Vegetation and Topographic Factors Affecting SOM, SOC, and N Contents in a Mountainous Watershed in North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sample Plot Layout
2.3. Indoor Experiment
2.4. Data Analysis
3. Results
3.1. Analysis of Watershed Topography and Vegetation Characteristics
3.2. Characteristics of pH, SOM, SOC, TN, and AHN in the Study Area
3.3. Main Influencing Factors of pH, SOM, SOC, TN, and AHN
3.4. RDA Analysis
4. Discussion
4.1. Distribution of Vegetation in Watershed
4.2. The Status of pH, SOM, SOC, TN, and AHN in the Watershed
4.3. Main Factors Affecting the Contents of pH, SOM, SOC, TN, and AHN in Watershed
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Fang, F.; Tang, H. Patterns and Internal Stability of Carbon, Nitrogen, and Phosphorus in Soils and Soil Microbial Biomass in Terrestrial Ecosystems in China: A Data Synthesis. Forests 2021, 12, 1544. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Chi, Q.; Tian, M. Spatial variations in soil organic carbon, nitrogen, phosphorus contents and controlling factors across the “Three Rivers” regions of southwest China. Sci. Total Environ. 2021, 794, 148795. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jiang, X.; Zeng, Y.; Chen, J.; Chai, R.; Liu, K.; Zhang, H. Research Progress on evaluation methods and indicators of paddy soil fertility. Soil Fertil. China 2017, 06, 1–8. [Google Scholar]
- Yu, H. Measures to increase soil organic matter. New Countrys. 2018, 9, 1. [Google Scholar]
- Peng, S.; Liu, Y.; Liu, Y.; Fan, Y.; Zhou, Y.; Yang, Q.; Zou, W. Effects of broad-leaved coniferous forest on soil organic carbon and nitrogen contents. J. Gannan Norm. Univ. 2022, 43, 97–102. [Google Scholar]
- Ma, N.; Gao, X.; Zhao, X.; Zhao, L.; Liu, H.; Yang, M. Distribution characteristics of soil organic carbon and its effect on topographic vegetation in a small watershed of the Loess Hilly region. Acta Ecol. Sin. 2022, 14, 1–9. [Google Scholar]
- Song, X.; Peng, C.; Ciais, P.; Li, Q.; Xiang, W.; Xiao, W.; Zhou, G.; Deng, L. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv. 2020, 6, eaaw5790. [Google Scholar] [CrossRef] [Green Version]
- Fang, H. Effects of Nitrogen Deposition on Carbon Pool and Carbon Sequestration Efficiency of Cunninghamia lanceolata Plantation Ecosystem. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2013. [Google Scholar]
- Sirisuntornlak, N.; Ullah, H.; Sonjaroon, W.; Anusontpornperm, S.; Arirob, W.; Datta, A. Interactive Effects of Silicon and Soil pH on Growth, Yield and Nutrient Uptake of Maize. Silicon 2020, 13, 289–299. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ. Monit. Assess. 2019, 191, 634. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Gong, Y.; Lafleur, P.; Wu, Y. Patterns and drivers of carbon, nitrogen and phosphorus stoichiometry in Southern China’s grasslands. Sci. Total Environ. 2021, 785, 147201. [Google Scholar] [CrossRef]
- Zhu, X.; Shen, Y.; He, B.; Zhao, Z. Humus soil as a critical driver of flora conversion on karst rock outcrops. Sci. Rep. 2017, 7, 12611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, J.A.; Schaefer, C.E.; Ferreira, J.W.; Neri, A.V.; Correa, G.R.; Enright, N.J. Soil-vegetation relationships on a banded ironstone ‘island’, Carajas Plateau, Brazilian Eastern Amazonia. An. Acad. Bras. Ciências 2015, 87, 2097–2110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, C.; Wang, M. Linkages of C: N: P stoichiometry between soil and leaf and their response to climatic factors along altitudinal gradients. J. Soils Sediments 2018, 19, 1820–1829. [Google Scholar] [CrossRef]
- Van der Putten, W.H.; Bardgett, R.D.; Bever, J.D.; Bezemer, T.M.; Casper, B.B.; Fukami, T.; Kardol, P.; Klironomos, J.N.; Kulmatiski, A.; Schweitzer, J.A.; et al. Plant–Soil feedbacks: The past, the present and future challenges. J. Ecol. 2013, 101, 265–276. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Cao, L.; Zhang, Y. Analysis of heterogeneity of forest soil nutrients in Guangdong Province. J. Beijing For. Univ. 2021, 43, 90–101. [Google Scholar]
- Kumar, S.; Singh, R.P. Spatial distribution of soil nutrients in a watershed of Himalayan landscape using terrain attributes and geostatistical methods. Environ. Earth Sci. 2016, 75, 473. [Google Scholar] [CrossRef]
- Chen, L.; Deng, Q.; Yuan, Z.; Mu, X.; Kallenbach, R.L. Age-related C:N:P stoichiometry in two plantation forests in the Loess Plateau of China. Ecol. Eng. 2018, 120, 14–22. [Google Scholar] [CrossRef]
- Zhang, S. Heterogeneity of soil nutrients in ecosystems: A review of methodology, variability and impact factors. J. Environ. Earth Sci. 2019, 1, 6–28. [Google Scholar] [CrossRef]
- Su, L.; Du, H.; Zeng, F.; Peng, W.; Rizwan, M.; Núñez-Delgado, A.; Zhou, Y.; Song, T.; Wang, H. Soil and fine roots ecological stoichiometry in different vegetation restoration stages in a karst area, southwest China. J. Environ. Manag. 2019, 252, 109694. [Google Scholar] [CrossRef]
- Long, C.; Yang, X.; Long, W.; Li, D.; Zhou, W.; Zhang, H. Soil nutrients influence plant community assembly in two tropical coastal secondary forests. Trop. Conserv. Sci. 2018, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wu, A.; Zou, S.; Xiong, X.; Liu, S.; Chu, G.; Zhang, Q.; Liu, J.; Tang, X.; Yan, J.; et al. Relationship between tree diversity and biomass and productivity in subtropical evergreen broad-leaved forest and its influencing factors. Biodivers. Sci. 2021, 29, 1435–1446. [Google Scholar] [CrossRef]
- Liang, G.; Tao, J.; Guo, K.; Wang, Z.; Zhang, Y.; Wang, J. Soil nutrients and their stoichiometric ratios under different forest types and densities. Jilin For. Sci. Technol. 2021, 50, 14–21. [Google Scholar]
- Sanaei, A.; Yuan, Z.; Ali, A.; Loreau, M.; Mori, A.S.; Reich, P.B.; Jucker, T.; Lin, F.; Ye, J.; Fang, S.; et al. Tree species diversity enhances plant-soil interactions in a temperate forest in northeast China. For. Ecol. Manag. 2021, 491, 119160. [Google Scholar] [CrossRef]
- Li, S.; Li, G.; Li, C.; Du, J.; Xu, W.; Xie, M. Seasonal variation of vegetation types on stoichiometric characteristics of soil carbon, nitrogen and phosphorus in Loess Hilly Region. J. Soil Water Conserv. 2021, 35, 343–349. [Google Scholar]
- Cao, X.; Zhao, W.; Li, J.; Yan, W. Analysis and comprehensive evaluation of soil nutrient content of several typical forests in the middle subtropical zone. J. Ecol. 2022, 42, 1–11. [Google Scholar]
- Seibert, J.; Stendahl, J.; Sørensen, R. Topographical influences on soil properties in boreal forests. Geoderma 2007, 141, 139–148. [Google Scholar] [CrossRef]
- Song, F. Spatial variation of soil nutrients and its relationship with topographic factors in hilly area based on GIS and RDA. Hubei Agric. Sci. 2021, 60, 31–35. [Google Scholar]
- Deng, O.; Zhou, X.; Huang, P.; Deng, L. Correlation between spatial differentiation of soil nutrients and topographic factors in purple hilly area of central Sichuan. Resour. Sci. 2013, 35, 2434–2443. [Google Scholar]
- Wang, J. Discussion on Influencing Factors of soil pH determination by electrode method. Energy Energy Conserv. 2020, 9, 76–77. [Google Scholar]
- Li, X.L. Determination of soil organic matter by potassium dichromate oxidation capacity method. Mod. Rural. Sci. Technol. 2013, 23, 36. [Google Scholar]
- Han, W. Determination of soil organic carbon by total organic carbon analyzer. Coal Chem. Ind. 2017, 40, 72–74. [Google Scholar]
- Khan, S.A.; Mulvaney, R.L.; Hoeft, R.G. A Simple Soil Test for Detecting Sites that are Nonresponsive to Nitrogen Fertilization. Soil Sci. Soc. Am. J. 2001, 65, 1751–1760. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Feng, B.; Shi, G.; Sun, C.; Li, C.; Zhang, X.; Dong, Q. Effects of slope direction and altitude on vegetation distribution pattern characteristics of alpine mountain meadow. Grassl. J. 2021, 29, 1166–1173. [Google Scholar]
- Zhang, Z.; Zheng, X.; Lin, H.; Lin, X.; Huang, L. Changes of plant functional traits and environmental factors in different succession stages of island plants. J. Ecol. 2019, 39, 3749–3758. [Google Scholar]
- Yu, X.; Geng, Y.; Niu, L.; Yue, Y. Effects of sampling scale on spatial variability of forest soil nutrients in Typical Watersheds in mountainous areas of Beijing—A case study of Miyun Chaoguanxigou watershed. For. Sci. 2010, 46, 162–166. [Google Scholar]
- Bartkowski, B. Economic Valuation of Biodiversity; Taylor and Francis: Oxford, UK, 2017. [Google Scholar]
- Ge, S. What determines species diversity? Sci. Bull. 2017, 62, 2033–2041. [Google Scholar] [CrossRef]
- Ren, Y. Study on Functional Diversity of Typical Forest Communities in Mountainous Areas of Beijing. Master’s Thesis, Beijing Forestry University, Beijing, China, 2012. [Google Scholar]
- Feng, S.; Zhao, H.; Guo, J.; Lan, D.; Zhao, X. Vegetation types and soil characteristics in Ulat desert area. J. Northwest Bot. 2021, 41, 695–702. [Google Scholar]
- Lv, T.; Liu, Y.; Kang, J.; Liu, T.; Liang, R. Species composition and diversity of communities in different habitats along Delingha Hara Lake. Grassl. J. 2021, 29, 146–155. [Google Scholar]
- Li, W. Study on Forest Vegetation Diversity in Typical Watersheds in Mountainous Areas of Beijing. Master’s Thesis, Beijing Forestry University, Beijing, China, 2008. [Google Scholar]
- He, L.; Zhang, X.; Xu, D.; Xue, M. Distribution of soil nutrients in cultivated land in Wanshan District. J. Agric. Technol. Serv. 2020, 37, 9–11. (In Chinese) [Google Scholar]
- Ma, L.; Zhai, M.; Lin, P. Distribution of soil physical and chemical properties in mountainous area of west Beijing. J. Beijing For. Univ. 1999, 21, 32–37. [Google Scholar]
- Zhang, F.R.; Wang, Y.C.; Li, H.; Wang, S.; An, L.P. Soil series identification in Baihuashan area, Beijing and its classification and mapping reference in different soil classification systems. J. Mt. Sci. 2002, 20, 164–169. [Google Scholar]
- Fu, B.; Liu, S.; Ma, K. Plant diversity and Probing probing of A heterogeneous broad-leaved forest near Beijing, China. Plant Soil 2004, 261, 47–54. [Google Scholar] [CrossRef]
- Hardtle, W.; von Oheimb, G.; Friedei, A.; Meyer, H. Relationship between pH-value and nutrient availability in forest soils: The consequence for the use of ecograms in forest ecology. Flora 2004, 199, 134–142. [Google Scholar] [CrossRef]
- Wang, C.; Dong, X.; Du, R.; Zhang, Z.; Huang, X. Changes in nutrient release and enzyme activity during leaf decomposition of mixed larix rupprechtii and broadleaved species. Chin. J. Appl. Ecol. 2021, 32, 1709–1716. [Google Scholar]
- Kong, A. Study on Enzyme Activities in Soil and Litter of Quercus Variabilis and Pinus tabulaeformis Forests in Low Mountainous Area of Beijing. Master’s Thesis, Beijing Forestry University, Beijing, China, 2012. [Google Scholar]
- Liu, X. Dynamics of Litter Decomposition and Its Effect on Soil Properties of Typical Forest Types in Tianma Nature Reserve. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2021. [Google Scholar]
- Niu, L. Study on Heterogeneity of Forest Vegetation and Soil Nutrients in Typical Watersheds in Beijing. Ph.D. Dissertation, Beijing Forestry University, Beijing, China, 2010. [Google Scholar]
- Feng, Y.; Liang, W.; Wei, X.; Zhao, W. Analysis of soil nutrient characteristics of Larch Forest in North China at different altitude gradients in Guandi mountain. West. For. Sci. 2020, 49, 68–73. [Google Scholar]
- Zhang, L.; Bai, C.; Yu, X.; Liang, W. Soil nutrients and phosphatase activity and their relationship in natural secondary forest in western mountainous region of North Beijing. J. Agric. Univ. Hebei 2007, 30, 65–69. [Google Scholar]
- Hoogmoed, M.; Cunningham, S.C.; Baker, P.J. Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings? Agric. Ecosyst. Environ. 2014, 188, 80–84. [Google Scholar] [CrossRef]
- Galiana, A.; Gnahoua, G.M.; Chaumont, J. Improvement of nitrogen fixation in Acacia mangium through inoculation with rhizobium. Agrofor. Syst. 1998, 40, 297–307. [Google Scholar] [CrossRef]
- Li, X.; Sun, K.; Li, F.Y. Variation in leaf nitrogen and phosphorus stoichiometry in the nitrogen-fixing Chinese sea-buckthorn (Hippophae rhamnoides L. subsp. sinensis Rousi) across northern China. Ecol. Res. 2014, 29, 723–731. [Google Scholar] [CrossRef]
- Wu, X.; Niu, Y.; Xun, M.; Jin, J.; Tang, Y.; Chen, Y. Soil Carbon, Nitrogen, and Phosphorus Storages and Their Stoichiometry Due to Mixed Afforestation with Hippophae rhamnoides in the Loess Hilly Region, China. Forests 2021, 12, 1718. [Google Scholar] [CrossRef]
- Xiao, Y. Evaluation and historical evolution analysis of soil nutrients in Miyun County. Beijing Agric. 2008, 18, 130–134. [Google Scholar]
- Bai, Y. Forest Near Nature Management Mode in Chaoguan Xigou Watershed. Master’s Thesis, Beijing Forestry University, Beijing, China, 2010. [Google Scholar]
- Wu, Y.; Liu, G.; Fu, B.; Guo, Y.; Hu, C. Changes of soil CO2 emission with elevation gradient and its influencing factors in forest ecosystem. Acta Ecol. Sin. 2007, 27, 4678–4685. [Google Scholar]
- Wang, S.; Wang, X.; Ouyang, Z. Study on Influencing Factors of soil organic carbon and total nitrogen density in the upper reaches of Miyun reservoir. Environ. Sci. 2012, 33, 946–951. [Google Scholar]
- Zhang, Y.; Li, Y.; Zhu, G. Effects of altitude factors on the distribution pattern of temperature, precipitation and climate type in the Qinghai Xizang Plateau. Glacial Permafr. 2019, 41, 505–515. [Google Scholar]
- Lv, A.; Huo, Z.; Yang, J. Responses of woody plants to climate change at different elevations in southern Shanxi Province. Chin. J. Agrometeorol. 2020, 41, 11. [Google Scholar]
- Cao, J.; Yang, H.; Cui, Z.; Zhang, X. Distribution characteristics of soil nutrient content at different altitudes on the western slope of Sejila in Southeast Tibet. Plateau Agric. 2019, 3, 19–27. [Google Scholar]
- Tan, S. Soil Eco Chemometric Characteristics and Microbial Diversity at Different Altitudes in Lushan. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2020. [Google Scholar]
- Sui, X.; Wang, Y.; Liu, Y.; Zhang, Y.; Wu, L. Response of soil nutrients and bacterial community to altitude in Yunnan pine forest in typical karst area. Zhejiang Agric. J. 2021, 33, 2348–2357. [Google Scholar]
Sample Plot | Slope (°) | Altitude (m) | Dominant Tree Species | |
---|---|---|---|---|
1 | A1 | 30 | 274.0 | Chinese pine (Pinus tabuliformis Carr.), Ailanthus (Ailanthus altissima (Mill.) Swingle), Populus (Populus davidiana Dode) |
2 | A2 | 28 | 321.1 | Spiraea pubescens (Spiraea pubescens Turcz.), Vitex negundo (Vitex negundo L. var. heterophylla (Franch.) Rehd.) |
3 | A3 | 5 | 329.6 | Ailanthus (Ailanthus altissima (Mill.) Swingle) |
4 | A4 | 25 | 320.5 | Prunus sibirica (Armeniaca sibirica (L.) Lam), Goldenrain tree (Koelreuteria paniculata Laxm) |
5 | A5 | 33 | 395.1 | Quercus wutaishanica (Quercus wutaishansea Mary), Chinese pine (Pinus tabuliformis Carr.) |
6 | B1 | 30 | 226.2 | Platycladus orientalis (Platycladus orientalis (L.) Franco), Robinia pseudoacacia (Robinia pseudoacacia L.) |
7 | B2 | 20 | 338.3 | Robinia pseudoacacia (Robinia pseudoacacia L.) |
8 | B3 | 35 | 386.8 | Quercus Mongolica (Quercus mongolica Fisch. ex Ledeb) |
9 | B4 | 30 | 430.0 | Quercus Mongolica (Quercus mongolica Fisch. ex Ledeb) |
10 | B5 | 25 | 396.7 | Vitex negundo (Vitex negundo L. var. heterophylla (Franch.) Rehd.), Grewia biloba (Grewia biloba G. Don) |
11 | B6 | 25 | 405.8 | Spiraea pubescens (Spiraea pubescens Turcz.), Vitex negundo (Vitex negundo L. var. heterophylla (Franch.) Rehd.) |
12 | B7 | 35 | 571.2 | Vitex negundo (Vitex negundo L. var. heterophylla (Franch.) Rehd.), Ziziphus jujuba (Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chow) |
13 | C1 | 35 | 226.2 | Chinese pine (Pinus tabuliformis Carr.) |
14 | C2 | 15 | 364.8 | Chinese pine (Pinus tabuliformis Carr.) |
15 | C3 | 25 | 625.2 | Quercus wutaishanica (Quercus wutaishansea Mary), Tilia mandshurica (Tilia mongolica Maxim.) |
16 | C4 | 35 | 662.0 | Tilia platyphyllos (Tilia platyphyllos Stop.), Tilia mandshurica (Tilia mongolica Maxim.) |
17 | C5 | 25 | 580.0 | Tilia platyphyllos (Tilia platyphyllos Stop.), Tilia mandshurica (Tilia mongolica Maxim.) |
18 | C6 | 38 | 603.8 | Acer Truncatum (Acer truncatum Bunge), Tilia mandshurica (Tilia mongolica Maxim.) |
19 | C7 | 35 | 762.4 | Tilia platyphyllos (Tilia platyphyllos Stop.), Acer Truncatum (Acer truncatum Bunge) |
20 | D2 | 30 | 654.1 | Ailanthus (Ailanthus altissima (Mill.) Swingle), Evodia daniellii (Tetradium daniellii (Bennett) T. G. Hartley) |
21 | D3 | 30 | 612.5 | Tilia platyphyllos (Tilia platyphyllos Stop.), Mountain elm (Ulmus davidiana Planch. var. japonica (Rehd.) Nakai) |
22 | D4 | 40 | 572.2 | Evodia daniellii (Tetradium daniellii (Bennett) T. G. Hartley), Carpinus turczaninowii (Carpinus turczaninowii Hance) |
Stand Type | Slope | Elevation | Menhinnick | Shannon–Wiener | Alatalo | |
---|---|---|---|---|---|---|
Stand Type | 1 | 0.008 | 0.738 ** | −0.008 | 0.402 | 0.549 * |
Slope | 0.008 | 1 | 0.276 | −0.001 | −0.142 | −0.087 |
Elevation | 0.738 ** | 0.276 | 1 | 0.124 | 0.483 | 0.573 * |
Menhinnick | −0.008 | −0.001 | 0.124 | 1 | 0.710 ** | 0.145 |
Shannon–Wiener | 0.402 | −0.142 | 0.483 | 0.710 ** | 1 | 0.751 ** |
Alatalo | 0.549 * | −0.087 | 0.573 * | 0.145 | 0.751 ** | 1 |
pH | SOM | SOC | TN | AHN | |
---|---|---|---|---|---|
pH | 1 | 0.202 | 0.049 | −0.387 | −0.209 |
SOM | 0.202 | 1 | 0.801 ** | 0.564 * | 0.692 ** |
SOC | 0.049 | 0.801 ** | 1 | 0.685 ** | 0.651 ** |
TN | −0.387 | 0.564 * | 0.685 ** | 1 | 0.718 ** |
AHN | −0.209 | 0.692 ** | 0.651 ** | 0.718 ** | 1 |
pH | SOM | SOC | TN | AHN | |
---|---|---|---|---|---|
Slope | 0.135 | 0.307 | −0.014 | −0.060 | 0.450 |
Elevation | 0.229 | 0.484 | 0.600 * | 0.265 | 0.504 * |
Stand Type | 0.310 | 0.472 | 0.587 * | 0.265 | 0.240 |
Menhinnick | −0.087 | 0.508 * | 0.197 | 0.210 | 0.204 |
Shannon–Wiener | 0.286 | 0.490 | 0.413 | 0.146 | 0.134 |
Alatalo | 0.345 | 0.379 | 0.419 | −0.041 | 0.014 |
Name | Explains (%) |
---|---|
Elevation | 25.9 |
Slope | 9.8 |
Alatalo | 4.8 |
Menhinnick | 3.5 |
Stand Type | 0.6 |
Shannon–Wiener | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Jia, G.; Yu, X.; Niu, L. Vegetation and Topographic Factors Affecting SOM, SOC, and N Contents in a Mountainous Watershed in North China. Forests 2022, 13, 742. https://doi.org/10.3390/f13050742
Lv X, Jia G, Yu X, Niu L. Vegetation and Topographic Factors Affecting SOM, SOC, and N Contents in a Mountainous Watershed in North China. Forests. 2022; 13(5):742. https://doi.org/10.3390/f13050742
Chicago/Turabian StyleLv, Xiangrong, Guodong Jia, Xinxiao Yu, and Lili Niu. 2022. "Vegetation and Topographic Factors Affecting SOM, SOC, and N Contents in a Mountainous Watershed in North China" Forests 13, no. 5: 742. https://doi.org/10.3390/f13050742
APA StyleLv, X., Jia, G., Yu, X., & Niu, L. (2022). Vegetation and Topographic Factors Affecting SOM, SOC, and N Contents in a Mountainous Watershed in North China. Forests, 13(5), 742. https://doi.org/10.3390/f13050742