Intraspecific Pollen Morphology Variation and Its Responses to Environmental Factors of Wild Cathaya argyrophylla Chun Et Kuang Endemic to China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Coding the Qualitative Traits
2.3. Environmental Datas
2.4. Statistical Analysis
3. Results
3.1. General Morphological Description of Pollen
3.1.1. Description on Quantitative Traits of Pollen
3.1.2. Description on Qualitative Traits of Pollen
3.2. Intraspecific Pollen Variability of the Studied Samples
3.3. Clustering Analysis of 23 Pollen Samples
- (1)
- The 23 pollen samples could be classified into two clusters based on the grade bond line L1 (D = 20.0), for which the main distinguishing traits were O-CO, B-SD, B, P/E, and A/B. The first cluster contained six samples (18, 21, 17, 20, 19, and 22) collected from the same population (BMS-J). The second cluster was composed of the remaining 17 samples.
- (2)
- The 23 pollen samples could be classified into three clusters based on the grade bond line L2 (D = 7.5). The first cluster still harbored the six samples from the BMS-J population. The remaining 17 samples were classified into two clusters based on three main distinguishing traits: P/E, B-GU, and B-SU. The second cluster comprised four samples (sample 9, 13, 5, and 11), The third cluster consisted of the remaining 13 samples.
- (3)
- The 23 pollen samples could be classified further into four clusters, based on the grade bond line L3 (D = 6.25). The first cluster was unchanged (samples 18, 21, 17, 20, 19, and 22). The second cluster had the same four samples as before (samples 9, 13, 5, and 11), with the remaining 13 samples collected from Shajiaodong Natural Reserve now classified into two clusters based on the main classifying traits of P, A, G, and O-CSR. The third cluster had four samples (samples 16, 23, 10, and 15).
3.4. Effects of Environmental Factors on Pollen Morphology of C. argyrophylla
4. Discussion
4.1. Pollen Morphology and Diagnostic Features
4.2. New Qualitative Pollen Traits and Clustering
4.3. Implications for Siring Success Association between Pollen Size and Environmental Factors in Tree C. argyrophylla
5. Conclusions
- The most important and main pollen features of the studied C. argyrophylla samples are traits B, P, A, O-OR and the new traits, O-CO, B-SD, O-CSR, and B-SU. Accordingly, the 23 tree-level samples could be divided into two, three, or four clusters. By contrast, at the population level, the pollen of population BMS-J is very different from the other three populations.
- Precipitation factors were higher response to pollen morphology compared to temperature and geographic factors, the main precipitation (bio12, bio13, bio14, bio15 and 05-precip) and temperature factors (bio1, bio4, bio5, and bio6) were exhibited positive and negative correlation with pollen size (E and B), respectively.
- This is the first study on the intraspecific pollen morphology and variability of wild C. argyrophylla and its correlation with environmental factors. and these results can help for seed breeding and reproduction in endangered tree C. argyrophylla.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Samples | P | E | P/E | A/B | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Range | cv | Mean | Range | cv | Mean | Range | cv | Mean | Range | cv | |
1 | 38.62 | 34.22–43.38 | 6.42 | 38.35 | 29.68–44.11 | 9.31 | 1.02 | 0.84–1.46 | 13.59 | 2.63 | 1.53–4.40 | 20.40 |
2 | 39.63 | 29.41–46.87 | 10.41 | 33.06 | 26.80–39.90 | 10.45 | 1.21 | 0.87–1.52 | 12.17 | 2.38 | 1.74–3.08 | 16.17 |
3 | 41.21 | 34.79–47.74 | 7.74 | 34.46 | 29.32–43.51 | 8.58 | 1.20 | 0.93–1.42 | 10.90 | 2.43 | 1.83–3.22 | 12.40 |
4 | 41.07 | 37.31–46.59 | 5.75 | 32.36 | 28.80–36.69 | 6.78 | 1.27 | 1.12–1.42 | 6.94 | 2.42 | 2.04–3.08 | 12.28 |
5 | 40.23 | 33.84–42.96 | 5.94 | 31.53 | 28.23–37.59 | 8.14 | 1.28 | 1.06–1.50 | 8.61 | 2.64 | 2.21–3.04 | 8.24 |
6 | 40.65 | 33.48–45.25 | 7.39 | 33.56 | 28.30–39.64 | 9.45 | 1.22 | 0.97–1.47 | 12.41 | 2.42 | 1.80–3.25 | 15.88 |
7 | 39.67 | 33.39–44.31 | 6.68 | 36.14 | 30.99–43.76 | 8.69 | 1.10 | 0.90–1.27 | 8.50 | 2.10 | 1.78–2.48 | 9.11 |
8 | 39.37 | 28.32–45.60 | 8.85 | 33.03 | 26.58–39.06 | 9.44 | 1.20 | 0.94–1.53 | 11.11 | 2.33 | 1.80–3.05 | 12.35 |
9 | 43.95 | 37.87–48.31 | 5.61 | 32.77 | 25.41–40.01 | 11.06 | 1.36 | 1.06–1.67 | 11.99 | 2.55 | 2.00–3.33 | 14.65 |
10 | 43.75 | 39.90–51.68 | 6.06 | 35.37 | 28.84–44.26 | 8.40 | 1.24 | 0.90–1.47 | 8.97 | 2.36 | 1.89–3.14 | 11.91 |
11 | 40.08 | 30.71–47.05 | 10.04 | 29.83 | 23.58–35.08 | 9.96 | 1.35 | 1.05–1.64 | 10.57 | 2.55 | 2.07–3.89 | 18.75 |
12 | 41.02 | 35.92–45.78 | 5.12 | 33.84 | 27.13–43.82 | 11.31 | 1.23 | 0.92–1.48 | 10.43 | 2.28 | 1.84–2.76 | 11.99 |
13 | 42.28 | 36.44–46.26 | 5.14 | 33.08 | 26.47–39.87 | 12.61 | 1.30 | 0.94–1.61 | 13.93 | 2.53 | 1.94–3.53 | 15.32 |
14 | 38.90 | 35.26–42.86 | 5.43 | 34.05 | 28.76–41.23 | 8.48 | 1.15 | 0.91–1.36 | 9.94 | 2.19 | 1.73–2.93 | 11.50 |
15 | 42.92 | 38.90–46.11 | 3.68 | 31.90 | 27.67–37.12 | 8.79 | 1.36 | 1.06–1.55 | 9.70 | 2.74 | 1.99–3.90 | 14.60 |
16 | 40.34 | 35.76–45.39 | 6.35 | 34.70 | 31.31–41.46 | 7.13 | 1.17 | 0.90–1.45 | 10.57 | 2.34 | 1.71–3.17 | 14.22 |
17 | 36.47 | 29.17–41.68 | 7.52 | 39.24 | 35.01–43.55 | 5.79 | 0.93 | 0.69–1.13 | 10.67 | 1.91 | 1.47–2.38 | 11.33 |
18 | 37.72 | 30.43–43.14 | 9.13 | 41.08 | 32.25–49.78 | 11.01 | 0.93 | 0.71–1.11 | 12.25 | 1.94 | 1.67–2.43 | 10.28 |
19 | 39.57 | 32.11–45.70 | 8.31 | 37.90 | 31.50–42.56 | 9.29 | 1.05 | 0.77–1.26 | 11.79 | 2.16 | 1.63–2.72 | 12.78 |
20 | 38.13 | 35.21–41.92 | 4.92 | 38.01 | 32.89–46.42 | 8.57 | 1.01 | 0.85–1.18 | 8.88 | 2.06 | 1.69–2.49 | 10.42 |
21 | 39.28 | 32.89–43.21 | 6.96 | 43.49 | 33.75–48.45 | 7.50 | 0.91 | 0.77–1.26 | 12.62 | 1.83 | 1.56–2.38 | 12.67 |
22 | 39.17 | 33.58–43.87 | 6.00 | 34.53 | 29.20–39.80 | 9.24 | 1.14 | 0.95–1.40 | 11.10 | 2.26 | 1.85–2.86 | 11.65 |
23 | 39.55 | 36.15–44.74 | 5.52 | 34.41 | 30.70–40.25 | 8.40 | 1.16 | 1.00–1.34 | 8.16 | 2.41 | 2.04–3.31 | 11.33 |
Samples | A | B | G | |||||||||
Mean | Range | cv | Mean | Range | cv | Mean | Range | cv | ||||
1 | 37.23 | 29.88–48.52 | 12.11 | 14.15 | 8.67–21.67 | 19.68 | 35.95 | 25.21–47.26 | 14.88 | |||
2 | 37.10 | 30.37–40.88 | 7.44 | 15.57 | 11.54–18.66 | 15.10 | 36.15 | 27.70–45.71 | 13.42 | |||
3 | 38.09 | 33.39–45.28 | 8.28 | 15.69 | 11.45–20.54 | 12.22 | 36.63 | 29.68–45.49 | 10.63 | |||
4 | 37.03 | 30.92–42.88 | 7.66 | 15.32 | 11.62–18.08 | 11.91 | 36.10 | 30.24–42.06 | 8.57 | |||
5 | 37.21 | 31.37–41.41 | 6.87 | 14.08 | 10.31–17.03 | 12.02 | 36.85 | 30.61–41.15 | 7.73 | |||
6 | 36.60 | 30.10–41.32 | 9.91 | 15.13 | 10.43–19.94 | 14.77 | 36.36 | 28.50–41.26 | 10.79 | |||
7 | 35.78 | 30.51–40.50 | 6.38 | 17.07 | 13.86–21.57 | 10.16 | 36.03 | 29.48–41.00 | 7.15 | |||
8 | 36.41 | 26.93–44.09 | 8.90 | 15.66 | 11.71–18.95 | 12.51 | 35.64 | 25.93–41.53 | 9.23 | |||
9 | 38.65 | 33.13–42.71 | 7.70 | 15.15 | 10.81–21.37 | 14.28 | 38.19 | 29.92–42.29 | 7.38 | |||
10 | 38.84 | 33.84–47.11 | 6.96 | 16.46 | 10.77–21.60 | 13.14 | 39.40 | 36.47–46.38 | 5.48 | |||
11 | 37.50 | 29.37–44.84 | 11.01 | 14.70 | 10.31–17.03 | 16.50 | 37.15 | 28.32–43.75 | 11.06 | |||
12 | 37.05 | 31.47–40.37 | 6.82 | 16.24 | 11.39–20.13 | 14.26 | 37.80 | 30.38–42.97 | 7.78 | |||
13 | 38.46 | 33.77–42.40 | 5.50 | 15.22 | 10.39–18.98 | 14.93 | 38.41 | 30.92–41.96 | 6.57 | |||
14 | 36.59 | 32.79–41.23 | 6.56 | 16.69 | 12.05–21.16 | 12.07 | 34.95 | 29.60–39.29 | 7.41 | |||
15 | 40.41 | 37.03–45.37 | 4.37 | 14.77 | 10.81–18.57 | 11.77 | 39.74 | 36.75–42.46 | 3.28 | |||
16 | 37.50 | 30.27–44.67 | 8.45 | 16.02 | 13.43–18.99 | 8.98 | 35.14 | 25.73–41.05 | 11.81 | |||
17 | 35.54 | 28.21–39.91 | 8.89 | 18.58 | 16.49–21.09 | 6.96 | 32.77 | 21.57–37.59 | 12.45 | |||
18 | 37.19 | 30.18–42.19 | 8.66 | 19.12 | 14.01–24.62 | 13.86 | 31.41 | 17.05–39.93 | 19.74 | |||
19 | 38.10 | 29.09–43.87 | 9.36 | 17.67 | 13.04–21.40 | 11.61 | 34.23 | 18.53–43.20 | 15.41 | |||
20 | 36.56 | 33.16–41.12 | 6.04 | 17.76 | 15.37–23.76 | 11.74 | 34.83 | 30.35–39.10 | 6.83 | |||
21 | 37.54 | 30.86–42.10 | 7.86 | 20.56 | 16.47–23.91 | 9.74 | 34.11 | 27.60–39.92 | 8.96 | |||
22 | 37.29 | 33.35–40.88 | 5.83 | 16.49 | 13.04–20.37 | 11.28 | 35.23 | 25.64–38.60 | 9.09 | |||
23 | 37.24 | 31.70–41.37 | 6.60 | 15.44 | 11.04–18.91 | 11.49 | 35.24 | 31.74–38.16 | 5.50 |
References
- Romero, M.; Rangelyagui, C.; Cassinello, J.; Cuzin, F.; Jedeidi, T.; Masseti, M.; Nader, I.W.; Clerq, K.D. IUCN Red List of Threatened Species; Version 2013.2; International Union for Conservation of Nature and Natural Resources: Grand, Switzerland, 2013. [Google Scholar]
- Pan, Z. Conservation and Utilization of Cathaya argyrophylla germplasm resources. Mod. Agric. Sci. Technol. 2009, 11, 13–15. [Google Scholar]
- Zongqiang, X.; Qingmei, L. Seed Characteristics of Endangered Plant Cathaya argyrophylla. Acta Phytoecol. Sin. 2000, 24, 82–86. [Google Scholar]
- Ejsmond, M.J.; Wrońska-Pilarek, D.; Ejsmond, A.; Dragosz-Kluska, D.; Kozowski, J. Does climate affect pollen morphology? Optimal size and shape of pollen grains under various desiccation intensity. Ecosphere 2011, 2, 117. [Google Scholar] [CrossRef]
- Srivastava, J.; Manjunatha, B.R.; Balakrishna, K.; Prajith, A.; Manjunatha, H.; Jose, J.; Kumar, N. Quantitative pollen-based reconstruction of the vegetation diversity in response to the late-Holocene climate change near Karwar, south-west coast of India. Quat. Int. 2021, 599–600, 95–106. [Google Scholar] [CrossRef]
- Caliskan, O.; Bayazit, S.; Kilic, D.; Ilgin, M.; Karatas, N. Pollen morphology and variability of caprifig (Ficus carica var. caprificus) genetic resources in Turkey using multivariate analysis. Sci. Hortic. 2021, 287, 110283. [Google Scholar] [CrossRef]
- Mccallum, B.; Chang, S.M. Pollen competition in style: Effects of pollen size on siring success in the hermaphroditic common morning glory, Ipomoea purpurea. Am. J. Bot. 2016, 103, 466–468. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Li, C.; Jiang, Y.; Long, Y.; Yin, J. Characteristics of the pollen morphology and viability of Bougainvillea (Nyctaginaceae). Sci. Hortic. 2021, 277, 109732. [Google Scholar] [CrossRef]
- Hao, K.; Tian, Z.-X.; Wang, Z.-C.; Huang, S.-Q. Pollen grain size associated with pollinator feeding strategy. Proc. R. Soc. B 2020, 287, 20201191. [Google Scholar] [CrossRef]
- Wrońska-Pilarek, D.; Dering, M.; Bocianowski, J.; Lechowicz, K.; Hauke-Kowalska, M. Pollen Morphology and Variability of Abies alba Mill. Genotypes from South-Western Poland. Forests 2020, 11, 1125. [Google Scholar] [CrossRef]
- Wrońska-Pilarek, D.; Wiatrowska, B.; Bocianowski, J. Pollen morphology and variability of invasive Spiraea tomentosa L. (Rosaceae) from populations in Poland. PLoS ONE 2019, 14, e0218276. [Google Scholar] [CrossRef] [Green Version]
- Campo, M.V.; Sivak, J. Structure alveolaire de l’ectexine des pollens à ballonets des Abietacées. Pollen Spores 1972, 14, 115–141. [Google Scholar]
- Liu, Y.S.; Basinger, J.F. Fossil Cathaya (Pinaceae) pollen from the Canadian high arctic. Int. J. Plant Sci. 2000, 161, 829–847. [Google Scholar] [CrossRef]
- Jintan, Z. Studies on Pollen Morphology of Pinacea in China. Bull. Bot. Res. 1989, 9, 12. [Google Scholar]
- Nimsch, H.; Dorken, V.M. Morpho-anatomical investigations of cones and pollen in Cathaya argyrophylla Chung & Kuang (Pinaceae, Coniferales) under systematical and evolutional aspects. Feddes Repert. 2014, 125, 25–38. [Google Scholar]
- Xu, K.X. Numerical Taxonomy; Science Publishing: Beijing, China, 1994. [Google Scholar]
- Wang, F.X.; Qian, N.F.; Zhang, Y.L.; Yang, H.Q. Pollen Flora of China, 2nd ed.; Science Publishing: Beijing, China, 1995; pp. 5–13. [Google Scholar]
- Punt, W.; Hoen, P.P.; Blackmore, S.; Nilsson, S.; Le Thomas, A. Glossary of pollen and spore terminology. Rev. Palaeobot. Palynol. 2007, 143, 1–81. [Google Scholar] [CrossRef]
- Halbritter, H.; Silvia, U.; Grímsson, F.; Weber, M.; Frosch-Radivo, A. Illustrated Pollen Terminology, 2nd ed.; Springer: Vienna, Austria, 2018. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality. Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Erdtman, G. The Acetolysis Method. A Revised Description. Sven. Bot. Tidskr. 1960, 54, 561–564. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal Component Analysis. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Martinović, S.; Vlahović, M.; Gajić-Kvaščev, M.; Vuksanović, M.; Glišić, D.; Volkov-Husović, T. Principal component analysis of morphological descriptors for monitoring surface defects induced by thermal shock. J. Eur. Ceram. Soc. 2021, 41, 426–429. [Google Scholar] [CrossRef]
- Parks, J.M. Part 2: Applications of Multivariate Statistics in Geology||Cluster Analysis Applied to Multivariate Geologic Problems. J. Geol. 1966, 74, 703–715. [Google Scholar] [CrossRef]
- Ting, W.; Zhen, W.; Shufeng, L.; Zhanming, Y.; Xiaoxian, R.; Yingjuan, S. Association between spatial genetic variation and potential distribution in tree fern Alsophila gigantea (Cyatheaceae) in Hainan Island, China. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12407. [Google Scholar]
- Erdtman, G. Palynology. (Book Reviews: Pollen and Spore Morphology. Plant Taxonomy-Gymnospermae, Bryophyta, vol. 3). Science 1966, 151, 979–980. [Google Scholar] [CrossRef]
- Halbritter, H.; Heigl, H.; Auer, W. PalDat—A Palynological Database. Available online: https://www.paldat.org/pub/Picea_abies/306140 (accessed on 9 December 2021).
- Halbritter, H. PalDat—A Palynological Database. Available online: https://www.paldat.org/pub/Cedrus_atlantica/300586 (accessed on 9 December 2021).
- Halbritter, H. PalDat—A Palynological Database. Available online: https://www.paldat.org/pub/Abies_nordmanniana/300648 (accessed on 15 May 2020).
- Halbritter, H. PalDat—A Palynological Database. Available online: https://www.paldat.org/pub/Abies_concolor/300647 (accessed on 15 May 2020).
- Gudeski, A. Morphological characteristics of the pollen grains of Abies alba from populations in Macedonia and of A. cephalonica from Parnis in Greece. God. Zb. Na Zemjod.-Smarskiot 1974, 26, 133–147. [Google Scholar]
- Bagnell, C.R., Jr. Species distinction among pollen grains of Abies, Picea, and Pinus in the rocky mountain area (A scanning electron microscope study). Rev. Palaeobot. Palynol. 1975, 19, 203–220. [Google Scholar] [CrossRef]
- Sedlackova, V.H.; Grygorieva, O.; Brindza, J. Study of Morphological Characteristics of Pollen Grains of Sambucus nigra L. Agrobiodiversity Improv. Nutr. Health Life Qual. 2018, 2585–8246, 277–284. [Google Scholar] [CrossRef]
- Korszun, S.; Klimko, M. Microsporangia and pollen morphology of Ginkgo biloba cultivars. Dendrobiology 2014, 71, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Wang, X.H.; Wang, Y.Q.; Liu, C.L.; Xie, L.S.; Ren, X.Y. Numerical Classification and Principle Component Analysis of 27 Hibiscus Cultivars. J. Cent. South Univ. For. Technol. 2019, 39, 59–64. [Google Scholar]
- Ma, S.L.; Lu, Y.M. Classification and phylogenetic analysis of Chinese hawthorn assessed by plant and pollen morphology. Genet. Mol. Res. Gmr 2016, 15, gmr8739. [Google Scholar] [CrossRef]
- Ma, Z.H.; Glc, B.; Zhang, D.X. Pollen morphology of Callicarpa L. (Lamiaceae) from China and its systematic implications. Plant Syst. Evol. 2016, 302, 67–88. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, H.; Liu, W.L.; Zhu, X.X.; Li, Y. Studies on numerical taxonomy of the traditional Paeonia Rockii tree cultivars in Northwest regions. J. Cent. South Univ. For. Technol. 2011, 31, 7. [Google Scholar]
- Han, X.Y.; Zhang, Y.L.; Niu, L.X.; Aamp, N.; University, F. Morphological traits based taxonomy of 39 tree peony cultivars. J. Northwest A F Univ. (Nat. Sci. Ed.) 2014, 42, 128–136. [Google Scholar]
- Zhang, J.; Huang, D.; Zhao, X.; Hou, X.; Di, D.; Wang, S.; Qian, J.; Sun, P. Pollen morphology of different species of Iris barbata and its systematic significance with scanning electron microscopy methods. Microsc. Res. Tech. 2021, 84, 1721–1739. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, J.E.; Balanza, V.; Cifuentes, D.; Bielza, P. Selection for larger body size in Orius laevigatus: Intraspecific variability and effects on reproductive parameters. Biol. Control 2020, 148, 104310. [Google Scholar] [CrossRef]
- Xia, J.; Lu, J.; Wang, Z.; Hao, B.; Wang, H.; Liu, G. Pollen limitation and Allee effect related to population size and sex ratio in the endangered Ottelia acuminata (Hydrocharitaceae): Implications for conservation and reintroduction. Plant Biol. 2013, 15, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.W.; Deng, H.S.; Tan, H.M.; Qing, K.; Zhang, D.H.; Ge, S. Pollen viability and variation in Cathaya argyrophylla. J. Plant Ecol. 2007, 31, 1199–1204. [Google Scholar]
No. | Characters | Code Type | Code Details |
---|---|---|---|
1 | Equatorial diameter(E) | N | / |
2 | The length of the polar axis (P) | N | / |
3 | Pollen shape classes (P/E ratio) | N | / |
4 | The length of the saccus (A) | N | / |
5 | The width of the saccus (B) | N | / |
6 | A/B ratio | N | / |
7 | The length of the germinal anacolpus (G) | N | / |
8 | Whether the width of the germinal anacolpus was uniformed or not in polar distal view (B-GU) | B | Yes, 1; No, 0 |
9 | Whether the overall size of two sacci was uniformed or not (B-SU) | B | Yes, 1; No, 0 |
10 | Whether the outline of two sacci was distinct or not in polar proximal view (B-SD) | B | Yes, 1 (Diploxylon-type); No, 0 (Haploxylon-type) |
11 | The pollen corpus outlined in the polar distal view (O-CO) | O | Suborbicular, 1; Ellipse, 2; Subcordate, 3 |
12 | Overall roughness of pollen (O-OR) | O | Not rough, 1; Rough, 2; Very rough, 3 |
13 | Ornament of exine surface (O-EX) | O | Granulate, 1; Micro-striate, 2; Mixture of granulate and micro-striate,3 |
14 | The roughness degree between corpus from the polar proximal view and the sacci from the polar distal view (O-CSR) | O | All not rough, 1; All rough,2; Much rougher in pollen corpus, 3 |
Variables | Description | Units |
---|---|---|
bio1 | Annual mean temperature | °C*10 |
bio2 | Mean diurnal range (Mean of monthly (max temp—min temp)) | °C*10 |
bio3 | Isothermality (bio2/bio7) × (100) | / |
bio4 | Temperature seasonality (standard deviation ×100) | °C*10 |
bio5 | Max temperature of warmest month | °C*10 |
bio6 | Min temperature of coldest month | °C*10 |
bio7 | Temperature annual range (bio5—bio6) | °C*10 |
bio8 | Mean temperature of wettest quarter | °C*10 |
bio9 | Mean temperature of driest quarter | °C*10 |
bio10 | Mean temperature of warmest quarter | °C*10 |
bio11 | Mean temperature of coldest quarter | °C*10 |
bio12 | Annual precipitation | mm |
bio13 | Precipitation of wettest month | mm |
bio14 | Precipitation of driest month | mm |
bio15 | Precipitation seasonality (coefficient of variation) | / |
bio16 | Precipitation of wettest quarter | mm |
bio17 | Precipitation of driest quarter | mm |
bio18 | Precipitation of warmest quarter | mm |
bio19 | Precipitation of coldest quarter | mm |
05-precip | Monthly averaged total precipitation in May (×1000) | mm |
05-temp | Monthly averaged 2 m temperature in May (−273.15) | °C |
Quantitative Traits | Environmental Variables | ||
---|---|---|---|
Geog | Temp | Precip | |
E | altitude (0.487 *) | bio1 (−0.481 *); bio4 (−0.480 *); bio5 (−0.542 **); bio6 (−0.483 *); 05-temp (0.547 **) | bio12 (0.562 *); bio13 (0.573 **); bio14 (0.583 **); bio15 (0.643 **); bio16 (0.528 **); bio17 (−0.487 *); bio18 (0.516 *); bio19 (0.543 **); 05-precip (−0.547 **) |
P | aspect (−0.501 *) | / | bio12 (−0.417 *); bio13 (−0.421 *); bio14 (−0.452 *); bio15 (−0.522 *) |
P/E | altitude (−0.467 *); aspect (−0.454 *) | bio1 (0.456 *); bio4 (0.476 *); bio5 (0.528 **) bio6 (0.460 *); 05-temp (−0.550 **) | bio12 (−0.562 **); bio13 (−0.571 **); bio14 (−0.592 **); bio15 (−0.665 **); bio16 (−0.528 **); bio17 (0.462 *); bio18 (−0.513 *); bio19 (−0.547 **); 05-precip (0.550 **) |
B | altitude (0.644 **) | bio1 (−0.661**); bio2 (−0.427 *); bio3 (0.427 *); bio4 (−0.576 **); bio5 (−0.665 **); bio6 (−0.668 **); bio7 (−0.548 **); bio8 (−0.531 **); bio9 (−0.452 **); bio10 (−0.536 **); 05-temp (0.577 **) | bio12 (0.609 **); bio13 (0.640 **); bio14 (0.614 **); bio15 (0.674 **); bio16 (0.590 **); bio17 (−0.611 **); bio18 (0.593 **); bio19 (0.573 **); 05-precip (−0.577 **) |
A/B | altitude (−0.592 **) | bio1 (0.609 **); bio4 (0.493 *); bio5 (0.587 **); bio6 (0.628 **); bio7 (0.472 *); bio8 (0.477 *); bio9 (0.414 *); bio10 (0.473 *); 05-temp (−0.478 *) | bio12 (−0.514 *); bio13 (0.551 **); bio14 (−0.519 *); bio15 (−0.602 **); bio16 (−0.499 *); bio17 (0.522 *); bio18 (−0.505 *); bio19 (−0.475 *); 05-precip (0.478 *) |
G | altitude (−0.440 *); aspect (−0.541 **) | bio1 (0.431 *); bio4 (0.461 *); bio5 (0.502 *); bio6 (0.438 *); 05-temp (−0.530 **) | bio12 (−0.542 **); bio13 (−0.549 **); bio14 (−0.587 **); bio15 (−0.643 **); bio16 (−0.510 *); bio17 (0.433 *); bio18 (−0. 495 *); bio19 (−0.529 **); 05-precip (0.530 **) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, F.; She, Y.; She, J.; Wang, Y.; Wu, F.; Xie, P.; Chen, Q. Intraspecific Pollen Morphology Variation and Its Responses to Environmental Factors of Wild Cathaya argyrophylla Chun Et Kuang Endemic to China. Forests 2022, 13, 651. https://doi.org/10.3390/f13050651
Xiao F, She Y, She J, Wang Y, Wu F, Xie P, Chen Q. Intraspecific Pollen Morphology Variation and Its Responses to Environmental Factors of Wild Cathaya argyrophylla Chun Et Kuang Endemic to China. Forests. 2022; 13(5):651. https://doi.org/10.3390/f13050651
Chicago/Turabian StyleXiao, Fen, Yuchen She, Jiyun She, Yun Wang, Fei Wu, Peng Xie, and Qianxin Chen. 2022. "Intraspecific Pollen Morphology Variation and Its Responses to Environmental Factors of Wild Cathaya argyrophylla Chun Et Kuang Endemic to China" Forests 13, no. 5: 651. https://doi.org/10.3390/f13050651
APA StyleXiao, F., She, Y., She, J., Wang, Y., Wu, F., Xie, P., & Chen, Q. (2022). Intraspecific Pollen Morphology Variation and Its Responses to Environmental Factors of Wild Cathaya argyrophylla Chun Et Kuang Endemic to China. Forests, 13(5), 651. https://doi.org/10.3390/f13050651