The Influence of Harbin Forest–River Ecological Corridor Construction on the Restoration of Mollisols in Cold Regions of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling and Analysis
2.3. Data Analysis
3. Results
3.1. The Influence of the Forest–River Artificial Ecological Corridor on Cultivated Land in Mollisol Areas on Soil Eco-Chemical indicators
3.2. Effects of Different Construction Factors on Soil Ecological Stoichiometric Pairs
3.3. Multiple Linear Regression of Soil Factors with Different Construction Factors and Contribution Analysis of Construction Factors
3.4. Selection of the Width Range and Recovery Time Range of Ecological Corridors Based on Mollisol Protection
3.5. Analysis of the Ecological Protection Process of Mollisols Based on the Forest–River Ecological Corridor
4. Discussion
4.1. Effect of a Forest–River Ecological Corridor on the Fertility of Mollisols
4.2. The Process of Establishment of Artificial Forest–River Ecological Corridor Affecting Soil Fertility
4.3. Unilateral Width and Recovery Time of the Best Soil Restoration Artificial Forest–River Ecological Corridor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Guiqing, H.; Linzhang, Y. Utilization Status and Development Strategy of Mollisols Resources in Northeast China; Land Press: Beijing, China, 2009; pp. 6–10. (In Chinese) [Google Scholar]
- Rodrigo, A.; Recous, S.; Neel, C.; Mary, B. Modelling temperature and moisture effects on C–N transformations in soils: Comparison of nine models. Ecol. Model. 1997, 102, 325–339. [Google Scholar] [CrossRef]
- Wang, S.C.; Wang, Z.Q.; Heinonsalo, J.; Zhang, Y.X.; Liu, G. Soil organic carbon stocks and dynamics in a mollisol region: A 1980s–2010s study. Sci. Total Environ. 2021, 807, 150910. [Google Scholar] [CrossRef] [PubMed]
- Xing, B.S.; Liu, X.B.; Liu, J.D.; Han, X.Z. Physical and chemical characteristics of a typical Mollisol in China. Commun. Soil Sci. Plant Anal. 2004, 35, 1829–1838. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.J.; Yao, Q.; Yu, Z.; Li, Y.; Jin, J.; Liu, X.; Wang, G. Potential role of organic matter in the transmission of antibiotic resistance genes in mollisols. Ecotoxicol. Environ. Saf. 2021, 227, 112946. [Google Scholar] [PubMed]
- Díaz, S.; Settele, J.; Brondízio, E.; Ngo, H.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.; et al. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar]
- UNEP. Protected Planet Report. 2021. Available online: https://livereport.protectedplanet.net (accessed on 29 January 2022).
- Withaningsih, S.; Parikesit, P.; Malik, A.D.; Rahmi, M.A. Analysis of the Structure and Ecological Function of an Extreme Landscape in a Tropical Region of West Java, Indonesia. Forests 2022, 13, 115. [Google Scholar] [CrossRef]
- Solomakha, I.V.; Konishchuk, V.V.; Mudrak, O.V.; Mudrak, H.V. A Study of the Emerald Network objects in Ukrainian Forest-Steppe of Dnieper ecological corridor. Ukr. J. Ecol. 2020, 10, 209–218. [Google Scholar]
- Lao, B.L.; Zhuo, W.D.; Zhu, R.Y. The rebirth of tropical rainforest—Ecological restoration planning for sanda mountain of xishuangbanna, China. Landsc. Archit. Front. 2020, 8, 108–125. [Google Scholar]
- Wang, D.; Zhang, Y.R.; Feng, Y.L.; Liu, Z.; Qu, B. Changes in vegetation and soil properties following 6 years of enclosure in riparian corridors. J. Plant Ecol. 2020, 13, 131–138. [Google Scholar]
- Huang, J.M.; Hu, Y.C.; Zheng, F.Y. Research on recognition and protection of ecological security patterns based on circuit theory: A case study of Jinan City. Environ. Sci. Pollut. Res. 2020, 27, 12414–12427. [Google Scholar] [CrossRef]
- Bou-imajjane, L.; Belfoul, M.A.; Elkadiri, R.; Stokes., M. Soil erosion assessment in a semi-arid environment: A case study from the Argana Corridor, Morocco. Environ. Earth Sci. 2020, 79, 409. [Google Scholar] [CrossRef]
- Beita, C.M.; Murillo, L.F.S.; Alvarado, L.D.A. Ecological corridors in Costa Rica: An evaluation applying landscape structure, fragmentation-connectivity process, and climate adaptation. Conserv. Sci. Pract. 2021, 3, e475. [Google Scholar] [CrossRef]
- Lalechere, E.; Berges, L. A Validation Procedure for ecological corridor Locations. Land 2021, 10, 1320. [Google Scholar] [CrossRef]
- Gonzalez, A.L.; Kominoski, J.S.; Danger, M.; Ishida, S.; Iwai, N.; Rubach, A. Can ecological stoichiometry help explain patterns of biological invasions? Oikos 2010, 119, 779–790. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater; marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Jiang, D.H.; Deng, Y.S.; Ding, S.W.; Cai, C.F.; Huang, Z.G. Soil Physicochemical Properties and Fertility Evolution of Permanent Gully during Ecological Restoration in Granite Hilly Region of South China. Forests 2021, 12, 510. [Google Scholar] [CrossRef]
- Shidong, L.; Degan, F. World Famous Ecological Engineering-China’s Three North Shelterbelt System Construction Project; Green World: Hangzhou, China, 2021; pp. 9–11. (In Chinese) [Google Scholar]
- Zhu, G.; Shangguan, Z.; Hu, X.; Deng, L. Effects of land use changes on soil organic carbon, nitrogen and their losses in a typical watershed of the Loess Plateau, China. Ecol. Indic. 2021, 133, 108443. [Google Scholar] [CrossRef]
- Dong, L.; Li, J.; Liu, Y.; Hai, X.; Li, M.; Wu, J.; Wang, X.; Shangguan, Z.; Zhou, Z.; Deng, L. Forestation delivers significantly more effective results in soil C and N sequestrations than natural succession on badly degraded areas: Evidence from the Central Loess Plateau case. Catena 2022, 208, 105734. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.L.; Zhang, J.; Zhang, J.P.; Kong, H. Dynamic changes of vegetation coverage in China-Myanmar economic corridor over the past 20 years. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102378. [Google Scholar] [CrossRef]
- Jin, X.X.; Wei, L.Y.; Wang, Y.; Lu, Y.Q. Construction of ecological security pattern based on the importance of ecosystem service functions and ecological sensitivity assessment: A case study in Fengxian County of Jiangsu Province, China. Environ. Dev. Sustain. 2021, 23, 563–590. [Google Scholar] [CrossRef] [Green Version]
- Su, X.P.; Zhou, Y.; Li, Q. Designing Ecological Security Patterns Based on the Framework of Ecological Quality and Ecological Sensitivity: A Case Study of Jianghan Plain. China. Int. J. Environ. Res. Public Health 2021, 18, 8383. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Huang, Y. Impacts of the Three-North shelter forest program on the main soil nutrients in Northern Shaanxi China: A meta-analysis. For. Ecol. Manag. 2020, 458, 117808. [Google Scholar] [CrossRef]
- Singh, A.P.; Satheesan, S.M. Designing railroads; highways and canals in protected areas to reduce man-elephant conflicts. In Proceedings of the 7th International Symposium on Environmental Concerns in Rights-of-Way Management 2002, Calgary, AB, Canada, 4 October 2002; pp. 483–492. [Google Scholar]
- Ives, C.D.; Hose, G.C.; Nipperess, D.A.; Taylor, M.P. Environmental and landscape factors influencing ant and plant diversity in suburban riparian corridors. Landsc. Urban Plan. 2011, 103, 372–382. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, G.; Zhang, Z.; He, Z.B. Shielding effect of oasis-protection systems composed of various forms of wind break on sand fixation in an arid region: A case study in the Hexi Corridor, northwest China. Ecol. Eng. 2008, 33, 119–125. [Google Scholar] [CrossRef]
- CUGE (Centre for Urban Greenery and Ecology). Specifications for soil mixture for general landscaping use. 2013. Available online: https://www.nparks.gov.sg/cuge (accessed on 29 January 2022).
- BSI (British Standards Institution). Specification for Topsoil and Requirements for Use; BSI: London, UK, 2007. [Google Scholar]
- ASTM D5258-13; Standard Specifications for Topsoil Used for Landscaping Purposes. ASTM: West Conshohocken, PA, USA, 2013.
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms; implications; and nitrogen–phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: Biology of Elements from Molecules to the Biosphere. J. Plankton Res. 2002, 25, 1183. [Google Scholar]
- Ehrenfeld, J.G.; Ravit, B.; Elgersma, K. Feedback in the Plant-Soil System. Annu. Rev. Environ. Resour. 2005, 30, 75–115. [Google Scholar] [CrossRef] [Green Version]
- Van Schalkwyk, S.J.; Pryke, J.S.; Samways, M.J.; Gaigher, R. Corridor width determines strength of edge influence on arthropods in conservation corridors. Landsc. Ecol. 2020, 35, 1175–1185. [Google Scholar] [CrossRef]
- Closset-Kopp, D.; Wasof, S.; Decocq, G. Using process-based indicator species to evaluate ecological corridors in fragmented landscapes. Biol. Conserv. 2016, 201, 152–159. [Google Scholar] [CrossRef]
- Diaz-Forestier, J.; Abades, S.; Pohl, N.; Barbosa, O.; Godoy, K.; Svensson, G.L.; Undurraga, M.I.; Bravo, C.; García, C.; Root-Bernstein, M.; et al. Assessing Ecological Indicators for Remnant Vegetation Strips as Functional Biological Corridors in Chilean Vineyards. Diversity 2021, 13, 447. [Google Scholar] [CrossRef]
- Li, Y.W.; Deng, X.B.; Cao, M.; Lei, Y.; Xia, Y. Soil restoration potential with corridor replanting engineering in the monoculture rubber plantations of Southwest China. Ecol. Eng. 2013, 51, 169–177. [Google Scholar]
- Lvshu, D. History of "Great Northern Wilderness" Reclamation. Yanhuang Chunqiu 2003, 000, 13–16. (In Chinese) [Google Scholar]
- JLenoir, J.; Decocq, G.; Spicher, F.; Gallet-Moron, E.; Buridant, J.; Closset-Kopp, D. Historical continuity and spatial connectivity ensure hedgerows are effective corridors for forest plants: Evidence from the species–time–area relationship. J. Veg. Sci. 2021, 32, 12845. [Google Scholar]
- Harbin Municipal People’s Government. ‘Harbin City Master Plan(2011–2020)’ [EB/OL]. Available online: https://wap.harbin.gov.cn/module/download (accessed on 29 January 2022). (In Chinese)
- Strand, L.T.; Fjellstad, W.; Jackson-Blake, L.; De Witcd, H.A. Afforestation of a pasture in Norway did not result in higher soil carbon, 50 years after planting. Landsc. Urban Plan. 2021, 207, 104007. [Google Scholar] [CrossRef]
- Wotherspoon, A.; Voroney, R.P.; Thevathasan, N.V.; Gordon, A.M. Comparison of Three Methods for Measurement of Soil Organic Carbon. Commun. Soil Sci. Plant Anal. 2015, s1, 362–374. [Google Scholar]
- Guo, X. Investigation of Soil and Water Loss in mollisols Area of Northeast China. Coast. Environ. 2002, 10, 20–23. (In Chinese) [Google Scholar]
- Cai, W.; Dayong, X.; Xianping, R. Situation and development countermeasures of cultivated land resources in mollisols area. Soil Water Conserv. Sci. Technol. Inf. 2003, 5, 32–33. (In Chinese) [Google Scholar]
- Axing, C.; Zhangying, C. Relationship between salt content and electrical conductivity in different saline areas of Chin. Soil 1997, 29, 54–57. (In Chinese) [Google Scholar]
- China Agricultural Encyclopedia Editorial Committee Veterinary Volume Editorial Committee; China Agricultural Encyclopedia Editorial Department. China Agricultural Encyclopedia Soil Volume; Agriculture Press: Beijing, China, 1996; p. 97. (In Chinese) [Google Scholar]
- Zu, Y.; Li, R.; Wang, W.; Su, D.X.; Wang, Y.; Qiu, L. Correlation between soil organic carbon; inorganic carbon content and soil physical and chemical properties in Northeast China. Ecology, 2011; 18, 5207–5216. (In Chinese) [Google Scholar]
- Silmara, R.; Miyazawa, B.; de Oliveira, E.L.; Pavan, M.A. Relationship between the mass of organic matter and carbon in soil. Agric. Agribus. Biotechnol. 2008, 51, 263–269. [Google Scholar]
- G/B 33469-2016; Grade of Cultivated Land Quality. National Technical Committee for Soil Quality Standardization (Ed.) Standards Press: Beijing, China, 2016. (In Chinese)
- Song, G.; Dan, L.; Liang, H.O.; Bao, X.L. The quality characteristics and spatial differentiation of cultivated land in the mollisols area of the Songnen Plateau—A case study of Bayan County; Heilongjiang Province. Econ. Geogr. 2012, 32, 129–134. [Google Scholar]
- Yao, D.; Pei, J.; Wang, J. Study on spatial and temporal variations of cultivated land quality in typical mollisols area of northeast China. J. Ecol. Agric. 2020, 28, 104–114. (In Chinese) [Google Scholar]
- Yuan, Y.F.; Miao, Y.X.; Yuan, F. Delineating soil nutrient management zones based on optimal sampling interval in medium- and small-scale intensive farming systems. Precis. Agric. 2022, 23, 538–558. [Google Scholar] [CrossRef]
- Portela, B.M.; Rodrigues, E.I.; de Sousa Rodrigues Filho, C.A.D.S.R.; Rezende, C.F.; de Oliveira, T.S. Do ecological corridors increase the abundance of soil fauna? Écoscience 2020, 27, 45–57. [Google Scholar] [CrossRef]
- Katterer, T.; Bolinder, M.A.; Andren, O.; Kirchmann, H.; Menichetti, L. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric. Ecosyst. Environ. 2011, 14, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Wiesmeier, M.; vonLützow, M.; Spörlein, P.; Geuss, U.; Hangen, E.; Reischl, A.; Schilling, B.; Kogel-Knabner, I. Land use effects on organic carbon storage in soils of Bavaria: The importance of soil types. Soil Tillage Res. 2015, 146, 296–302. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Upson, M.A.; Burgess, P.J.; Morison, J.I.L. Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture. Geoderma 2016, 283, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jia, X.; Li, T.; Shao, M.; Yu, Q.; Wei, X. Decreased soil total phosphorus following artificial plantation in the Loess Plateau of China. Geoderma 2021, 385, 114882. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, H.; Chen, F.L.; Zeng, J.; Zhou, J.Z.; Ouyang, Z.Y. Stabilities of soil organic carbon and carbon cycling genes are higher in natural secondary forests than in artificial plantations in southern China. Land Degrad. Dev. 2020, 31, 2986–2995. [Google Scholar] [CrossRef]
- Ward, E.B.; Doroski, D.A.; Felson, A.J.; Hallett, R.A.; Oldfield, E.E.; Kuebbing, S.E.; Bradford, M.A. Positive long-term impacts of restoration on soils in an experimental urban forest. Ecol. Appl. 2021, 31, e2336. [Google Scholar]
- Descheemaeker, K.; Muys, B.; Nyssen, J.; Sauwens, W.; Haile, M.; Poesen, J.; Raes, D.; Deckers, J. Humus Form Development during Forest Restoration in Exclosures of the Tigray Highlands, Northern Ethiopia. Restor. Ecol. 2009, 17, 280–289. [Google Scholar]
- Deng, L.; Huang, C.; Kim, D.; Shangguan, Z.P.; Wang, K.B.; Song, X.Z.; Peng, C.H. Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Glob. Change Biol. 2019, 26, 2613–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurmangozhinov, A.; Xue, W.; Li, X.Y.; Zeng, F.J.; Sabit, R.; Tusun, T. High biomass production with abundant leaf litterfall is critical to ameliorating soil quality and productivity in reclaimed sandy desertification land. J. Environ. Manag. 2020, 263, 110373. [Google Scholar]
- Teague, R.; Kreuter, U. Managing Grazing to Restore Soil Health, Ecosystem Function, and Ecosystem Services. Front. Sustain. Food Syst. 2020, 4, 157. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Ma, L.L.; He, X.H.; Liu, Z.F.; Wang, F.M.; Chu, G.W.; Tang, X.L. Accumulation of glomalin-related soil protein benefits soil carbon sequestration: Tropical coastal forest restoration experiences. Land Degrad. Dev. 2022, 1, 1–11. [Google Scholar] [CrossRef]
- Brye, K.R.; Riley, T.L. Soil and Plant Property Differences Across a Chronosequence of Humid-Temperate Tallgrass Prairie Restorations. Soil Sci. 2009, 174, 346–357. [Google Scholar] [CrossRef]
Indice | Unit | Cultivated Land | Ecological Corridor (≈2 Years) | Ecological Corridor (>10 Years) | Reference Value |
---|---|---|---|---|---|
Soil Thickness | cm | 60.00 (1.732) b | 41.70 (5.034) b | 128.18 (21.90) a | 60~80~100 [44,45] |
pH | / | 6.5390 (0.232) | 7.0633 (0.085) | 6.6796 (0.450) | / |
Electrical Conductivity | ms/m | 26.69 (8.78) a | 11.63 (3.11) b | 22.72 (8.88) ab | 23.2 [46] |
Cation Exchange Capacity | (cmol+/kg) | 25.15 (2.37) a | 13.61 (0.92) b | 16.80 (3.46) b | 15~20 [47] |
Dry Matter Content | % | 97.26 (0.57) | 98.12 (0.21) | 97.93 (1.12) | / |
total Organic Carbon | g/kg | 20.44 (2.70) a | 8.17 (1.63) b | 16.27 (6.34) a | 15 [48] |
total Organic Matter | g/kg | 35.75 (5.64) ab | 16.24 (3.99) b | 29.07 (12.22) a | 19.5 [19] |
Nitrogen | % | 0.175 (0.46) | 0.101 (0.37) | 0.148 (0.64) | / |
Potassium | % | 1.92 (0.24) | 2.02 (0.10) | 1.923 (0.23) | / |
Phosphorus | % | 0.062 (0.02) | 0.053 (0.004) | 0.05 (0.01) | / |
Regression | R2 | Adjust R2 | p Value |
---|---|---|---|
CEC = 11.180 + 0.036 × DS + 0.098 × RT | 0.701 | 0.685 | p < 0.01 |
EC = 11.695 + 0.022 × DS + 0.278 × RT | 0.197 | 0.153 | p < 0.05 |
SOC = 4.510 + 0.039 × DS + 0.315 × RT | 0.551 | 0.526 | p < 0.01 |
Selection of Soil Samples | Electrical Conductivity (ms/m) | Cation Exchange Capacity (cmol+/kg) | Total Organic Carbon (g/kg) | Total Organic Matter (g/kg) | Nitrogen (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ecological Corridor (≈2 Years) | Cultivated Land | Ecological Corridor (≈2 Years) | Cultivated Land | Ecological Corridor (≈2 Years) | Cultivated Land | Ecological Corridor (≈2 Years) | Cultivated Land | Ecological Corridor (≈2 Years) | Cultivated Land | |
80–120 m | 11.63 (3.11) b | 28.40 (9.02) a | 13.61 (0.92) b | 25.94 (1.91) a | 8.17 (1.63) b | 21.26 (2.36) a | 16.24 (3.99) b | 37.36 (5.08) a | 10.13 (3.66) b | 17.74 (5.16) a |
ESM | 11.63 (3.11) b | 26.69 (8.78) a | 13.61 (0.92) b | 25.15 (2.37) a | 8.17 (1.63) b | 20.44 (2.70) a | 16.24 (3.99) b | 35.75 (5.64) a | 10.13 (3.66) | 17.5 (4.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Wu, S.; Diehl, J.A. The Influence of Harbin Forest–River Ecological Corridor Construction on the Restoration of Mollisols in Cold Regions of China. Forests 2022, 13, 652. https://doi.org/10.3390/f13050652
Xu H, Wu S, Diehl JA. The Influence of Harbin Forest–River Ecological Corridor Construction on the Restoration of Mollisols in Cold Regions of China. Forests. 2022; 13(5):652. https://doi.org/10.3390/f13050652
Chicago/Turabian StyleXu, Huibo, Songtao Wu, and Jessica Ann Diehl. 2022. "The Influence of Harbin Forest–River Ecological Corridor Construction on the Restoration of Mollisols in Cold Regions of China" Forests 13, no. 5: 652. https://doi.org/10.3390/f13050652
APA StyleXu, H., Wu, S., & Diehl, J. A. (2022). The Influence of Harbin Forest–River Ecological Corridor Construction on the Restoration of Mollisols in Cold Regions of China. Forests, 13(5), 652. https://doi.org/10.3390/f13050652