Estimation of Aboveground Vegetation Water Storage in Natural Forests in Jiuzhaigou National Nature Reserve of China Using Machine Learning and the Combination of Landsat 8 and Sentinel-2 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.2.1. Data Acquisition
2.2.2. Aboveground Vegetation Water Storage Calculation
2.3. Satellite Data and Preprocessing
2.4. Classification Method
2.5. Variables for the Prediction of Aboveground Vegetation Water Storage
2.6. Feature Selection
2.7. Models
2.7.1. XGBoost
2.7.2. MARS
2.7.3. Random Forest
2.7.4. Model Assessment
3. Results
3.1. Classification
3.2. Field AVWS
3.3. Model Comparison
3.4. Spatial Distribution Characteristics of AVWS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2015; UN Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Qureshi, A.; Badola, R.; Hussain, S.A. A review of protocols used for assessment of carbon stock in forested landscapes. Environ. Sci. Policy 2012, 16, 81–89. [Google Scholar] [CrossRef]
- Reichstein, M.; Carvalhais, N. Aspects of Forest Biomass in the Earth System: Its Role and Major Unknowns. Surv. Geophys. 2019, 40, 693–707. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.N.; Yang, W.N.; Wu, B.F. Conception of Eco-Water Sphere and Its Application. Adv. Earth Sci. 2004, 19, 117–121. [Google Scholar]
- Gao, Z.Q.; Wang, Q.X.; Cao, X.M. The responses of vegetation water content (EWT) and assessment of drought monitoring along a coastal region using remote sensing. Giscience Remote Sens. 2014, 51, 1–16. [Google Scholar] [CrossRef]
- Doherty, T.J.; Clayton, S. The Psychological Impacts of Global Climate Change. Am. Psychol. 2011, 66, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Yebra, M.; Dennison, P.E.; Chuvieco, E. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Mendiguren, G.; Martin, M.P.; Nieto, H. Seasonal variation in grass water content estimated from proximal sensing and MODIS time series in a Mediterranean Fluxnet site. Biogeosciences 2015, 12, 5523–5535. [Google Scholar] [CrossRef] [Green Version]
- Quan, X.W.; He, B.B.; Li, X. A Bayesian Network-Based Method to Alleviate the Ill-Posed Inverse Problem: A Case Study on Leaf Area Index and Canopy Water Content Retrieval. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6507–6517. [Google Scholar] [CrossRef]
- Neinavaz, E.; Skidmore, A.K.; Darvishzadeh, R. Retrieving vegetation canopy water content from hyperspectral thermal measurements. Agric. For. Meteorol. 2017, 247, 365–375. [Google Scholar] [CrossRef]
- Hunt, E.R.; Li, L.; Friedman, J.M. Incorporation of Stem Water Content into Vegetation Optical Depth for Crops and Woodlands. Remote Sens. 2018, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Walker, J.P.; Allahmoradi, M. Optical Sensing of Vegetation Water Content: A Synthesis Study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Skidmore, A.K.; Darvishzadeh, R. Estimation of forest leaf water content through inversion of a radiative transfer model from LiDAR and hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 120–129. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; Cárdenas Domínguez, J.L.; Corral-Rivas, J.J. Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests. Forests 2020, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, L.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Pandit, S.; Tsuyuki, S.; Dube, T. Estimating Above-Ground Biomass in Sub-Tropical Buffer Zone Community Forests, Nepal, Using Sentinel 2 Data. Remote Sens. 2018, 10, 601. [Google Scholar] [CrossRef] [Green Version]
- Moradi, F.; Darvishsefat, A.A.; Pourrahmati, M.R. Estimating Aboveground Biomass in Dense Hyrcanian Forests by the Use of Sentinel-2 Data. Forests 2022, 13, 104. [Google Scholar] [CrossRef]
- Zhang, J.H.; Xu, Y.; Yao, F.M. Advances in estimation methods of vegetation water content based on optical remote sensing techniques. Sci. China-Technol. Sci. 2010, 53, 1159–1167. [Google Scholar] [CrossRef]
- Clevers, J.; Kooistra, L.; Schaepman, M.E. Estimating canopy water content using hyperspectral remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 119–125. [Google Scholar] [CrossRef]
- Mirzaie, M.; Darvishzadeh, R.; Shakiba, A. Comparative analysis of different uni-and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 1–11. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef] [Green Version]
- Ceccato, P.; Gobron, N.; Flasse, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1-Theoretical approach. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Cheng, T.; Rivard, B.; Sanchez-Azofeifa, A.G. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. J. Plant Physiol. 2012, 169, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Darvishzadeh, R.; Matkan, A.A.; Ahangar, A.D. Inversion of a Radiative Transfer Model for Estimation of Rice Canopy Chlorophyll Content Using a Lookup-Table Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1222–1230. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. Prospect-a Model of Leaf Optical Properties Spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Wang, L.L.; Hunt, E.R.; Qu, J.J. Remote sensing of fuel moisture content from ratios of narrow-band vegetation water and dry-matter indices. Remote Sens. Environ. 2013, 129, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Feret, J.B.; Francois, C.; Asner, G.P. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Trombetti, M.; Riano, D.; Rubio, M.A. Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA. Remote Sens. Environ. 2008, 112, 203–215. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M. Retrieval of canopy biophysical variables from bidirectional reflectance-Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 2003, 84, 1–15. [Google Scholar] [CrossRef]
- Koetz, B.; Baret, F.; Poilve, H. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 2005, 95, 115–124. [Google Scholar] [CrossRef]
- Riano, D.; Vaughan, P.; Chuvieco, E. Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: Analysis at leaf and canopy level. IEEE Trans. Geosci. Remote Sens. 2005, 43, 819–826. [Google Scholar] [CrossRef]
- de Almeida, C.T.; Galvao, L.S.; de Oliveira Cruz e Aragao, L.E. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 2019, 232, 111323. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Hanes, J. Biophysical Applications of Satellite Remote Sensing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bodesheim, P.; Jung, M.; Gans, F. Upscaled diurnal cycles of land-atmosphere fluxes: A new global half-hourly data product. Earth Syst. Sci. Data 2018, 10, 1327–1365. [Google Scholar] [CrossRef] [Green Version]
- Bossard, C.C.; Cao, Y.T.; Wang, J.Y. New patterns of establishment and growth of Picea, Abies and Betula tree species in subalpine forest gaps of Jiuzhaigou National Nature Reserve, Sichuan, southwestern China in a changing environment. For. Ecol. Manag. 2015, 356, 84–92. [Google Scholar] [CrossRef]
- Li, W.; Ge, X.; Liu, C. Hiking trails and tourism impact assessment in protected area: Jiuzhaigou Biosphere Reserve, China. Environ. Monit. Assess. 2005, 108, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lei, K.; Zhang, Y. Effects of vegetation, elevation and human disturbance on the distribution of large-and medium-sized wildlife: A case study in Jiuzhaigou Nature Reserve. Acta Ecol. Sin. 2012, 32, 4228–4235. [Google Scholar] [CrossRef]
- Chen, X.Q.; Chen, J.G.; Cui, P. Assessment of prospective hazards resulting from the 2017 earthquake at the world heritage site Jiuzhaigou Valley, Sichuan, China. J. Mt. Sci. 2018, 15, 779–792. [Google Scholar] [CrossRef]
- Chen, R.; Guo, X.; Du, J. Monitoring of disturbance on ecological environment caused by earthquake and post-disaster reconstruction at heye village area of jiuzhaigou using the high-resolution remote sensing imageries. Quat. Sci. 2020, 40, 1350–1358. [Google Scholar]
- Deljouei, A.; Sadeghi, S.M.M.; Abdi, E. The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian forest. Eur. J. For. Res. 2018, 137, 759–770. [Google Scholar] [CrossRef]
- Rahbarisisakht, S.; Moayeri, M.H.; Hayati, E. Changes in Soil’s Chemical and Biochemical Properties Induced by Road Geometry in the Hyrcanian Temperate Forests. Forests 2021, 12, 1805. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, M.L.; Li, C.; Liu, Z.Z. Forest Aboveground Biomass Estimation Using Landsat 8 and Sentinel-1A Data with Machine Learning Algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef] [PubMed]
- Dempster, A.P. Upper and Lower Probabilities Induced by a Multivalued Mapping. In Classic Works of the Dempster-Shafer Theory of Belief Functions; Yager, R.R., Liu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 57–72. [Google Scholar]
- Roujean, J.L.; Breon, F.M. Estimating par absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Sellaro, R.; Crepy, M.; Ariel Trupkin, S. Cryptochrome as a Sensor of the Blue/Green Ratio of Natural Radiation in Arabidopsis. Plant Physiol. 2010, 154, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Lymburner, L.; Beggs, P.J.; Jacobson, C.R. Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogramm. Eng. Remote Sens. 2000, 66, 183–192. [Google Scholar]
- Hardisky, M.A.; Klemas, V.; Smart, M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Hunt, E.R., Jr.; Rock, B.N. Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- De Grandi, G.D.; Lucas, R.M.; Kropacek, J. Analysis by Wavelet Frames of Spatial Statistics in SAR Data for Characterizing Structural Properties of Forests. IEEE Trans. Geosci. Remote Sens. 2009, 47, 494–507. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- He, H.; Zhang, W.; Zhang, S. A novel ensemble method for credit scoring: Adaption of different imbalance ratios. Expert Syst. Appl. 2018, 98, 105–117. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Chou, S.M.; Lee, T.S.; Shao, Y.E. Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl. 2004, 27, 133–142. [Google Scholar] [CrossRef]
- Balshi, M.S.; McGuirez, A.D.; Duffy, P. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob. Change Biol. 2009, 15, 578–600. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gounaridis, D.; Koukoulas, S. Urban land cover thematic disaggregation, employing datasets from multiple sources and RandomForests modeling. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 1–10. [Google Scholar] [CrossRef]
- Chan, J.C.W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Nelson, R.; Short, A.; Valenti, M. Measuring biomass and carbon in delaware using an airborne profiling LIDAR. Scand. J. For. Res. 2005, 20, 283–284. [Google Scholar] [CrossRef]
- Sibanda, M.; Mutanga, O.; Rouget, M. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments. ISPRS J. Photogramm. Remote Sens. 2015, 110, 55–65. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Li, M. Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. Forests 2019, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Batistella, M.; Moran, E. Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogramm. Eng. Remote Sens. 2005, 71, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.L.; Zhong, Z.C.; Li, X.G. A study on the biomass of alder and cypress artificial mixed forest in sichuan. Acta Phytoecol. Sin. 1996, 20, 524–533. [Google Scholar]
- Kong, W.J.; Zheng, Z. The Aboveground Biomass and Net Primary Productivity of Degraded and Artificial Communities in Maoxian, Upper Reach of Minjiang River. J. Mt. Sci. 2004, 22, 445–450. [Google Scholar]
- Luo, T.X.; Shi, P.L.; Luo, J.; Ou, Y.H. Distribution patterns of aboveground biomass in tibetan alpine vegetation transects. Acta Phytoecol. Sin. 2002, 26, 668–676. [Google Scholar]
- Li, W.B. Study on Biomass compositions of Principal vegetations and their relationships in the Dagou Valley of the upper Minjiang River. Master’s Thesis, Southwest University, Chongqing, China, 2007. [Google Scholar]
- Luo, Y.J.; Wang, X.K.; Lu, F. Comprehensive Database of Biomass Regressions for China’s Tree Species; China Forestry Publishing House: Beijing, China, 2015. [Google Scholar]
Vegetation Type | Average Value (Mg ha−1) | Standard Deviation (Mg ha−1) | Maximum Value (Mg ha−1) | Minimum Value (Mg ha−1) |
---|---|---|---|---|
Coniferous forest | 212.29 a | 84.43 | 443.51 | 89.58 |
Broad-leaved forest | 142.6 b | 46.36 | 245.31 | 82.74 |
Mixed forests | 166.29 ab | 72.73 | 353.21 | 64.06 |
All forests | 171.2 | 73.19 | 443.51 | 64.06 |
Vegetation Types | AVWS (105 Mg) | Percentage |
---|---|---|
Coniferous forests | 35.2 | 67.2% |
Broad-leaved forests | 13.3 | 25.4% |
Mixed forests | 1.4 | 2.7% |
Shrubland | 2.5 | 4.7% |
Total | 52.4 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yang, W.; Luo, K.; Tang, X. Estimation of Aboveground Vegetation Water Storage in Natural Forests in Jiuzhaigou National Nature Reserve of China Using Machine Learning and the Combination of Landsat 8 and Sentinel-2 Data. Forests 2022, 13, 507. https://doi.org/10.3390/f13040507
Zhou X, Yang W, Luo K, Tang X. Estimation of Aboveground Vegetation Water Storage in Natural Forests in Jiuzhaigou National Nature Reserve of China Using Machine Learning and the Combination of Landsat 8 and Sentinel-2 Data. Forests. 2022; 13(4):507. https://doi.org/10.3390/f13040507
Chicago/Turabian StyleZhou, Xiangshan, Wunian Yang, Ke Luo, and Xiaolu Tang. 2022. "Estimation of Aboveground Vegetation Water Storage in Natural Forests in Jiuzhaigou National Nature Reserve of China Using Machine Learning and the Combination of Landsat 8 and Sentinel-2 Data" Forests 13, no. 4: 507. https://doi.org/10.3390/f13040507
APA StyleZhou, X., Yang, W., Luo, K., & Tang, X. (2022). Estimation of Aboveground Vegetation Water Storage in Natural Forests in Jiuzhaigou National Nature Reserve of China Using Machine Learning and the Combination of Landsat 8 and Sentinel-2 Data. Forests, 13(4), 507. https://doi.org/10.3390/f13040507