Variability in Growth Patterns and Tree-Ring Formation of East European Scots Pine (Pinus sylvestris L.) Provenances to Changing Climatic Conditions in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of the Experiment
2.2. Climatic Trends during 1975 to 2013 in the Kaunas Region
2.3. Data Collection
2.4. Estimation of the Mean Growth and Yield Values
2.5. Classification of Scots Pine Provenances
2.6. Standardization and Chronology Building Methods
2.7. Analysis of Temporal Variation in Climate Sensitivity
2.8. Drought Impact Analysis
2.9. The Importance of Monthly Climatic Variables for Tree Ring Formation
3. Results
3.1. Grouping of Scots Pine Provenances Based on Bioclimatic Analysis
3.2. Mean Survival and Yield Trends
3.3. Radial Growth Chronologies
3.4. Temporal Variation in Climate Sensitivity
3.5. Drought Impact Analysis
3.6. Importance of Monthly Climatic Variables
4. Discussion
4.1. Growth and Survival
4.2. Monthly Meteorological Changes and Tree Ring Formation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- European Environmental Agency Global and European Temperature. Available online: https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-10/assessment (accessed on 28 October 2021).
- Lembrechts, J.; den Hoogen, J.; Aalto, J.; Ashcroft, M.; De Frenne, P.; Kemppinen, J.; Kopecky, M.; Luoto, M.; Maclean, I.; Crowther, T.; et al. Global maps of soil temperature. Glob. Chang. Biol. 2022, 28, 3110–3144. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Martinez, S.; Penas, A.; Diaz, T.E. Bioclimatic Map of Europe–Bioclimates. Available online: http://www.globalbioclimatics.org/form/bi_map/MS30W060.htm (accessed on 21 October 2020).
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Weigel, R.; Muffler, L.; Klisz, M.; Kreyling, J.; van der Maaten-Theunissen, M.; Wilmking, M.; van der Maaten, E. Winter matters: Sensitivity to winter climate and cold events increases towards the cold distribution margin of European beech (Fagus sylvatica L.). J. Biogeogr. 2018, 45, 2779–2790. [Google Scholar] [CrossRef]
- Weigel, R.; Henry, H.A.L.; Beil, I.; Gebauer, G.; Jurasinski, G.; Klisz, M.; van der Maaten, E.; Muffler, L.; Kreyling, J. Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient from Central to Cold Marginal Stands of a Major Temperate Forest Tree. Ecosystems 2021, 24, 1545–1560. [Google Scholar] [CrossRef]
- Augustaitis, A.; Juknys, R. The changes in Scots Pine (Pinus sylvestris L.) Tree stem and crown increment under decreased environmental pollution load. Ekológia 2003, 22, 35–41. [Google Scholar]
- Mason, W.L.; Allía, R. Others Current and future status of Scots pine (Pinus sylvestris L.) forests in Europe. For. Syst. 2000, 9, 317–335. [Google Scholar]
- Hertel, H.; Schneck, V. Genetic and phenotypical variation of scots pine (Pinus Sylvestris L.) populations due to seed origin and environmental conditions at experimental sites. For. Genet. 1999, 6, 65–72. [Google Scholar]
- State Forest Service. Lithuanian Statistical Yearbook of Forestry; Lututė: Kaunas, Lithuania, 2017. [Google Scholar]
- Ozolinčius, R.; Lekevičius, E.; Stakėnas, V.; Galvonaitė, A.; Samas, A.; Valiukas, D. Lithuanian forests and climate change: Possible effects on tree species composition. Eur. J. For. Res. 2014, 133, 51–60. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol. Lett. 2008, 11, 588–597. [Google Scholar] [CrossRef]
- Buras, A.; Schunk, C.; Zeiträg, C.; Herrmann, C.; Kaiser, L.; Lemme, H.; Straub, C.; Taeger, S.; Gößwein, S.; Klemmt, H.-J.; et al. Are Scots pine forest edges particularly prone to drought-induced mortality? Environ. Res. Lett. 2018, 13, 25001. [Google Scholar] [CrossRef]
- Rigling, A.; Bigler, C.; Eilmann, B.; Feldmeyer-Christe, E.; Gimmi, U.; Ginzler, C.; Graf, U.; Mayer, P.; Vacchiano, G.; Weber, P.; et al. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob. Chang. Biol. 2013, 19, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Misi, D.; Puchałka, R.; Pearson, C.; Robertson, I.; Koprowski, M. Differences in the climate-growth relationship of scots pine: A case study from Poland and Hungary. Forests 2019, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Scharnweber, T.; Smiljanic, M.; Cruz-García, R.; Manthey, M.; Wilmking, M. Tree growth at the end of the 21st century-the extreme years 2018/19 as template for future growth conditions. Environ. Res. Lett. 2020, 15, 074022. [Google Scholar] [CrossRef] [Green Version]
- Salomón, R.L.; Peters, R.L.; Zweifel, R.; Sass-Klaassen, U.G.W.; Stegehuis, A.I.; Smiljanic, M.; Poyatos, R.; Babst, F.; Cienciala, E.; Fonti, P.; et al. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nat. Commun. 2022, 13, 28. [Google Scholar] [CrossRef]
- Matías, L.; Linares, J.C.; Sánchez-Miranda, Á.; Jump, A.S. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity. Glob. Chang. Biol. 2017, 23, 4106–4116. [Google Scholar] [CrossRef]
- Semerci, A.; Semerci, H.; Çalişkan, B.; Cicek, N.; Ekmekçi, Y.; Mencuccini, M. Morphological and physiological responses to drought stress of European provenances of Scots pine. Eur. J. For. Res. 2017, 136, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Klisz, M.; Puchałka, R.; Silvestro, R.; Faubert, P.; Belien, E.; Huang, J.; Rossi, S. Common-garden experiment reveals clinal trends of bud phenology in black spruce populations from a latitudinal gradient in the boreal forest. J. Ecol. 2021, 108, 1–11. [Google Scholar] [CrossRef]
- Klisz, M.; Puchałka, R.; Wilczyński, S.; Kantorowicz, W.; Jabłoński, T.; Kowalczyk, J. The effect of insect defoliations and seed production on the dynamics of radial growth synchrony among Scots pine Pinus sylvestris L. provenances. Forests 2019, 10, 934–955. [Google Scholar] [CrossRef] [Green Version]
- Matisons, R.; Krišāns, O.; Kārkliņa, A.; Adamovičs, A.; Jansons, Ā.; Gärtner, H. Plasticity and climatic sensitivity of wood anatomy contribute to performance of eastern Baltic provenances of Scots pine. For. Ecol. Manag. 2019, 452, 117568. [Google Scholar] [CrossRef]
- Matisons, R.; Elferts, D.; Krišāns, O.; Schneck, V.; Gärtner, H.; Bast, A.; Wojda, T.; Kowalczyk, J.; Jansons, Ā. Non-linear regional weather-growth relationships indicate limited adaptability of the eastern Baltic Scots pine. For. Ecol. Manag. 2021, 479, 118600. [Google Scholar] [CrossRef]
- Abraitis, R.; Ericsson, G. Pinus sylvestris East European populations: Growth behavior in one Lithuanian field trial. Balt. For. 1996, 2, 28–35. [Google Scholar]
- Abraitis, R. Scots pine provenance trials. Balt. For. 1998, 2, 63–68. [Google Scholar]
- Bužinskas, L.; Danusevičius, D. The transfer effect of southern populations of scots pine (Pinus sylvestris L.) on climatic conditions of Lithuania. Žemės Ūkio Moksl. Moksl. 2018, 25, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Augustaitis, A.; Augustaitiene, I.; Mozgeris, G.; Juknys, R.; Vitas, A.; Jasinevičiene, D. Growth patterns of Scots pine (Pinus sylvestris L.) under the current regional pollution load in Lithuania. iForest-Biogeosciences For. 2014, 8, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Augustaitis, A.; Augustaitienė, I.; Baugarten, M.; Bičenkienė, S.; Girgždienė, R.; Kulbokas, G.; Linkevičius, E.; Marozas, V.; Mikalajūnas, M.; Mordas, G.; et al. Tree-ring formation as an indicator of forest capacity to adapt to the main threats of environmental changes in Lithuania. Sci. Total Environ. 2018, 615, 1247–1261. [Google Scholar] [CrossRef]
- Prokazin, J. Izucsenie Imejusikszia Novih Gyeograficseszkih Kultur (Programa i Metodika Rabot); Pushkino, All-Russian Forest and Melioration Research Institute (VNIILM): Pushkin, Russia, 1972. [Google Scholar]
- Shutaev, A.M.; Giertych, M. Height growth variation in a comprehensive Eurasian provenance experiment of (Pinus sylvestris L.). Silvae Genet. 1997, 46, 332–349. [Google Scholar]
- Danusevičius, D. Miško Medžių Bandomųjų Želdinių Vadovas VĮ Kazlų Rūdos Mokomojoje Miškų Urėdijoje; VĮ Kazlų Rūdos Miškų Urėdija, Lietuvos Miškų Institutas, Lututė: Kaunas, Lithuania, 2008; ISBN 978-9955-37-016-1. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological Data for the Main European Woody Species. Mendeley Data 2019, 12, 662–666. Available online: https://doi.org/10.17632/hr5h2hcgg4.9 (accessed on 8 April 2022).
- IPCC. IPCC Special Report. Emissions scenarios. Intergovermantal Panel of Climate Change; WMO: Geneva, Switzerland; UNEP: Nairobi, Kenya, 2000.
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Biging, G.S.; Wensel, L.C. Estimation of crown form for six conifer species of northern California. Can. J. For. Res. 1990, 20, 1137–1142. [Google Scholar] [CrossRef]
- Röhle, H. Vergleichende Untersuchungen zur Ermittlung der Genauigkeit bei der Ablotung von Kronenradien mit dem Dachlot und durch senkrechtes Anvisieren des Kronenrandes (Hochblick-Messung). Forstarchiv 1986, 2, 67–71. [Google Scholar]
- Rinn, F. TSAP-WIN Time Series Analysis and Presentation for Dendrochronology and Related Applications; Version 0.53; Rinn Tech: Heidelberg, Germany, 2003. [Google Scholar]
- Pretzsch, H. Forest Dynamics, Growth and Yield: From Measurement to Model; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 9783540883067. [Google Scholar]
- Michailoff, I. Zahlenmäßiges verfahren für die Ausführung der bestandeshöhenkurven. Numerical algorithm for the implementation of stand height curves. Forstwissenschaftliches Cent. Tharandter Forstl. Jahrb. 1943, 6, 273–279. [Google Scholar]
- Kuliešis, A. Lietuvos Medynų Prieaugio ir jo Panaudojimo Normatyvai. Standards of Lithuanian Forests Growth and Their Use; Girios Aidas: Kaunas, Lithuania, 1993. [Google Scholar]
- Klisz, M.; Puchałka, R.; Netsvetov, M.; Prokopuk, Y.; Vítková, M.; Sádlo, J.; Matisons, R.; Mionskowski, M.; Chakraborty, D.; Olszewski, P.; et al. Variability in climate-growth reaction of Robinia pseudoacacia in Eastern Europe indicates potential for acclimatisation to future climate. For. Ecol. Manag. 2021, 492, 119194. [Google Scholar] [CrossRef]
- Eckstein, D.; Krause, C.; Bauch, J. Dendroecological investigation of spruce trees (Picea abies (L.) Karst.) of different damage and canopy classes. Holzforshung 1989, 43, 411–417. [Google Scholar] [CrossRef]
- Eckstein, D.; Bauch, J. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Cent. 1969, 88, 230–250. [Google Scholar] [CrossRef]
- Buras, A.; Wilmking, M. Correcting the calculation of Gleichläufigkeit. Dendrochronologia 2015, 34, 29–30. [Google Scholar] [CrossRef]
- Cook, E.; Briffa, K.; Shiyatov, S.; Mazepa, V.; Jones, P.D. Data analysis. In Methods of Dendrochronology; Springer: Dordrecht, Netherlands, 1990; pp. 97–162. [Google Scholar]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Douglass, A.E. Evidence of climatic effects in the annual rings of trees. Ecology 1920, 1, 24–32. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. Available online: https://www.r-project.org/9 (accessed on 17 February 2022).
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Van der Maaten-Theunissen, M.; van der Maaten, E.; Bouriaud, O. Pointres: An R package to analyze pointer years and components of resilience. Dendrochronologia 2015, 35, 34–38. [Google Scholar] [CrossRef]
- Zang, C.; Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- StatSoft Classification and Regression Trees (C&RT). Available online: http://www3.fi.mdp.edu.ar/fc3/SisDin2009/books/timeseries/textbook/stcart.html (accessed on 28 October 2021).
- Tibco Predictor Importance in STATISTICA GC&RT, Interactive Trees, and Boosted Trees. Available online: https://docs.tibco.com/data-science/GUID-4C6F72C1-F4F8-48A9-83C7-D4C72A66A3AC.html (accessed on 28 October 2021).
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Grissino-Mayer, H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- Daniell, T.M.; Van Lanen, H.A.J.; Demuth, S.; Laaha, G.; Servat, E.; Mahé, G.; Boyer, J.-F.; Paturel, J.-E.; Dezetter, A.; Ruelland, D. Hydrology in a Changing World: Environmental and Human Dimensions; International Association Of Hydrological Sciences: Oxfordshire, UK, 2014. [Google Scholar]
- Savva, Y.; Schweingruber, F.; Milyutin, L.; Vaganov, E. Genetic and environmental signals in tree rings from different provenances of Pinus sylvestris L. planted in the southern taiga, central Siberia. Trees 2002, 16, 313–324. [Google Scholar] [CrossRef]
- Wells, O.O.; Wakeley, P.C. Geographic variation in survival, growth, and fusiform-rust infection of planted loblolly pine. For. Sci. 1966, 12, a0001. [Google Scholar]
- Baumanis, I.; Birģelis, J.; Lagzdiņa, D.; Paegle, M. Scots pine provenance trials in Latvian SSR. Jaun. Mežsaimniecībā 1986, 26, 37–48. [Google Scholar]
- Iroshnikov, A.I. Provenance trials of conifers in south Siberia. Proven. Trials Plant. Conifers Sib. 1977, 4–110. [Google Scholar]
- Kuzmina, N.A. Specific features of Scotch pine provenance trials in Angara River Basin. Lesovedenie 1999, 4, 23–29. [Google Scholar]
- Shutaev, A.M.; Veresin, M.M. Productivity of geographical populations of Pinus sylvestris. Lesn. Khozyaĭstvo 1990, 11, 36–38. [Google Scholar]
- Chmura, D.J. Analysis of results from a 59-years-old provenance experiment with Scots pine (Pinus sylvestris L.) in Lubień, Poland. Dendrobiology 2000, 45, 23–29. [Google Scholar]
- Klisz, M.; Ukalski, K.; Ukalska, J.; Jastrz\kebowski, S.; Puchałka, R.; Przybylski Pawełand Mionskowski, M.; Matras, J. What can we learn from an early test on the adaptation of silver fir populations to marginal environments? Forests 2018, 9, 441. [Google Scholar] [CrossRef] [Green Version]
- Seppälä, R.; Buck, A.; Katila, P. Adaptation of Forests and People to Climate–A Global Assessment Report (IUFRO World Series volume 22); International Union of Forest Research Organizations (IUFRO): Helsinki, Finland, 2009; Volume 22, ISBN 9783901347801. [Google Scholar]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Harvey, J.E.; Smiljanić, M.; Scharnweber, T.; Buras, A.; Cedro, A.; Cruz-Garcia, R.; Drobyshev, I.; Janecka, K.; Jansons, A.; Kaczka, R.; et al. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Glob. Chang. Biol. 2020, 26, 2505–2518. [Google Scholar] [CrossRef]
- Taeger, S.; Zang, C.; Liesebach, M.; Schneck, V.; Menzel, A. Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For. Ecol. Manag. 2013, 307, 30–42. [Google Scholar] [CrossRef]
- Matisons, R.; Jansone, D.; Elferts, D.; Adamovičs, A.; Schneck, V.; Jansons, Ā. Plasticity of response of tree-ring width of Scots pine provenances to weather extremes in Latvia. Dendrochronologia 2019, 54, 1–10. [Google Scholar] [CrossRef]
- Waszak, N.; Robertson, I.; Puchałka, R.; Przybylak, R.; Pospieszyńska, A.; Koprowski, M. Investigating the Climate-Growth Response of Scots Pine (Pinus sylvestris L.) in Northern Poland. Atmosphere 2021, 12, 1690. [Google Scholar] [CrossRef]
- Juknys, R.; Stravinskiene, V.; Vencloviene, J. Tree-ring analysis for the assessment of anthropogenic changes and trends. Environ. Monit. Assess. 2002, 77, 81–97. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
Prov | Country | Region | Location | LAT | LON | N, ha | S, % | H, m | D, m | V, m3 ha |
---|---|---|---|---|---|---|---|---|---|---|
43 | RUS 1 | Moscow | Eastern | 55°32′ | 38°57′ | 1555 | 35.3 | 14.3 | 14.4 | 187.7 |
45 | RUS | Gorky 2 | Eastern | 56°40′ | 43°28′ | 1331 | 30.3 | 15.0 | 15.5 | 194.8 |
46 | RUS | Gorky | Eastern | 54°56′ | 43°50′ | 1268 | 28.8 | 15.1 | 16.4 | 206.1 |
47 | RUS | Kostroma | Eastern | 58°22′ | 44°44′ | 1447 | 32.9 | 13.7 | 15.0 | 181.6 |
48 | RUS | Kostroma | Eastern | 58°00′ | 42°00′ | 1517 | 34.5 | 12.6 | 13.4 | 143.6 |
50 | RUS | Ryazan | Eastern | 54°40′ | 39°45′ | 1424 | 32.4 | 14.1 | 14.6 | 173.5 |
54 | RUS | Tambov | Eastern | 53°12′ | 41°20′ | 1261 | 28.7 | 14.3 | 15.2 | 170.3 |
57 | RUS | Penza | Eastern | 53°50′ | 46°00′ | 847 | 19.3 | 14.8 | 16.9 | 142.8 |
59 | RUS | Ulyanovsk | Eastern | 54°14′ | 49°35′ | 732 | 16.6 | 15.3 | 18.1 | 144.4 |
65 | RUS | Tarty | Eastern | 56°00′ | 48°00′ | 1018 | 23.1 | 15.7 | 16.8 | 179.1 |
67 | RUS | Udmurtia | Eastern | 57°30′ | 54°00′ | 546 | 12.4 | 14.3 | 17.0 | 89.8 |
68 | RUS | Tver | Eastern | 58°49′ | 50°06′ | 1023 | 23.3 | 13.0 | 14.7 | 118.7 |
69 | RUS | Baskiria | Eastern | 55°30′ | 54°40′ | 635 | 14.4 | 13.6 | 17.0 | 99.8 |
66A | RUS | Tver | Eastern | 55°40′ | 51°26′ | 715 | 16.3 | 13.5 | 17.6 | 119.9 |
C-44 | RUS | Vladimir | Eastern | 56°21′ | 41°15′ | 1204 | 27.4 | 13.9 | 14.7 | 147.3 |
21 | RUS | Pskov | Central | 56°23′ | 30°31′ | 1137 | 25.8 | 14.9 | 15.2 | 157.5 |
38 | RUS | Sumsk | Central | 52°01′ | 34°00′ | 900 | 20.5 | 16.1 | 17.6 | 178.2 |
41 | RUS | Smolensk | Central | 54°00′ | 33°00′ | 1202 | 27.3 | 16.9 | 17.9 | 254.7 |
51 | RUS | Bryansk | Central | 53°00′ | 34°00′ | 1234 | 28.0 | 14.5 | 15.2 | 169.2 |
52 | RUS | Orlov | Central | 53°00′ | 36°00′ | 1678 | 38.1 | 15.7 | 16.2 | 275.5 |
55 | RUS | Voronez | Central | 51°38′ | 39°28′ | 982 | 22.3 | 16.0 | 17.5 | 190.2 |
49_1 | RUS | Kaluga | Central | 54°25′ | 36°16′ | 1053 | 23.9 | 15.1 | 15.9 | 160.5 |
49_2 | RUS | Kaluga | Central | 54°25′ | 36°16′ | 1348 | 30.6 | 16.2 | 16.6 | 239.9 |
4 | RUS | Archangelsk | Northern | 62°54′ | 40°24′ | 771 | 17.5 | 11.6 | 13.3 | 66.1 |
9 | RUS | Vologda | Northern | 60°00′ | 43°00′ | 1057 | 24.0 | 13.6 | 14.9 | 131.3 |
15 | RUS | Karelia | Northern | 61°40′ | 33°40′ | 1148 | 26.1 | 13.3 | 14.7 | 135.0 |
16 | RUS | Karelia | Northern | 61°50′ | 30°28′ | 953 | 21.7 | 12.1 | 13.9 | 94.3 |
19 | RUS | Leningrad | Northern | 60°00′ | 30°25′ | 1684 | 38.3 | 14.9 | 14.4 | 213.8 |
23 | RUS | Novgrod | Northern | 58°15′ | 33°28′ | 1288 | 29.3 | 14.5 | 14.8 | 165.9 |
42 | RUS | Kalinin | Northern | 57°45′ | 36°40′ | 1139 | 25.9 | 14.8 | 16.0 | 174.3 |
C-17 | RUS | Karelia | Northern | 61°40′ | 36°33′ | 1080 | 24.5 | 11.9 | 12.7 | 89.5 |
29 | BLR | Gomel | Southern | 52°14′ | 31°43′ | 1117 | 25.4 | 16.6 | 17.0 | 211.4 |
39 | RUS | Cerkasy | Southern | 49°37′ | 32°00′ | 996 | 22.6 | 14.9 | 17.5 | 182.2 |
33 | UKR | Rovno | Southern | 51°32′ | 26°36′ | 953 | 21.7 | 15.8 | 17.7 | 186.1 |
36 | UKR | Lvov | Southern | 48°07′ | 24°00′ | 860 | 19.5 | 16.6 | 19.2 | 204.2 |
37 | UKR | Kijev | Southern | 50°10′ | 31°20′ | 908 | 20.6 | 16.5 | 18.9 | 209.4 |
28 | BLR | Vitebsk | Western | 56°00′ | 29°20′ | 1210 | 27.5 | 14.8 | 15.1 | 165.3 |
30 | BLR | Gardin | Western | 53°25′ | 25°15′ | 1012 | 23.0 | 16.2 | 18.0 | 208.2 |
24 | EST | Elva | Western | 58°10′ | 26°28′ | 979 | 22.3 | 15.6 | 17.0 | 175.6 |
25 | LVA | Jaunjelgava | Western | 56°27′ | 25°10′ | 1006 | 22.9 | 15.6 | 16.7 | 175.1 |
1 | LTU | Kazlų rūda | Western | 54°45′ | 23°35′ | 1713 | 38.9 | 16.2 | 15.1 | 253.4 |
2 | LTU | Kazlų rūda | Western | 54°45′ | 23°35′ | 1218 | 27.7 | 16.1 | 15.9 | 200.2 |
26 | LTU | Prienai | Western | 54°42′ | 23°58′ | 1256 | 28.5 | 15.2 | 15.8 | 192.1 |
M1 | LTU | Mažeikiai | Western | 56°46′ | 22°40′ | 1055 | 24.0 | 15.1 | 16.8 | 178.9 |
M2 | LTU | Mažeikiai | Western | 56°46′ | 22°40′ | 1376 | 31.3 | 15.2 | 15.9 | 211.9 |
M3 | LTU | Mažeikiai | Western | 56°46′ | 22°40′ | 1261 | 28.7 | 15.0 | 15.6 | 185.0 |
22 | RUS | Pskov | Western | 57°50′ | 28°26′ | 1351 | 30.7 | 16.4 | 15.3 | 208.7 |
27 | RUS | Magilov | Western | 53°18′ | 28°40′ | 1208 | 27.5 | 16.5 | 16.1 | 205.9 |
Bioclimatic Variables | Abbreviation | PC 1 | PC 2 |
---|---|---|---|
Annual Mean Temperature | Bio_1 | −0.300 | −0.550 |
Mean Diurnal Range (Mean of monthly (max temp-min temp)) | Bio_2 | 0.321 | −0.123 |
Temperature Seasonality (standard deviation ×100) | Bio_4 | 0.479 | 0.029 |
Mean Temperature of Driest Quarter | Bio_9 | −0.334 | −0.339 |
Mean Temperature of Warmest Quarter | Bio_10 | 0.220 | −0.636 |
Annual Precipitation | Bio_12 | −0.426 | 0.277 |
Precipitation Seasonality (Coefficient of Variation) | Bio_15 | ||
Precipitation of Driest Quarter | Bio_17 | −0.446 | 0.104 |
Eigenvalue | 3.59 | 1.75 | |
Variance explained | 44.9 | 21.9 |
Provenances | glk | MS | rbt | EPS | R | AR1 |
---|---|---|---|---|---|---|
1 | 0.627 | 0.276 | 0.746 | 0.969 | 0.566 | 0.721 |
2 | 0.644 | 0.314 | 0.611 | 0.901 | 0.492 | 0.607 |
4 | 0.630 | 0.296 | 0.737 | 0.960 | 0.423 | 0.649 |
9 | 0.658 | 0.285 | 0.648 | 0.947 | 0.427 | 0.705 |
16 | 0.632 | 0.291 | 0.841 | 0.984 | 0.545 | 0.750 |
23 | 0.653 | 0.257 | 0.692 | 0.959 | 0.453 | 0.683 |
27 | 0.613 | 0.259 | 0.684 | 0.958 | 0.443 | 0.724 |
29 | 0.614 | 0.280 | 0.790 | 0.977 | 0.659 | 0.598 |
30 | 0.667 | 0.260 | 0.759 | 0.973 | 0.587 | 0.640 |
36 | 0.636 | 0.277 | 0.817 | 0.977 | 0.495 | 0.774 |
37 | 0.687 | 0.258 | 0.793 | 0.977 | 0.523 | 0.758 |
37 | 0.636 | 0.291 | 0.798 | 0.978 | 0.536 | 0.681 |
41 | 0.667 | 0.243 | 0.788 | 0.972 | 0.551 | 0.725 |
45 | 0.647 | 0.302 | 0.578 | 0.936 | 0.560 | 0.595 |
52 | 0.647 | 0.280 | 0.877 | 0.989 | 0.463 | 0.714 |
54 | 0.659 | 0.289 | 0.751 | 0.978 | 0.588 | 0.713 |
55 | 0.665 | 0.264 | 0.825 | 0.983 | 0.510 | 0.759 |
59 | 0.649 | 0.276 | 0.832 | 0.984 | 0.541 | 0.691 |
66A | 0.641 | 0.286 | 0.703 | 0.966 | 0.521 | 0.731 |
67 | 0.620 | 0.285 | 0.759 | 0.971 | 0.521 | 0.668 |
492 | 0.660 | 0.283 | 0.741 | 0.968 | 0.444 | 0.707 |
M3 | 0.646 | 0.239 | 0.857 | 0.982 | 0.407 | 0.770 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linkevičius, E.; Kliučius, A.; Šidlauskas, G.; Augustaitis, A. Variability in Growth Patterns and Tree-Ring Formation of East European Scots Pine (Pinus sylvestris L.) Provenances to Changing Climatic Conditions in Lithuania. Forests 2022, 13, 743. https://doi.org/10.3390/f13050743
Linkevičius E, Kliučius A, Šidlauskas G, Augustaitis A. Variability in Growth Patterns and Tree-Ring Formation of East European Scots Pine (Pinus sylvestris L.) Provenances to Changing Climatic Conditions in Lithuania. Forests. 2022; 13(5):743. https://doi.org/10.3390/f13050743
Chicago/Turabian StyleLinkevičius, Edgaras, Almantas Kliučius, Giedrius Šidlauskas, and Algirdas Augustaitis. 2022. "Variability in Growth Patterns and Tree-Ring Formation of East European Scots Pine (Pinus sylvestris L.) Provenances to Changing Climatic Conditions in Lithuania" Forests 13, no. 5: 743. https://doi.org/10.3390/f13050743
APA StyleLinkevičius, E., Kliučius, A., Šidlauskas, G., & Augustaitis, A. (2022). Variability in Growth Patterns and Tree-Ring Formation of East European Scots Pine (Pinus sylvestris L.) Provenances to Changing Climatic Conditions in Lithuania. Forests, 13(5), 743. https://doi.org/10.3390/f13050743