Exploring the Branch Wood Supply Potential of an Agroforestry System with Strategically Designed Harvesting Interventions Based on Terrestrial LiDAR Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Acquired 3D Data and Processing
2.3. Tree Structures
2.4. Woody Compartments and Branch Harvesting
2.5. Wood Assortments
2.6. Algorithms and Analysis
3. Results
3.1. Stand and Tree Volume
3.2. Branch Wood Yields and Assortments
3.3. Branch Removal Operations
3.4. Retained Tree Structures and Removed Materials
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Z.; Chen, H.Y.H.; Bork, E.W.; Carlyle, C.N.; Chang, S.X.; Fortin, J. Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Glob. Ecol. Biogeogr. 2020, 99, 15. [Google Scholar] [CrossRef]
- Sheppard, J.P.; Bohn Reckziegel, R.; Borrass, L.; Chirwa, P.W.; Cuaranhua, C.J.; Hassler, S.K.; Hoffmeister, S.; Kestel, F.; Maier, R.; Mälicke, M.; et al. Agroforestry: An Appropriate and Sustainable Response to a Changing Climate in Southern Africa? Sustainability 2020, 12, 6796. [Google Scholar] [CrossRef]
- Amatya, S.M.; Cedamon, E.; Nuberg, I. Agroforestry Systems and Practices in Nepal; Revised Edition; Sopan Press Pvt. Ltd.: Chitwan, Nepal, 2018; ISBN 9789937040266. [Google Scholar]
- Udawatta, R.P.; Rankoth, L.; Jose, S. Agroforestry and Biodiversity. Sustainability 2019, 11, 2879. [Google Scholar] [CrossRef] [Green Version]
- Muschler, R.G. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor. Syst. 2001, 51, 131–139. [Google Scholar] [CrossRef]
- Schulz, V.S.; Munz, S.; Stolzenburg, K.; Hartung, J.; Weisenburger, S.; Graeff-Hönninger, S. Impact of different shading levels on growth, yield and quality of potato (Solanum tuberosum L.). Agronomy 2019, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- De Cauwer, V.; Knox, N.; Kobue-Lekalake, R.; Lepetu, J.P.; Ompelege, M.; Naidoo, S.; Nott, A.; Parduhn, D.; Sichone, P.; Tshwenyane, S.; et al. Woodland resources and management in southern Africa. In Climate Change and Adaptive Land Management in Southern Africa: Assessments, Changes, Challenges, and Solutions: Product of the First Research Portfolio of SASSCAL 2012–2018; Revermann, R., Krewenka, K.M., Schmiedel, U., Olwoch, J.M., Helmschrot, J., Jürgens, N., Eds.; Klaus Hess Publishers: Göttingen, Germany; Windhoek, Namibia, 2018; pp. 296–308. ISBN 9783933117953/9789991657431. [Google Scholar]
- Pari, L.; Alfano, V.; Garcia-Galindo, D.; Suardi, A.; Santangelo, E. Pruning Biomass Potential in Italy Related to Crop Characteristics, Agricultural Practices and Agro-Climatic Conditions. Energies 2018, 11, 1365. [Google Scholar] [CrossRef] [Green Version]
- Niether, W.; Armengot, L.; Andres, C.; Schneider, M.; Gerold, G. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann. For. Sci. 2018, 75, 38. [Google Scholar] [CrossRef] [Green Version]
- Valladares, F.; Laanisto, L.; Niinemets, Ü.; Zavala, M.A. Shedding light on shade: Ecological perspectives of understorey plant life. Plant Ecol. Divers. 2016, 9, 237–251. [Google Scholar] [CrossRef] [Green Version]
- García-Maraver, A.; Zamorano, M.; Ramos-Ridao, A.; Díaz, L.F. Analysis of olive grove residual biomass potential for electric and thermal energy generation in Andalusia (Spain). Renew. Sustain. Energy Rev. 2012, 16, 745–751. [Google Scholar] [CrossRef]
- Sagani, A.; Hagidimitriou, M.; Dedoussis, V. Perennial tree pruning biomass waste exploitation for electricity generation: The perspective of Greece. Sustain. Energy Technol. Assess. 2019, 31, 77–85. [Google Scholar] [CrossRef]
- Pérez Arévalo, J.J.; Velázquez Martí, B. Characterization of teak pruning waste as an energy resource. Agrofor. Syst. 2020, 94, 241–250. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Gaibor-Chávez, J.; Pérez-Pacheco, S. Quantification based on dimensionless dendrometry and drying of residual biomass from the pruning of orange trees in Bolivar province (Ecuador). Biofuels Bioprod. Bioref. 2016, 10, 175–185. [Google Scholar] [CrossRef]
- Spinelli, R.; Nati, C.; Pari, L.; Mescalchin, E.; Magagnotti, N. Production and quality of biomass fuels from mechanised collection and processing of vineyard pruning residues. Appl. Energy 2012, 89, 374–379. [Google Scholar] [CrossRef]
- Calders, K.; Adams, J.; Armston, J.; Bartholomeus, H.; Bauwens, S.; Bentley, L.P.; Chave, J.; Danson, F.M.; Demol, M.; Disney, M.; et al. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sens. Environ. 2020, 251, 112102. [Google Scholar] [CrossRef]
- Aschoff, T.; Thies, M.; Spiecker, H. Describing forest stands using terrestrial laser-scanning. In Geoimagery Bridging Continents: Proceedings and Results of XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; Technical Comission, V., Altan, O., Eds.; International Society for Photogrammetry and Remote Sensing: Istanbul, Turkey, 2004; pp. 237–241. [Google Scholar]
- Hackenberg, J.; Morhart, C.; Sheppard, J.P.; Spiecker, H.; Disney, M. Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description. Forests 2014, 5, 1069–1105. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, J.P.; Morhart, C.; Hackenberg, J.; Spiecker, H. Terrestrial laser scanning as a tool for assessing tree growth. iForest 2017, 10, 172–179. [Google Scholar] [CrossRef]
- Muumbe, T.P.; Baade, J.; Singh, J.; Schmullius, C.; Thau, C. Terrestrial Laser Scanning for Vegetation Analyses with a Special Focus on Savannas. Remote Sens. 2021, 13, 507. [Google Scholar] [CrossRef]
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef] [Green Version]
- Bohn Reckziegel, R.; Larysch, E.; Sheppard, J.P.; Kahle, H.-P.; Morhart, C. Modelling and Comparing Shading Effects of 3D Tree Structures with Virtual Leaves. Remote Sens. 2021, 13, 532. [Google Scholar] [CrossRef]
- Bohn Reckziegel, R.; Sheppard, J.P.; Kahle, H.-P.; Larysch, E.; Spiecker, H.; Seifert, T.; Morhart, C. Virtual pruning of 3D trees as a tool for managing shading effects in agroforestry systems. Agrofor. Syst. 2022, 96, 89–104. [Google Scholar] [CrossRef]
- Malhi, Y.; Jackson, T.; Patrick Bentley, L.; Lau, A.; Shenkin, A.; Herold, M.; Calders, K.; Bartholomeus, H.; Disney, M.I. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus 2018, 8, 20170052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Disney, M.I.; Boni Vicari, M.; Burt, A.; Calders, K.; Lewis, S.L.; Raumonen, P.; Wilkes, P. Weighing trees with lasers: Advances, challenges and opportunities. Interface Focus 2018, 8, 20170048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvites, C.; Santopuoli, G.; Hollaus, M.; Pfeifer, N.; Maesano, M.; Moresi, F.V.; Marchetti, M.; Lasserre, B. Terrestrial Laser Scanning for Quantifying Timber Assortments from Standing Trees in a Mixed and Multi-Layered Mediterranean Forest. Remote Sens. 2021, 13, 4265. [Google Scholar] [CrossRef]
- Burke, A. Savanna trees in Namibia—Factors controlling their distribution at the arid end of the spectrum. Flora-Morphol. Distrib. Funct. Ecol. Plants 2006, 201, 189–201. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Jarvis, A.; Roberts, C.; Robertson, T. Atlas of Namibia: A Portrait of the Land and its People; David Philip Publishers: Capetown, South Africa, 2002; ISBN 0864865163. [Google Scholar]
- Hartemink, A.E.; Huting, J. Land Cover, Extent, and Properties of Arenosols in Southern Africa. Arid Land Res. Manag. 2008, 22, 134–147. [Google Scholar] [CrossRef]
- Strohbach, B.J.; Petersen, A. Vegetation of the central Kavango woodlands in Namibia: An example from the Mile 46 Livestock Development Centre. S. Afr. J. Bot. 2007, 73, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, W.A.; Solbrig, O.T. The role of topkill in the differential response of savanna woody species to fire. For. Ecol. Manag. 2003, 180, 273–286. [Google Scholar] [CrossRef]
- Levick, S.R.; Baldeck, C.A.; Asner, G.P. Demographic legacies of fire history in an African savanna. Funct Ecol. 2015, 29, 131–139. [Google Scholar] [CrossRef]
- Barnes, J.I.; MacGregor, J.J.; Nhuleipo, O.; Muteyauli, P.I. The value of Namibia’s forest resources: Preliminary economic asset and flow accounts. Dev. S. Afr. 2010, 27, 159–176. [Google Scholar] [CrossRef]
- Graz, F.P. Structure and Diversity of the Dry Woodland Savanna of Northern Namibia; Georg-August-Universität Göttingen: Göttingen, Germany, 2005. [Google Scholar]
- Raumonen, P. TreeQSM-Quantitative Structure Models of Single Trees from Laser Scanner Data; MATLAB-Software: Tampere, Finland, 2020. [Google Scholar]
- Luck, L.; Hutley, L.B.; Calders, K.; Levick, S.R. Exploring the Variability of Tropical Savanna Tree Structural Allometry with Terrestrial Laser Scanning. Remote Sens. 2020, 12, 3893. [Google Scholar] [CrossRef]
- Gao, Y.; Kang, F.; Kan, J.; Wang, Y.; Tong, S. Analysis and Experiment of Cutting Mechanical Parameters for Caragana korshinskii (C.k.) Branches. Forests 2021, 12, 1359. [Google Scholar] [CrossRef]
- Repullo, M.A.; Carbonell, R.; Hidalgo, J.; Rodríguez-Lizana, A.; Ordóñez, R. Using olive pruning residues to cover soil and improve fertility. Soil Tillage Res. 2012, 124, 36–46. [Google Scholar] [CrossRef]
- Kumar, M.; Rawat, V.; Rawat, J.; Tomar, Y.K. Effect of pruning intensity on peach yield and fruit quality. Sci. Hortic. 2010, 125, 218–221. [Google Scholar] [CrossRef]
- Sheppard, J.P.; Urmes, M.; Morhart, C.; Spiecker, H. Factors affecting branch wound occlusion and associated decay following pruning–a case study with wild cherry (Prunus avium L.). Ann. Silvic. Res. 2016, 40, 133–139. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M.; Krawiec, P.; Wieczorek, B. Impact of Number of Operators and Distance to Branch Piles on Woodchipper Operation. Forests 2020, 11, 598. [Google Scholar] [CrossRef]
- Åkerblom, M.; Raumonen, P.; Casella, E.; Disney, M.I.; Danson, F.M.; Gaulton, R.; Schofield, L.A.; Kaasalainen, M. Non-intersecting leaf insertion algorithm for tree structure models. Interface Focus 2018, 8, 20170045. [Google Scholar] [CrossRef]
- Wilkes, P.; Lau, A.; Disney, M.; Calders, K.; Burt, A.; Gonzalez de Tanago, J.; Bartholomeus, H.; Brede, B.; Herold, M. Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sens. Environ. 2017, 196, 140–153. [Google Scholar] [CrossRef]
- Vicari, M.B.; Disney, M.; Wilkes, P.; Burt, A.; Calders, K.; Woodgate, W.; Freckleton, R. Leaf and wood classification framework for terrestrial LiDAR point clouds. Methods Ecol. Evol. 2019, 10, 680–694. [Google Scholar] [CrossRef] [Green Version]
Tree Attributes | Unit | Stand (n = 66) | Selected Trees (n = 49) | ||
---|---|---|---|---|---|
µ ± σ | CV% | µ ± σ | CV% | ||
Diameter at breast height | cm | 14.6 ± 8.3 | 13.6 ± 11.9 | 17.7 ± 7.0 | 7.6 ± 5.7 |
Tree height | m | 8.3 ± 2.8 | 3.5 ± 5.7 | 9.2 ± 2.3 | 3.4 ± 6.4 |
Branch volume | L | 113.4 ± 122.8 | 11.9 ± 5.9 | 138.9 ± 128.2 | 10.2 ± 5.4 |
Total volume | L | 223.1 ± 224.8 | 9.1 ± 6.2 | 281.1 ± 230.4 | 7.7 ± 6.0 |
Number of branches | - | 75 ± 80 | 11.2 ± 7.5 | 89 ± 85 | 10.5 ± 8.4 |
Max branch order | - | 4 ± 2 | 14.9 ± 4.6 | 4 ± 2 | 13.4 ± 3.8 |
Branch length | m | 70.4 ± 65.8 | 9.4 ± 6.6 | 81.4 ± 66.4 | 8.7 ± 7.1 |
Mean crown diameter | m | 2.9 ± 2.0 | 6.7 ± 4.0 | 3.3 ± 1.9 | 6.0 ± 3.9 |
Crown base height | m | 2.1 ± 1.2 | 19.1 ± 21.2 | 2.3 ± 1.3 | 17.3 ± 20.8 |
Total woody surface area | m2 | 11.19 ± 9.34 | 6.9 ± 4.6 | 13.36 ± 9.23 | 6.1 ± 3.9 |
Simulation by | Selection Criteria | Thresholds | Treatments |
---|---|---|---|
Height | All first-order branches with a branch base height below the threshold are removed with their ramifications | H ≤ 2 m | H2 |
H ≤ 3 m | H3 | ||
Diameter | All first-order branches with a branch collar diameter above the threshold are removed with their ramifications | BCD ≥ 2 cm | Di2 |
BCD ≥ 7 cm | Di7 | ||
Branch order | All branches of second-order and ramifications attached to a first-order branch with a collar diameter meeting the threshold are removed | BO ≥ 2 and BCD ≥ 4 cm | BrO |
Measure | Unit | H2 | H3 | BrO | Di2 | Di7 |
---|---|---|---|---|---|---|
Tree alterations | % | 54.5 | 66.7 | 28.8 | 65.2 | 36.4 |
First OB alterations | % | 16.8 | 27.6 | 7.0 | 25.8 | 6.2 |
Number of cuts | cuts tree−1 | 2.8 | 3.8 | 5.6 | 3.6 | 1.5 |
cuts ha−1 | 222 | 365 | 235 | 341 | 81 | |
Mean cut area | cm2 cut−1 | 33.1 | 36.7 | 13.1 | 39.2 | 105.1 |
Total cut area | m2 ha−1 | 7.35 | 13.41 | 3.08 | 13.36 | 8.54 |
Wood vol. per cut | L cut−1 | 18.3 ± 49.8 | 24.5 ± 48.5 | 1.1 ± 1.3 | 26.5 ± 49.7 | 57.2 ± 76.6 |
Treatments | Stand and Tree Health | Products | Labour | ||
---|---|---|---|---|---|
Quality | Quantity | Ease of Implementation | Operation Efficiency | ||
H2 | − | + | + | + + | + + |
H3 | − − | + | + + | + | + |
BrO | o | − | − | − − | − − |
Di2 | − − | + | + + | − | − |
Di7 | − | + + | + | − | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohn Reckziegel, R.; Mbongo, W.; Kunneke, A.; Morhart, C.; Sheppard, J.P.; Chirwa, P.; du Toit, B.; Kahle, H.-P. Exploring the Branch Wood Supply Potential of an Agroforestry System with Strategically Designed Harvesting Interventions Based on Terrestrial LiDAR Data. Forests 2022, 13, 650. https://doi.org/10.3390/f13050650
Bohn Reckziegel R, Mbongo W, Kunneke A, Morhart C, Sheppard JP, Chirwa P, du Toit B, Kahle H-P. Exploring the Branch Wood Supply Potential of an Agroforestry System with Strategically Designed Harvesting Interventions Based on Terrestrial LiDAR Data. Forests. 2022; 13(5):650. https://doi.org/10.3390/f13050650
Chicago/Turabian StyleBohn Reckziegel, Rafael, Werner Mbongo, Anton Kunneke, Christopher Morhart, Jonathan P. Sheppard, Paxie Chirwa, Ben du Toit, and Hans-Peter Kahle. 2022. "Exploring the Branch Wood Supply Potential of an Agroforestry System with Strategically Designed Harvesting Interventions Based on Terrestrial LiDAR Data" Forests 13, no. 5: 650. https://doi.org/10.3390/f13050650
APA StyleBohn Reckziegel, R., Mbongo, W., Kunneke, A., Morhart, C., Sheppard, J. P., Chirwa, P., du Toit, B., & Kahle, H. -P. (2022). Exploring the Branch Wood Supply Potential of an Agroforestry System with Strategically Designed Harvesting Interventions Based on Terrestrial LiDAR Data. Forests, 13(5), 650. https://doi.org/10.3390/f13050650