The Evaluation of Small- and Medium-Stream Carbon Pools in the Riparian Forests in Latvia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection and Sampling
2.2. Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malanson, G.P. Riparian Landscapes; Cambridge University Press: Cambridge, UK, 1993; p. 296. [Google Scholar]
- Gundersen, P.; Laurén, A.; Finér, L.; Ring, E.; Koivusalo, H.; Sætersdal, M.; Weslien, J.O.; Sigurdsson, B.D.; Högbom, L.; Laine, J.; et al. Environmental Services Provided from Riparian Forests in the Nordic Countries. AMBIO 2010, 39, 555–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdon, F.J.; Ramberg, E.; Sargac, J.; Forio, M.A.E.; De Saeyer, N.; Mutinova, P.T.; Moe, T.F.; Pavelescu, M.O.; Dinu, V.; Cazacu, C.; et al. Assessing the Benefits of Forested Riparian Zones: A Qualitative Index of Riparian Integrity Is Positively Associated with Ecological Status in European Streams. Water 2020, 12, 1178. [Google Scholar] [CrossRef] [Green Version]
- Clerici, N.; Paracchini, M.; Maes, J. Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrol. Hydrobiol. 2014, 14, 107–120. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Gurnell, M.A.; Burgess-Gamble, L.; England, J.; Holland, D.; Wem, M.C.; Klaar, J.M.; Morrissey, I.; Uttley, C.; Wharton, G. The current state of the use of large wood in river restoration and management. Water Environ. J. 2019, 33, 366–377. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Corenblit, D.; De Jalón, D.G.; Del Tánago, M.G.; Grabowski, R.C.; O’Hare, M.T.; Szewczyk, M. A Conceptual Model of Vegetation–hydrogeomorphology Interactions Within River Corridors. River Res. Appl. 2015, 32, 142–163. [Google Scholar] [CrossRef]
- Camporeale, C.; Perucca, E.; Ridolfi, L.; Gurnell, A.M. Modeling the interactions between river morphodynamics and riparian vegetation. Rev. Geophys. 2013, 51, 379–414. [Google Scholar] [CrossRef] [Green Version]
- Sutfin, N.A.; Wohl, E.E.; Dwir, K.A. Banking carbon: A review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surf. Process. Landf. 2016, 41, 38–60. [Google Scholar] [CrossRef]
- Marcarelli, A.M.; Baxter, C.V.; Benjamin, J.R.; Miyake, Y.; Murakami, M.; Fausch, K.D.; Nakano, S. Magnitude and Direction of Stream-Forest Community Interactions Change with Time Scale. Bull. Ecol. Soc. Am. 2020, 101, e01715. [Google Scholar] [CrossRef]
- Angelstam, P.; Lazdinis, M. Tall herb sites as a guide for planning, maintenance and engineering of riparian continuous forest cover. Ecol. Eng. 2017, 103, 470–477. [Google Scholar] [CrossRef]
- Sing, L.; Metzger, M.J.; Paterson, J.S.; Ray, D. A review of the effects of forest management intensity on ecosystem services for northern European temperate forests with a focus on the UK. Forestry 2018, 91, 151–164. [Google Scholar] [CrossRef]
- Fernandes, M.R.; Aguiar, F.C.; Martins, M.J.; Rico, N.; Ferreira, M.T.; Correia, A.C. Carbon Stock Estimations in a Mediterranean Riparian Forest: A Case Study Combining Field Data and UAV Imagery. Forests 2020, 11, 376. [Google Scholar] [CrossRef] [Green Version]
- Cierjacks, A.; Kleinschmit, B.; Babinsky, M.; Kleinschroth, F.; Markert, A.; Menzel, M.; Ziechmann, U.; Schiller, T.; Graf, M.; Lang, F. Carbon stocks of soil and vegetation on Danubian floodplain. J. Plant Nutr. Soil Sci. 2010, 173, 644–653. [Google Scholar] [CrossRef]
- Naiman, R.J.; Fetherston, K.L.; McKay, S.; Chen, J. Riparian forests. In River Ecology and Management: Lessons from the Pacific Coastal Ecoregion; Naiman, R.J., Bilby, R.E., Eds.; Springer: New York, NY, USA, 1998; pp. 289–323. [Google Scholar]
- Dybala, K.E.; Matzek, V.; Gardali, T.; Seavy, N.E. Carbon sequestration in riparian forests: A global synthesis and meta-analysis. Glob. Chang. Biol. 2018, 25, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieger, I.; Kowarik, I.; Cierjacks, A. Drivers of carbon sequestration by biomass compartment of riparian forests. Ecosphere 2015, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Woodall, C.W.; Liknes, G.C. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States. Carbon Balance Manag. 2008, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Dybala, K.E.; Steger, K.; Walsh, R.G.; Smart, D.R.; Gardali, T.; Seavy, N.E. Optimizing carbon storage and biodiversity co-benefits in reforested riparian zones. J. Appl. Ecol. 2018, 56, 343–353. [Google Scholar] [CrossRef]
- Aishan, T.; Betz, F.; Halik, Ü.; Cyffka, B.; Rouzi, A. Biomass Carbon Sequestration Potential by Riparian Forest in the Tarim River Watershed, Northwest China: Implication for the Mitigation of Climate Change Impact. Forests 2018, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Findlay, S.; Tank, J.; Dye, S.; Valett, H.; Mulholland, P.; McDowell, W.; Johnson, S.; Hamilton, S.; Edmonds, J.; Dodds, W.; et al. A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microb. Ecol. 2002, 43, 55–66. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst. 2020, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Perry, G.L.; Andersen, D.C.; Reynolds, L.V.; Nelson, M.S.; Shafroth, B.P. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Glob. Chang. Biol. 2011, 18, 821–842. [Google Scholar] [CrossRef]
- Suchenwirth, L.; Förster, M.; Cierjacks, A.; Lang, F.; Kleinschmit, B. Knowledge-based classification of remote sensing data for the estimation of below- and above-ground organic carbon stocks in riparian forests. Wetl. Ecol. Manag. 2012, 20, 151–163. [Google Scholar] [CrossRef]
- Cartisano, R.; Mattioli, W.; Corona, P.; Mugnozza, G.S.; Sabatti, M.; Ferrari, B.; Cimini, D.; Giuliarelli, D. Assessing and mapping biomass potential productivity from poplar-dominated riparian forests: A case study. Biomass Bioenergy 2013, 54, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Cabezas, A.; Comín, F.A. Carbon and nitrogen accretion in the topsoil of the Middle Ebro River Floodplains (NE Spain): Implications for their ecological restoration. Ecol. Eng. 2010, 36, 640–652. [Google Scholar] [CrossRef]
- Pechanec, V.; Štěrbová, L.; Purkyt, J.; Prokopová, M.; Včeláková, R.; Cudlín, O.; Vyvlečka, P.; Cienciala, E.; Cudlín, P. Selected Aspects of Carbon Stock Assessment in Aboveground Biomass. Land 2022, 11, 66. [Google Scholar] [CrossRef]
- Ring, E.; Windenfalk, O.; Jansson, G.; Holmström, H.; Högbom, L.; Sonesson, J. Riparian forests along small streams on managed forest land in Sweden. Scand. J. For. Res. 2017, 33, 133–146. [Google Scholar] [CrossRef]
- Ring, E.; Andersson, E.; Armolaitis, K.; Eklöf, K.; Finér, L.; Gil, W.; Glazko, Z.; Janek, M.; Lode, E.; Lībiete, Z.; et al. Good Practices for Forest Buffers to Improve Surface Water Quality in the Baltic Sea Region. Report. 2018. Available online: https://www.skogforsk.se (accessed on 16 February 2020).
- Ågren, A.M.; Lidberg, W.; Ring, E. Mapping Temporal Dynamics in a Forest Stream Network—Implications for Riparian Forest Management. Forests 2015, 6, 2982–3001. [Google Scholar] [CrossRef] [Green Version]
- Lehtonen, E.; von Stedingk, H. The Contribution of FSC Certification to Biodiversity in Latvian Forests. FSC Sweden Report. 2017. Available online: https://se.fsc.org (accessed on 16 February 2022).
- Sarma, B. River Hydrology: Basics of Runoff and Hydrometric; Latvian State Publishing House: Riga, Latvia, 1960; p. 204. (In Latvian) [Google Scholar]
- Köster, K.; Metslaid, M.; Engelhart, J.; Köster, E. Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. For. Ecol. Manag. 2015, 354, 35–42. [Google Scholar] [CrossRef]
- Sharma, R.P.; Vacek, Z.; Vacek, S. Nonlinear mixed effect height-diameter model for mixed species forests in the central part of the Czech Republic. J. For. Sci. 2016, 62, 470–484. [Google Scholar] [CrossRef] [Green Version]
- Liepa, I. Tree Growth Study; LLU: Jelgava, Latvia, 1996; p. 31. (In Latvian) [Google Scholar]
- Liepiņš, J.; Lazdiņš, A.; Liepiņš, K. Equations for estimating above- and belowground biomass of Norway spruce, Scots pine, birch spp. and European aspen in Latvia. Scand. J. For. Res. 2018, 33, 58–70. [Google Scholar] [CrossRef]
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.; Moreno, A.; Mues, V.; Härkönen, S.; Mura, M.; Bouriaud, O.; Lang, M.; Achten, W.M.J.; Thivolle-Cazat, A.; Bronisz, K.; et al. Comparison of carbon estimation methods for European forests. For. Ecol. Manag. 2016, 361, 397–420. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 January 2022).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Šēnhofa, S.; Šņepsts, G.; Bičkovskis, K.; Jaunslaviete, I.; Liepa, L.; Straupe, I.; Jansons, Ā. Availability and Structure of Coarse Woody Debris in Hemiboreal Mature to Old-Growth Aspen Stands and Its Implications for Forest Carbon Pool. Forests 2021, 12, 901. [Google Scholar] [CrossRef]
- Šēnhofa, S.; Jaunslaviete, I.; Šņepsts, G.; Jansons, J.; Liepa, L.; Jansons, Ā. Deadwood Characteristics in Mature and Old-Growth Birch Stands and Their Implications for Carbon Storage. Forests 2020, 11, 536. [Google Scholar] [CrossRef]
- Rieger, I.; Lang, F.; Kleinschmit, B.; Kowarik, I.; Cierjacks, A. Fine root and aboveground carbon stocks in riparian forests: The roles of diking and environmental gradients. Plant Soil 2013, 370, 497–509. [Google Scholar] [CrossRef]
- Bārdule, A.; Liepiņš, J.; Liepiņš, K.; Stola, J.; Butlers, A.; Lazdiņš, A. Variation in Carbon Content among the Major Tree Species in Hemiboreal Forests in Latvia. Forests 2021, 12, 1292. [Google Scholar] [CrossRef]
- Lutter, R.; Kõlli, R.; Tullus, A.; Tullus, A. Ecosystem carbon stocks of Estonian premature and mature managed forests: Effects of site conditions and overstorey tree species. Eur. J. For. Res. 2019, 138, 125–142. [Google Scholar] [CrossRef]
- Matzek, V.; Stella, J.C.; Ropion, P. Development of a carbon calculator tool for riparian forest restoration. Appl. Veg. Sci. 2018, 21, 584–594. [Google Scholar] [CrossRef]
River | Length, km | Catchment Area, km2 | Mean Stream Volume, m3/s | Mean Slope, m/km | River Sediment | River Type | Most Common Type of Surrounding Forest Stands |
---|---|---|---|---|---|---|---|
Abuls | 52 | 435 | 3.2 | 1.3 | boulders, pebble, gravel, sand, mud | medium ritral | Hylocomiosa |
Jaunupe | 5 | 6 | 0.1 | 0.1 | No data | small potamal | Hylocomiosa, Aegopodiosa Myrtillosoi-polytrichosa, |
Koja | 25 | 88 | 1.0 | 0.7 | No data | small potamal | Myrtillosa, Hylocomiosa, Myrtilloso-sphagnosa, Filipendulosa |
Korģe | 14 | 113 | 0.9 | 1.1 | boulder, pebble, gravel, sand | medium ritral | Oxalidosa, Aegopodiosa |
Līgatne | 31 | 89 | 1.1 | 1.8 | boulder, pebble, gravel, sand | small ritral | Oxalidosa |
Rīva | 53 | 213 | 2.4 | 0.7 | gravel, sand, mud | medium potamal | Cladinoso-callunosa, Myrtillosa Hylocomniosa |
Seda | 62 | 526 | 4.4 | 0.2 | gravel, sand, mud | medium potamal | Myrtillosa, Hylocomniosa, Myrtillosa mel |
Sidrabe | 49 | 147 | 0.6 | 0.6 | No data | medium potamal | Hylocomniosa, Oxalidosa, Aegopodiosa |
Svētaine | 18 | 43 | 0.2 | 0.4 | sand, mud | small potamal | Hylocomniosa, Myrtilloso-sphagnosa |
Svētupe | 58 | 479 | 4.2 | 0.5 | gravel, sand, mud | medium potamal | Oxalidosa, Aegopodiosa, Oxalidosa turf. mel. |
Tērvete | 68 | 440 | 2.6 | 0.7 | gravel, sand, mud | medium potamal | Hylocomniosa, Myrtilloso-polytrichosa |
Vilce | 48 | 313 | 1.5 | 0.6 | sand, mud | medium potamal | Hylocomniosa, Oxalidosa, Aegopodiosa |
Vildoga | 10 | 25 | 0.3 | 1.0 | No data | small ritral | Oxalidosa |
Vitrupe | 49 | 193 | 1.7 | 0.5 | pebble, sand, mud, clay | medium potamal | Oxalidosa, Aegopodiosa, Vaccinioso-sphagnosa, Dryopteriosa |
Zaņa | 48 | 256 | 2.2 | 0.8 | pebble, gravel, sand, mud | medium potamal | Oxalidosa |
Parameters | Adjacent (10–30 m) | Distant (60–80 m) |
---|---|---|
DBH of canopy trees, cm | 31.0 ± 6.4 | 32.9 ± 7.0 |
DBH of understory, cm | 13.3 ± 2.2 | 14.1 ± 2.6 |
Height of canopy trees, m | 23.9 ± 3.9 | 24.7 ± 3.4 |
Height of understory, m | 12.6 ± 2.2 | 12.8 ± 2.7 |
Basal area, m2 ha−1 | 36.2 ± 9.1 | 36.6 ±6.8 |
Standing volume, m3 ha−1 | 385.9 ± 146.2 | 406.0 ± 114.1 |
Stand density, trees ha−1 | 968 ± 190 | 902 ± 216 |
Carbon Pool | Adjacent Zone | Distant Zone |
---|---|---|
Aboveground tree biomass | 102.8 ± 39.7 | 100.0 ± 30.8 |
Belowground tree biomass | 32.7 ± 17.0 | 36.9 ± 32.0 |
Living tree biomass | 134.5 ± 44.2 | 134.7 ± 31.7 |
Total deadwood | 6.8 ± 3.1 | 7.0 ± 4.6 |
Total carbon | 141.4 ± 45.7 | 141.7 ± 33.3 |
Carbon Pool | Total (Woody) | Living Tree Biomass | Aboveground Biomass | Belowground Biomass | Deadwood |
---|---|---|---|---|---|
Fixed effect, χ2 | |||||
Distance | 1.1 | 1.3 | 3.3 | 0.6 | 0.06 |
Dominant species | 37.5 *** | 60.6*** | 25.2 *** | 9.1 | 2.2 |
River size | 0.9 | 1.5 | 0.1 | 0.4 | 0.1 |
River type | 2.1 | 0.9 | 0.5 | 0.2 | 1.3 |
Total wood volume | 1289.9 *** | 2278.5 *** | 1501.5 *** | 96.6 *** | 0.1 |
Random effect, variance | |||||
River (object) | 21.9 | 1.7 | 400.0 | 728.8 | 9.6 |
Residual | 146.1 | 82.5 | 70.1 | 82.6 | 63.4 |
Dominant Species | Total (Woody) | Living Tree Biomass | Aboveground Tree Biomass |
---|---|---|---|
European aspen | 134 ± 12.7 ab | 127 ± 9.6 abc | 102 ± 11.1 ab |
Silver birch | 155 ± 4.4 a | 148 ± 3.4 ab | 114 ± 6.9 a |
Grey alder | 136 ± 3.1 b | 131 ± 2.4 c | 104 ± 6.4 ab |
Norway spruce | 145 ± 2.5 ab | 136 ± 2.0 ac | 101 ± 6.3 b |
Small-leaved lime | 168 ± 9.0 a | 160 ± 6.8 b | 116 ± 8.8 ab |
Black alder | 163 ± 9.0 ab | 157 ± 6.8 ab | 119 ± 8.9 ab |
Scots pine | 137 ± 3.2 b | 128 ± 2.4 c | 99 ± 6.5 b |
Willow | 138 ± 12.8 ab | 133 ± 9.7 abc | 106 ± 11.0 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saklaurs, M.; Kārkliņa, A.; Liepa, L.; Jansons, Ā. The Evaluation of Small- and Medium-Stream Carbon Pools in the Riparian Forests in Latvia. Forests 2022, 13, 506. https://doi.org/10.3390/f13040506
Saklaurs M, Kārkliņa A, Liepa L, Jansons Ā. The Evaluation of Small- and Medium-Stream Carbon Pools in the Riparian Forests in Latvia. Forests. 2022; 13(4):506. https://doi.org/10.3390/f13040506
Chicago/Turabian StyleSaklaurs, Mārcis, Annija Kārkliņa, Līga Liepa, and Āris Jansons. 2022. "The Evaluation of Small- and Medium-Stream Carbon Pools in the Riparian Forests in Latvia" Forests 13, no. 4: 506. https://doi.org/10.3390/f13040506
APA StyleSaklaurs, M., Kārkliņa, A., Liepa, L., & Jansons, Ā. (2022). The Evaluation of Small- and Medium-Stream Carbon Pools in the Riparian Forests in Latvia. Forests, 13(4), 506. https://doi.org/10.3390/f13040506