Forest Biometric Systems in Mexico: A Systematic Review of Available Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Search
2.2. Metadata
2.3. Analysis
3. Results
3.1. Information Sources
3.2. Types of Models
3.3. Geographical Distribution of the Models
3.4. Reported Models by Species
3.5. Most Frequently Used Models
3.6. Analysis of Model Fit
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres-Rojo, J.M.; Moreno-Sánchez, R.; Mendoza-Briseño, M.A. Sustainable Forest Management in Mexico. Curr. For. Rep. 2016, 2, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Vanclay, J.K. Modelling Trees, Stands and Forests. For. Ecol. Manag. 1989, 27, 313–314. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9789048131709. [Google Scholar]
- Vargas-Larreta, B.; Corral-Rivas, J.J. SiBiFor: Forest Biometric System for Forest Management in Mexico. Rev. Chapingo Ser. Cienc. For. Ambiente 2017, 23, 437–455. [Google Scholar]
- Assmann, E. The Principles of Forest Yield Study: Studies in the Organic Production, Structure, Increment and Yield of Forest Stands; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9781483150932. [Google Scholar]
- NOM-152-SEMARNAT-2006; Diario Oficial de la Federación. SEMARNAT Norma Oficial Mexicana: Mexico City, Mexico, 2008.
- Cieszewski, C.J.; Strub, M. Parameter Estimation of Base–Age Invariant Site Index Models: Which Data Structure to Use?—A Discussion. For. Sci. 2007, 53, 552–555. [Google Scholar] [CrossRef]
- Myers, R.H. Classical and Modern Regression with Applications; Duxbury Press: Boston, MA, USA, 1986. [Google Scholar]
- Viechtbauer, W. Conducting Meta-Analyses InRwith ThemetaforPackage. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- RC Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Guthery, F.S.; Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. J. Wildl. Manag. 2003, 67, 655. [Google Scholar] [CrossRef]
- SEMARNAT. Anuario Estadístico de La Producción Forestal 2018; Secretaria de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2021.
- Schumacher, F.X.; Ahll, F.D.S. Logarithmic Expression of Timber-Tree Volume. J. Agric. Res. 1933, 47, 719–734. [Google Scholar]
- Fang, Z.; Borders, B.E.; Bailey, R.L. Compatible Volume-Taper Models for Loblolly and Slash Pine Based on a System with Segmented-Stem Form Factors. For. Sci. 2000, 46, 1–12. [Google Scholar] [CrossRef]
- von Bertalanffy, L. A Quantitative Theory of Organic Growth (Inquiries on Growth Laws. II). Hum. Biol. 1938, 10, 181–213. [Google Scholar]
- Schumacher, F.X. A New Growth Curve and Its Application to Timber Yield Studies. J. For. 1939, 37, 819–820. [Google Scholar]
- Max, T.A.; Burkhart, H.E. Segmented Polynomial Regression Applied to Taper Equations. For. Sci. 1976, 22, 283–289. [Google Scholar] [CrossRef]
- Kozak, A. A Variable-Exponent Taper Equation. Can. J. For. Res. 1988, 18, 1363–1368. [Google Scholar] [CrossRef]
- Biging, G.S. Taper Equations for Second-Growth Mixed Conifers of Northern California. For. Sci. 1984, 30, 1103–1117. [Google Scholar] [CrossRef]
- Schröder, J.; Álvarez González, J.G. Comparing the Performance of Generalized Diameter-Height Equations for Maritime Pine in Northwestern Spain. Forstwiss. Cent. Ver. Mit Tharandter Forstl. Jahrb. 2001, 120, 18–23. [Google Scholar] [CrossRef]
- Yang, R.C.; Kozak, A.; Smith, J.H.G. The Potential of Weibull-Type Functions as Flexible Growth Curves. Can. J. For. Res. 1978, 8, 424–431. [Google Scholar] [CrossRef]
- Gompertz, B. On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. In a letter to Francis Baily, Esq. FRS &c. Philos. Trans. R. Soc. Lond. 1833, 2, 252–253. [Google Scholar] [CrossRef] [Green Version]
- Clark, A. Stem Profile Equations for Southern Tree Species; Southeastern Forest Experiment Station, U.S. Department of Agriculture, Forest Service: Asheville, NC, USA, 1991.
- Kramer, H.; Akca, A. Leitfaden Zur Waldmesslehre; JD Sauerländer’s Verlag: Frankfurt, Germany, 2008; ISBN 978-3-7939-0880-7. [Google Scholar]
- Meyer, H.A. Bark Volume Determination in Trees. J. For. 1946, 44, 1067–1070. [Google Scholar] [CrossRef]
- Bailey, R.L.; Clutter, J.L. Base-Age Invariant Polymorphic Site Curves. For. Sci. 1974, 20, 155–159. [Google Scholar] [CrossRef]
- Fidalgo-González, L.A.; Arellano-Pérez, S.; Álvarez-González, J.G.; Castedo-Dorado, F.; Ruiz-González, A.D.; González-Ferreiro, E. Estimation of the vertical distribution of the fine canopy fuel in Pinus sylvestris stands using low density LiDAR data. Rev. Teledetección 2019, 53, 1–16. [Google Scholar] [CrossRef]
- Alonso-Rego, C.; Arellano-Pérez, S.; Guerra-Hernández, J.; Molina-Valero, J.A.; Martínez-Calvo, A.; Pérez-Cruzado, C.; Castedo-Dorado, F.; González-Ferreiro, E.; Álvarez-González, J.G.; Ruiz-González, A.D. Estimating Stand and Fire-Related Surface and Canopy Fuel Variables in Pine Stands Using Low-Density Airborne and Single-Scan Terrestrial Laser Scanning Data. Remote Sens. 2021, 13, 5170. [Google Scholar] [CrossRef]
- Pérez-Cruzado, C.; Kleinn, C.; Magdon, P.; Álvarez-González, J.G.; Magnussen, S.; Fehrmann, L.; Nölke, N. The Horizontal Distribution of Branch Biomass in European Beech: A Model Based on Measurements and TLS Based Proxies. Remote Sens. 2021, 13, 1041. [Google Scholar] [CrossRef]
- Furnival, G.M. An Index for Comparing Equations Used In Constructing Volume Tables. For. Sci. 1961, 7, 337–341. [Google Scholar] [CrossRef]
- Case, B.S.; Hall, R.J. Assessing Prediction Errors of Generalized Tree Biomass and Volume Equations for the Boreal Forest Region of West-Central Canada. Can. J. For. Res. 2008, 38, 878–889. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Vásquez-Bautista, N.; Zamudio-Sánchez, F.J.; Alvarado-Segura, A.A.; Romo-Lozano, J.L. Forest Biometric Models in Hidalgo, Mexico: State of the Art. Rev. Chapingo Ser. Cienc. For. Ambiente 2016, 22, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Perez-Adroher, A. Model Selection; University of Twente: Enschede, The Netherlands, 2018. [Google Scholar]
- Speed, T.P.; Yu, B. Model Selection and Prediction: Normal Regression. Ann. Inst. Stat. Math. 1993, 45, 35–54. [Google Scholar] [CrossRef]
- Keller, J.K. Model Selection for Prediction. In Introduction to Regression Analysis in R; University of Illinois, Urbana-Champaign: Champaign, IL, USA, 2020; Available online: https://www.joshuapkeller.com/page/introregression/index.html (accessed on 12 February 2022).
- Barrio-Anta, M.; Diéguez-Aranda, U. Site Quality of Pedunculate Oak (Quercus Robur L.) Stands in Galicia (Northwest Spain). Eur. J. For. Res. 2005, 124, 19–28. [Google Scholar] [CrossRef]
- Kozak, A.; Kozak, R. Does Cross Validation Provide Additional Information in the Evaluation of Regression Models? Can. J. For. Res. 2003, 33, 976–987. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Martínez, J.O.; Vargas-Larreta, B.; González, E.J.; Corral-Rivas, J.J.; Aguirre-Calderón, O.A.; Treviño-Garza, E.J.; De los Santos-Posadas, H.M.; Martínez-Salvador, M.; Zamudio-Sánchez, F.J.; Aguirre-Calderón, C.G. Forest Biometric Systems in Mexico: A Systematic Review of Available Models. Forests 2022, 13, 649. https://doi.org/10.3390/f13050649
López-Martínez JO, Vargas-Larreta B, González EJ, Corral-Rivas JJ, Aguirre-Calderón OA, Treviño-Garza EJ, De los Santos-Posadas HM, Martínez-Salvador M, Zamudio-Sánchez FJ, Aguirre-Calderón CG. Forest Biometric Systems in Mexico: A Systematic Review of Available Models. Forests. 2022; 13(5):649. https://doi.org/10.3390/f13050649
Chicago/Turabian StyleLópez-Martínez, Jorge Omar, Benedicto Vargas-Larreta, Edgar J. González, José Javier Corral-Rivas, Oscar A. Aguirre-Calderón, Eduardo J. Treviño-Garza, Héctor M. De los Santos-Posadas, Martin Martínez-Salvador, Francisco J. Zamudio-Sánchez, and Cristóbal Gerardo Aguirre-Calderón. 2022. "Forest Biometric Systems in Mexico: A Systematic Review of Available Models" Forests 13, no. 5: 649. https://doi.org/10.3390/f13050649
APA StyleLópez-Martínez, J. O., Vargas-Larreta, B., González, E. J., Corral-Rivas, J. J., Aguirre-Calderón, O. A., Treviño-Garza, E. J., De los Santos-Posadas, H. M., Martínez-Salvador, M., Zamudio-Sánchez, F. J., & Aguirre-Calderón, C. G. (2022). Forest Biometric Systems in Mexico: A Systematic Review of Available Models. Forests, 13(5), 649. https://doi.org/10.3390/f13050649