; Corlett, R.T. Biodiversity and conservation of tropical peat swamp forests. Bioscience 2011, 61, 49–57. [Google Scholar] [CrossRef]
- Harrison, M.E.; Rieley, J.O. Tropical peatland biodiversity and conservation in southeast Asia: Foreword. Mires Peat 2018, 22, 1–7. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Clymans, E.; Page, S.E.; Rieley, J.O.; Limin, S.H. Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena 2008, 73, 212–224. [Google Scholar] [CrossRef]
- Carlson, K.M.; Goodman, L.K.; May-Tobin, C.C. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environ. Res. Lett. 2015, 10, 74006. [Google Scholar] [CrossRef]
- Saragi-Sasmito, M.F.; Murdiyarso, D.; June, T.; Sasmito, S.D. Carbon stocks, emissions, and aboveground productivity in restored secondary tropical peat swamp forests. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Jauhiainen, J.; Takahashi, H.; Heikkinen, J.E.P.; Martikainen, P.J.; Vasander, H. Carbon fluxes from a tropical peat swamp forest floor. Glob. Chang. Biol. 2005, 11, 1788–1797. [Google Scholar] [CrossRef]
- Ishikura, K.; Darung, U.; Inoue, T.; Hatano, R. Variation in soil properties regulate greenhouse gas fluxes and global warming potential in three land use types on tropical peat. Atmosphere 2018, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Hergoualc’h, K.; Dezzeo, N.; Verchot, L.V.; Martius, C.; van Lent, J.; del Aguila-Pasquel, J.; López Gonzales, M. Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon. Glob. Chang. Biol. 2020, 26, 7198–7216. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Kolb, S.; Horn, M.A. Microbial CH4 and N2O consumption in acidic wetlands. Front. Microbiol. 2012, 3, 78. [Google Scholar] [CrossRef] [Green Version]
- Mu, Z.; Huang, A.; Ni, J.; Xie, D. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio. PLoS ONE 2014, 9, e96572. [Google Scholar] [CrossRef] [Green Version]
- Jauhiainen, J.; Silvennoinen, H.; Hämäläinen, R.; Kusin, K.; Limin, S.; Raison, R.J.; Vasander, H. Nitrous oxide fluxes from tropical peat with different disturbance history and management. Biogeosciences 2012, 9, 1337–1350. [Google Scholar] [CrossRef] [Green Version]
- Griscom, B.W.; Busch, J.; Cook-Patton, S.C.; Ellis, P.W.; Funk, J.; Leavitt, S.M.; Lomax, G.; Turner, W.R.; Chapman, M.; Engelmann, J.; et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190126. [Google Scholar] [CrossRef] [Green Version]
Land Cover Types | CO2 Flux (Mg CO2 ha−1 yr−1) | |||
---|---|---|---|---|
Before Rewetting | After Rewetting | |||
SRt | SRh | SRt | SRh | |
Reforested Area | 49.68 ± 6.84 | 48.91 ± 4.75 | 45.18 ± 2.02 | 38.51 ± 2.13 |
Oil Palm Plantation | 55.71 ± 5.54 | 54.98 ± 1.53 | 42.49 ± 3.18 | 35.17 ± 1.81 |
Rubber Plantation | 61.36 ± 7.28 | 67.67 ± 2.13 | 41.84 ± 2.31 | 41.26 ± 2.94 |
Land Cover Type | CH4 Flux (mg m−2 h−1) | N2O Flux (mg m−2 h−1) | ||
---|---|---|---|---|
Before Rewetting | After Rewetting | Before Rewetting | After Rewetting | |
Reforested Area | −0.10 ± 6.46 | 8.02 ± 3.28 | 0.40 ± 0.84 | −0.20 ± 0.52 |
Oil Palm Plantation | 0.34 ± 3.06 | 5.36 ± 8.67 | 1.70 ± 1.33 | −0.45 ± 1.52 |
Rubber Plantation | −0.19 ± 3.82 | 3.47 ± 7.93 | 7.25 ± 2.28 | 4.68 ± 2.31 |
Land Cover Type | CO2 | CH4 | N2O | Total Net GHG Emissions | ||||
---|---|---|---|---|---|---|---|---|
Mg CO2-eq ha−1 yr−1 | ||||||||
Before Rewetting | After Rewetting | Before Rewetting | After Rewetting | Before Rewetting | After Rewetting | Before Rewetting | After Rewetting | |
RA | 49.68 ± 6.84 | 45.18 ± 2.02 | −19.67 ± 8.05 | 23.69 ± 8.02 | 31.20 ± 9.28 | −17.17 ± 7.47 | 61.21 ± 8.07 | 51.70 ± 2.57 |
OP | 55.71 ± 5.54 | 42.49 ± 3.18 | 10.32 ± 4.59 | 25.22 ± 17.27 | 39.52 ± 21.61 | 26.07 ± 14.41 | 105.55 ± 31.74 | 93.78 ± 34.86 |
RP | 61.36 ± 7.28 | 41.48 ± 2.31 | −16.03 ± 1.50 | 29.52 ± 10.58 | 98.60 ± 33.13 | 50.59 ± 20.05 | 143.93 ± 38.91 | 121.59 ± 32.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lestari, I.; Murdiyarso, D.; Taufik, M. Rewetting Tropical Peatlands Reduced Net Greenhouse Gas Emissions in Riau Province, Indonesia. Forests 2022, 13, 505. https://doi.org/10.3390/f13040505
Lestari I, Murdiyarso D, Taufik M. Rewetting Tropical Peatlands Reduced Net Greenhouse Gas Emissions in Riau Province, Indonesia. Forests. 2022; 13(4):505. https://doi.org/10.3390/f13040505
Chicago/Turabian StyleLestari, Iska, Daniel Murdiyarso, and Muh Taufik. 2022. "Rewetting Tropical Peatlands Reduced Net Greenhouse Gas Emissions in Riau Province, Indonesia" Forests 13, no. 4: 505. https://doi.org/10.3390/f13040505
APA StyleLestari, I., Murdiyarso, D., & Taufik, M. (2022). Rewetting Tropical Peatlands Reduced Net Greenhouse Gas Emissions in Riau Province, Indonesia. Forests, 13(4), 505. https://doi.org/10.3390/f13040505