Influence of the Canopy Drip Effect on the Accumulation of Atmospheric Metal and Nitrogen Deposition in Mosses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Moss Sampling and Chemical Moss Analysis
- Cover of the tree and shrub layer (%);
- Woody species and their proportions in the tree and shrub layer (%);
- Age of the main tree species.
2.2. Statistical Data Evaluation
2.2.1. Descriptive Statistics
2.2.2. Inferential Statistics
2.2.3. Estimation of the Leaf Area Index
- Land-use-specific simple leaf area index (sLAI.lu): From the data collected in 2021 on the surrounding land use (approximately 200 m radius around the sampling site), a simple land-use-specific leaf area index (sLAI.lu) was estimated using literature values for the seasonal leaf area [22] (p. 27) and we derived from this as an annual mean value: coniferous forest = 11.0, mixed forest = 7.08, deciduous forest = 5.79, moor and heath = 3.63, meadows and pastures = 2.96, other = 3.63. This corresponds to the method for estimating the simple leaf area index described in [4].
- Land-use-specific and cover-weighted leaf area index (wLAI.lu): By adding the cover of the tree layer (TC), a weighted land-use-specific leaf area index (wLAI.lu) was estimated according to the procedure also described in [4] (Equations (1) and (2)). For this purpose, the simple leaf area index (sLAI.lu) was used for all open space sites for the area uncovered by trees (100 − TC) and an LAI of 7.08 (mixed forest [22] (p. 27)) was assumed for the area covered by trees (TC) and weighted according to the degree of cover in each case. For all canopy sites, vice versa, the simple leaf area index (sLAI.lu) was used for the area covered by trees (TC) and a LAI of 2.96 (meadows and pastures) was assumed for the uncovered area share (100 − TC). TC was derived here as the mean value of the upper- and lower-class limits for the tree layer cover, ordinally scaled according to [20].Weighted leaf area index (open space site): wLAI = ((100 − TC)/100) × sLAI + (TC/100) × 7.08Weighted leaf area index (canopy drip site): wLAI = ((100 − TC)/100) × 2.96 + (TC/100) × sLAI
- Vegetation-specific simple leaf area index (sLAI.veg): The procedure corresponds to the procedure described under No. 1 for the sLAI.lu with the difference that the leaf area index according to [23] was not used from the information on the surrounding land use, but from the vegetation data collected in 2021 (at the sampling site): coniferous forest = 11.0, mixed forest = 7.08, deciduous forest = 5.79, heathland = 3.63, grassland = 2.96, other = 3.63.
- Tree species-specific simple leaf area index (sLAI.spec): In addition to the site- and sample-describing “metadata” according to ANNEX 2 of the Moss Manual [20], further information on the cover of the tree and shrub layer (%) and on the woody species in the tree and shrub layer, including their percentage shares, as well as on the age of the main tree species at each moss sampling plot, was collected in the 2021 campaign. From this, a tree species-specific simple leaf area index (sLAI.spec) was estimated for all canopy drip sites using information from the decision support system “Forest and Climate Change” (DSS-WuK) [23]. For this purpose, specific modeled leaf area indices for the tree species spruce, pine, Douglas fir, beech, and oak can be taken from the DSS-WuK as a function of tree age. For birch, the LAI values of oak, and for larch those of pine, were additionally used. The leaf area indices thus determined for the individual tree species were then weighted according to the percentage share of the respective tree species. For the open space sites, the vegetation-specific simple leaf area indices (sLAI.veg) were used as in point 3, with heath = 3.63, grassland = 2.96, and other = 3.63 [23].
- Tree species-specific and cover-weighted leaf area index (wLAI.spec): The weighted wLAI.spec was determined according to the method described in Section 2, using the simple tree species-specific leaf area index (sLAI.spec) and, in addition, the cover (%) estimated metrically in the field instead of the cover scaled ordinally according to ANNEX 2 of the Moss Manual [20].
2.2.4. Correlation Analysis
2.2.5. Regression Analysis
3. Results
3.1. Descriptive Statistics
3.2. Inferential Statistics
3.3. Correlation Analysis
3.4. Regression Analysis
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BMEL (Federal Ministry of Food and Agriculture). Waldzustandsbericht 2013 [Forest Condition Report 2013]; BMEL: Berlin, Germany, 2013; pp. 1–40.
- Builtjes, P.; Hendriks, E.; Koenen, M.; Schaap, M.; Banzhaf, S.; Kerschbaumer, A.; Gauger, T.; Nagel, H.D.; Scheuschner, T.; Schlutow, A. Erfassung, Prognose und Bewertung von Stoffeinträgen und ihren Wirkungen in Deutschland [Recording, Forecasting and Assessing Substance Inputs and Their Effects in Germany]; MAPESI Project (Modelling of Air Pollutants and EcoSystem Impact); UBA-Texte 42/2011; Umweltbundesamt: Dessau, Germany, 2011; pp. 1–154.
- De Schrijver, A.; Staelens, J.; Wuyts, K.; Van Hoydonck, G.; Janssen, N.; Mertens, J.; Gielis, L.; Geudens, G.; Augusto, L.; Verheyen, K. Effect of vegetation type on throughfall deposition and seepage flux. Environ. Pollut. 2008, 153, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.; Nickel, S.; Völksen, B.; Dreyer, A.; Wosniok, W. Einsatz von Bioindikationsmethoden zur Bestimmung und Regionalisierung von Schadstoffeinträgen für eine Abschätzung des atmosphärischen Beitrags zur aktuellen Belastung von Ökosystemen. [Use of Bioindication Methods to Determine and Regionalise Pollutant Inputs for an Estimation of the Atmospheric Contribution to Current Pressures on Ecosystems]; UBA-Texte 91/2019; Umweltbundesamt: Berlin, Germany, 2019; Volume 1:1–189, 2:1–296.
- UBA (Umweltbundesamt). Stickstoff—Zuviel des Guten? [Nitrogen—Too Much of a Good Thing?]; Brochure of the Federal Environment Agency: Dessau-Roßlau, Germany, 2011; pp. 1–42.
- Beudert, B.; Breit, W. Horizontaler Niederschlag, Nasse und Feuchte Deposition im Inneren Bayerischen Wald—Erste Ergebnisse [Horizontal Precipitation, Wet and Moist Deposition in the Inner Bavarian Forest—First Results]; FKZ 351 01 012/04; Federal Environment Agency: Dessau, Germany, 2012; pp. 1–50.
- Gandois, L.; Agnan, Y.; Leblond, S.; Séjalon-Delmas, N.; Le Roux, G.; Probst, A. Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment. Atmos. Environ. 2014, 95, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Kluge, M.; Pesch, R.; Schröder, W.; Hoffmann, A. Accounting for canopy drip effects of spatiotemporal trends of the concentrations of N in mosses, atmospheric N depositions and critical load exceedances: A case study from North-Western Germany. Environ. Sci. Eur. 2013, 25, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M. Standortspezifisch Differenzierte Erfassung Atmosphärischer Stickstoff- und Schwermetalleintrag Mittels Moosen unter Berücksichtigung des Traufeffektes und Ergänzende Untersuchungen zur Beziehung von Stickstoffeinträgen und Begleitvegetation [Site-Specific Differentiated Recording of Atmospheric Nitrogen and Heavy Metal Inputs by Means of Mosses, Taking into Account the Canopy Drip Effect, and Supplementary Studies on the Relationship between Atmospheric Nitrogen Deposition and Accompanying Vegetation]. Ph.D. Thesis, University of Vechta, Vechta, Germany, 2017. [Google Scholar]
- Meyer, M.; Schröder, W.; Hoffmann, A. Effect of canopy drip on accumulation of nitrogen and metals in moss. Pollut. Atmosphérique 2015, 226, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Schröder, W.; Nickel, S.; Leblond, S.; Lindroos, A.J.; Mohr, K.; Poikolainen, J.; Santamaria, J.M.; Skudnik, M.; Thöni, L.; et al. Relevance of canopy drip for the accumulation of nitrogen in moss used as biomonitors for atmospheric nitrogen deposition in Europe. Sci. Tot. Environ. 2015, 538, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Nickel, S.; Schröder, W. Kleinräumige Untersuchungen zum Einfluss des Kronentraufeffekts auf Elementkonzentrationen in Moosen [Small-scale studies on the influence of the crown effect on element concentrations in mosses]. In Handbuch der Umweltwissenschaften. Grundlagen und Anwendungen der Ökosystemforschung [In Handbook of Environmental Sciences. Fundamentals and Applications of Ecosystem Research]; Schröder, W., Fränzle, O., Müller, F., Eds.; Wiley VCH: Weinheim, Germany, 2018; 25. Erg.Lfg., Chapter VI-1.10; pp. 1–35. [Google Scholar]
- Pesch, R.; Schröder, W.; Genssler, L.; Goeritz, A.; Holy, M.; Kleppin, L.; Matter, Y. Moos-Monitoring 2005/2006: Schwermetalle IV und Gesamtstickstoff [Moss Monitoring 2005/2006: Heavy Metals IV and Total Nitrogen]; (Environmental Research Plan of the Federal Minister for the Environment, Nature Conservation and Nuclear Safety. R&D Project 205 64 200, Final Report, Commissioned by the Federal Environment Agency); 90 pp.; 11 Tabs.; 2 Figs. (Text); 51 pp. + 41 Maps, 34 Tables, 46 Diagrams (Appendix); Federal Environment Agency: Berlin, Germany, 2007. [Google Scholar]
- Schröder, W.; Nickel, S. Site-specific investigation and spatial modelling of canopy drip effect on element concentrations in moss. Environ. Sci. Pollut. Res. 2018, 25, 27173–27186. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.; Nickel, S.; Schönrock, S.; Schmalfuß, R.; Wosniok, W.; Meyer, M.; Harmens, H.; Frontasyeva, M.V.; Alber, R.; Aleksiayenak, J.; et al. Bioindication and modelling of atmospheric deposition in forests enable exposure and effect monitoring at high spatial density across scales. Ann. For. Sci. 2017, 74, 1–23. [Google Scholar] [CrossRef]
- Skudnik, M.; Jeran, Z.; Batič, F.; Simončič, P.; Kastelec, D. Potential environmental factors that influence the nitrogen concentration and δ15N values in the moss Hypnum cupressiforme collected inside and outside canopy drip lines. Environ. Pollut. 2015, 198, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Sachs, L.; Hedderich, J. Angewandte Statistik. Methodensammlung mit R; Springer: Berlin, Germany, 2019; pp. 1–813. [Google Scholar]
- ICP Vegetation. Monitoring of Atmospheric Deposition of Metals, Nitrogen and POPs in Europe Using Bryophytes; Monitoring Manual 2015 Survey; Natural Environment Council, Center for Ecology & Hidrology: Bangor, UK, 2014; pp. 1–26. [Google Scholar]
- Pourret, O.; Bollinger, J.-C.; Hursthouse, A. Heavy Metal: A misused term? Acta Geochim. 2021, 40, 466–471. [Google Scholar] [CrossRef]
- ICP Vegetation. Metals, Nitrogen and POPs in European Mosses; Monitoring Manual Survey 2020; ICP Vegetation: Bangor, UK; Dubna, Russia, 2020; pp. 1–27. [Google Scholar]
- Steinnes, E. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci. Tot. Environ. 1995, 160–161, 243–249. [Google Scholar] [CrossRef]
- Bremicker, M. Das Wasserhaushaltsmodell LARSIM—Modellgrundlagen und Anwendungsbeispiele [The Water Balance Model LARSIM—Model Basics and Application Examples]; Freiburger Schriften zur Hydrologie: Freiburg, Germany, 2000; Volume 11, pp. 1–119. [Google Scholar]
- Jansen, M.; Döring, C.; Ahrends, B.; Bolte, A.; Czajkowski, T.; Panferov, O.; Albert, M.; Spellmann, H.; Nagel, J.; Lemme, H.; et al. Anpassungsstrategien für eine nachhaltige Waldbewirtschaftung unter sich wandelnden Klimabedingungen: Entwicklung eines Entscheidungsunterstützungssystems “Wald und Klimawandel” (DSS-WuK) [Adaptation strategies for sustainable forest management under changing climate conditions: Development of a decision support system “Forest and Climate Change” (DSS-WuK)]. Forstarchiv 2008, 79, 131–142. [Google Scholar]
- Brosius, F. SPSS 21; Mitp/bhv: Heidelberg, Germany, 2013; pp. 1–1052. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 14 August 2020).
- UCLA. What Are Pseudo R-Squareds? UCLA—Statistical Consulting Group. 2011. Available online: https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds (accessed on 16 February 2022).
- Liu, S.; Dissanayake, S.; Patel, S.; Dang, X.; Mlsna, T.; Chen, Y.; Wilkins, D. Learning accurate and interpretable models based on regularized random forests regression. BMC Syst. Biol. 2014, 8 (Suppl. 3), S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eschenbach, C.; Kappen, L. Leaf area index determination in an alder forest: A comparison of three methods. J. Exp. Bot. 1995, 47, 1457–1462. [Google Scholar] [CrossRef] [Green Version]
- Welles, J.M.; Norman, J.M. Instrument for indirect measurement of canopy architecture. Agron. J. 1991, 83, 818–825. [Google Scholar] [CrossRef]
Sample Collection Site | Date | Moss Type | Location Category | Use | Share of Main Tree Species |
---|---|---|---|---|---|
NI03_92 | 11 October 2021 | Plesch | F | Grassland | |
NI03_94 | 11 October 2021 | Plesch | T | Coniferous forest | Picea 80%, Pinus 20% |
NI03_95 | 11 October 2021 | Plesch | T | Coniferous forest | Pinus 100% |
NI104_88 | 11 October 2021 | Psepur | F | Heathland | |
NI104_90 | 11 October 2021 | Psepur | T | Coniferous forest | Pinus 100% |
NI104_91 | 11 October 2021 | Psepur | T | Clearing within deciduous forest | Betula 100% |
NI108_98 | 12 October2021 | Psepur | F | Grassland | |
NI108_100 | 12 October 2021 | Psepur | T | Coniferous forest | Pseudotsuga 100% |
NI108_101 | 12 October 2021 | Psepur | T | Deciduous forest | Quercus 90%, Pinus 10% |
NI108_102 | 12 October 2021 | Psepur | T | Coniferous forest | Larix 100% |
NI116_120 | 9 October 2021 | Plesch | F | Heathland | |
NI116_122 | 9 October 2021 | Plesch | T | Coniferous forest | Pinus 100% |
NI116_123 | 9 October 2021 | Plesch | T | Deciduous tree | Quercus 70%, Betula 30% |
NI117_123 | 11 October 2021 | Psepur | F | Grassland | |
NI117_124 | 11 October 2021 | Psepur | T | Coniferous forest | Picea/Pseudotsuga 90%, Betula 10% |
NI117_125 | 11 October 2021 | Psepur | T | Deciduous forest | Fagus 90%, Pseudotsuga 10% |
NI118_125 | 10 October 2021 | Psepur | F | Grassland | |
NI118_127 | 10 October 2021 | Psepur | T | Coniferous forest | |
NI118_128 | 10 October 2021 | Psepur | T | Deciduous forest | Betula 70%, Quercus 30% |
NI124_139 | 17 September 2021 | Plesch | F | Heathland | |
NI124_143 | 9 October 2021 | Plesch | T | Deciduous tree | Betula 70%, Quercus 30% |
NI130_157 | 8 October 2021 | Plesch | F | Grassland | |
NI130_160 | 8 October 2021 | Plesch | T | Coniferous forest | Pinus 100% |
NI130_161 | 8 October 2021 | Plesch | T | Mixed forest | Betula 70%, Pinus 30% |
NI130_162 | 8 October 2021 | Plesch | T | Coniferous forest | Pseudotsuga 60%, Pinus 40% |
NI130_163 | 8 October 2021 | Plesch | F | Heathland |
Element | Data Collective 1 (n = 20) | Data Collective 2 (n = 17 to 20) | [9] (n = 52) | [4] (n = 25) |
---|---|---|---|---|
Al | 1.26 | 1.43 ** | - | 1.41 |
As | 1.44 | 1.50 | - | 1.57 |
Cd | 1.35 * | 1.69 *** | 1.60 *** | 1.75 *** |
Cr | 1.42 | 1.40 * | 1.01 | 1.22 |
Cu | 1.44 *** | 1.46 *** | 1.71 *** | 1.80 *** |
Fe | 1.31 | 1.31 | - | 1.32 *** |
Hg | 1.50 *** | 1.33 *** | 1.68 *** | 2.50 *** |
Ni | 1.46 | 1.63 *** | 1.15 *** | 1.24 *** |
Pb | 1.26 | 1.38 * | 1.32 *** | 1.72 *** |
Sb | 1.18 * | 1.18 *** | - | 1.62 *** |
V | 1.21 | 1.26 | - | 1.60 *** |
Zn | 1.21 *** | 1.20 *** | 1.33 *** | 1.43 *** |
N | 1.46 *** | 1.46 *** | 1.95 *** | 1.68 *** |
Element | Data Collective 2 rp (n = 28 to 40) (1) | Data Collective 2 rs (n = 28 to 40) (1) | [4] rp (n = 67) (2) | [4] rs (n = 67) (2) |
---|---|---|---|---|
Al | 0.84 *** | 0.76 *** | 0.43 *** | 0.41 *** |
As | 0.32 * | 0.24 | 0.44 *** | 0.50 *** |
Cd | 0.48 *** | 0.67 *** | 0.64 *** | 0.57 *** |
Cr | 0.57 *** | 0.60 *** | 0.48 *** | 0.47 *** |
Cu | 0.90 *** | 0.92 *** | 0.73 *** | 0.75 *** |
Fe | 0.52 *** | 0.50 *** | 0.51 *** | 0.52 *** |
Hg | 0.66 *** | 0.78 *** | 0.71 *** | 0.72 *** |
Ni | 0.75 *** | 0.71 *** | 0.64 *** | 0.60 *** |
Pb | 0.61 *** | 0.52 *** | 0.72 *** | 0.65 *** |
Sb | 0.80 *** | 0.84 *** | 0.77 *** | 0.68 *** |
V | 0.41 ** | 0.36 ** | 0.57 *** | 0.59 *** |
Zn | 0.46 *** | 0.59 *** | 0.59 *** | 0.60 *** |
N | 0.87 *** | 0.87 *** | 0.84 *** | 0.81 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nickel, S.; Schröder, W.; Völksen, B.; Dreyer, A. Influence of the Canopy Drip Effect on the Accumulation of Atmospheric Metal and Nitrogen Deposition in Mosses. Forests 2022, 13, 605. https://doi.org/10.3390/f13040605
Nickel S, Schröder W, Völksen B, Dreyer A. Influence of the Canopy Drip Effect on the Accumulation of Atmospheric Metal and Nitrogen Deposition in Mosses. Forests. 2022; 13(4):605. https://doi.org/10.3390/f13040605
Chicago/Turabian StyleNickel, Stefan, Winfried Schröder, Barbara Völksen, and Annekatrin Dreyer. 2022. "Influence of the Canopy Drip Effect on the Accumulation of Atmospheric Metal and Nitrogen Deposition in Mosses" Forests 13, no. 4: 605. https://doi.org/10.3390/f13040605
APA StyleNickel, S., Schröder, W., Völksen, B., & Dreyer, A. (2022). Influence of the Canopy Drip Effect on the Accumulation of Atmospheric Metal and Nitrogen Deposition in Mosses. Forests, 13(4), 605. https://doi.org/10.3390/f13040605