Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon
Abstract
:1. Introduction
2. Material and Method
2.1. Study Area and Database
2.2. Variable Input, Output, and Data Splitting in Training and Validation
2.3. Hyper-Parameter Tuning
2.3.1. Layers, Units, and Activation Function
2.3.2. Distribution and Loss Functions
2.3.3. Optimization Algorithm, Regularization, Epoch, and Batch Size
2.4. Model Performance
- -
- Operating System: Windows 10 Pro 64-bit
- -
- CPU: Intel Core i3 6006U @ 2.00 GHz- Skylake-U/Y 14 nm Technology
- -
- RAM: 12.00 GB Dual-Channel Unknown @ 1064MHz (15-15-15-35)
- -
- Motherboard: LENOVO LNVNB161216 (U3E1)
- -
- Graphics: Generic PnP Monitor (1366 × 768@64 Hz)
- -
- Storage: 465 GB Western Digital WDC WDS500G2B0B-00YS70 (SATA (SSD).
3. Results
3.1. Training Status
3.2. Model Validation Performance
4. Discussion
4.1. Training Status for the Prediction of the Total Height of Bolaina Blanca
4.2. Growth and Estimation of the Total Height of Bolaina Blanca
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Álvarez Gómez, L.; Ríos Torres, S. Evaluación Económica de Parcelas de Regeneración Natural y Plantaciones de Bolaina Blanca, Guazuma crinita, En El Departamento de Ucayali; Instituto de Investigaciones de la Amazonía Peruana (IIAP): Iquitos, Peru, 2009; p. 54. [Google Scholar]
- Putzel, L.; Cronkleton, P.; Larson, A.; Pinedo-Vásquez, M.; Salazar, O.; Sears, R. Producción y Comercialización de Bolaina (Guazuma Crinita), Una Especie Amazónica de Rápido Crecimiento: Un Llamado a la Adopción de un Marco de Políticas que Apoye los Medios de Vida; Centro de Investigación Forestal Internacional (CIFOR): Bogor, Indonesia, 2013; p. 6. [Google Scholar]
- Reynel, C.; Pennington, R.; Pennington, T.; Flores, D.; Daza, C.A. Árboles Útiles de La Amazonía Peruana, Manual de Identificación Ecológica y Propagación de Las Especies; Herbario de la Facultad de Ciencias Forestales de la Universidad Nacional Agraria-La Molina, Royal Botanic Gardens Kew, Royal Botanic Gardens Edinburgh e ICRAF: Lima, Perú, 2003; ISBN 9972-9733-1-X. [Google Scholar]
- Tuisima-Coral, L.L.; Hlásná Čepková, P.; Weber, J.C.; Lojka, B. Preliminary Evidence for Domestication Effects on the Genetic Diversity of Guazuma crinita in the Peruvian Amazon. Forests 2020, 11, 795. [Google Scholar] [CrossRef]
- SERFOR (Servicio Nacional Forestal y de Fauna Silvestre) SNIFFS—Componente Estadístico. Available online: http://sniffs.serfor.gob.pe/estadistica/es/tableros/registros-nacionales/plantaciones (accessed on 11 March 2021).
- De Mendonça, A.R.; Corandin, C.M.; Pacheco, G.R.; Vieira, G.C.; Araújo, M.D.S.; Interamnense, M.T. Modelos Hipsométricos Tradicionais e Genéricos Para Pinus Caribaea Var. Hondurensis. Pesqui. Florest. Bras. 2014, 35, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Da Rocha, J.E.C.; Junior, M.R.N.; Júnior, I.d.S.T.; de Souza, J.R.M.; Lopes, L.S.d.S.; da Silva, M.L. Configuração de Redes Neurais Artificiais Para Relação Hipsométrica de Árvores de Eucalyptus spp. Sci. For. 2021, 49, e3706. [Google Scholar] [CrossRef]
- Campos, J.C.C.; Leite, H.G. Mensuração Florestal: Perguntas e Respostas, 5th ed.; UFV: Viçosa, Brazil, 2017; ISBN 85-7269-579-6. [Google Scholar]
- Melo, E.d.A.; Calegario, N.; de Mendonça, A.R.; Possato, E.L.; Alves, J.d.A.; Isaac Júnior, M.A. Modelagem Não Linear Da Relação Hipsométrica e Do Crescimento Das Árvores Dominantes e Codominantes de Eucalyptus sp. Ciênc. Florest. 2017, 27, 1325–1338. [Google Scholar] [CrossRef] [Green Version]
- Rai, B. Advanced Deep Learning with R: Become an Expert at Designing, Building, and Improving Advanced Neural Network Models Using R; Packt Publishing Ltd.: Birmingham, UK, 2019; ISBN 978-1-78953-498-6. [Google Scholar]
- Aggarwal, C.C. Neural Networks and Deep Learning: A Textbook; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-94462-3. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Hutter, F.; Lücke, J.; Schmidt-Thieme, L. Beyond Manual Tuning of Hyperparameters. KI-Künstl. Intell. 2015, 29, 329–337. [Google Scholar] [CrossRef]
- Claesen, M.; De Moor, B. Hyperparameter Search in Machine Learning. arXiv 2015, arXiv:1502.02127. [Google Scholar]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-05317-8. [Google Scholar]
- Rodrigues de Oliveira, R.; Ferreira Rodrigues, L.; Mari, J.F.; Coelho Naldi, M.; Gomes Milagres, E.; Rocha Vital, B.; Oliveira Carneiro, A.d.C.; Breda Binoti, D.H.; Lopes, P.F.; Garcia Leite, H. Automatic Identification of Charcoal Origin Based on Deep Learning. Maderas Cienc. Tecnol. 2021, 23, 1–12. [Google Scholar] [CrossRef]
- Ferreira, M.P.; de Almeida, D.R.A.; de Almedia Papa, D.; Minervino, J.B.S.; Veras, H.F.P.; Formighieri, A.; Santos, C.A.N.; Ferreira, M.A.D.; Figueiredo, E.O.; Ferreira, E.J.L. Individual Tree Detection and Species Classification of Amazonian Palms Using UAV Images and Deep Learning. For. Ecol. Manag. 2020, 475, 118397. [Google Scholar] [CrossRef]
- Xi, Z.; Hopkinson, C.; Rood, S.B.; Peddle, D.R. See the Forest and the Trees: Effective Machine and Deep Learning Algorithms for Wood Filtering and Tree Species Classification from Terrestrial Laser Scanning. ISPRS J. Photogramm. Remote Sens. 2020, 168, 1–16. [Google Scholar] [CrossRef]
- Hamdi, Z.M.; Brandmeier, M.; Straub, C. Forest Damage Assessment Using Deep Learning on High Resolution Remote Sensing Data. Remote Sens. 2019, 11, 1976. [Google Scholar] [CrossRef] [Green Version]
- Bayat, M.; Bettinger, P.; Heidari, S.; Henareh Khalyani, A.; Jourgholami, M.; Hamidi, S.K. Estimation of Tree Heights in an Uneven-Aged, Mixed Forest in Northern Iran Using Artificial Intelligence and Empirical Models. Forests 2020, 11, 324. [Google Scholar] [CrossRef] [Green Version]
- da Silva, A.K.V.; Borges, M.V.V.; Batista, T.S.; da Silva Junior, C.A.; Furuya, D.E.G.; Prado Osco, L.; Teodoro, L.P.R.; Baio, F.H.R.; Ramos, A.P.M.; Gonçalves, W.N.; et al. Predicting Eucalyptus Diameter at Breast Height and Total Height with UAV-Based Spectral Indices and Machine Learning. Forests 2021, 12, 582. [Google Scholar] [CrossRef]
- Costa Filho, S.V.S.d.; Arce, J.E.; Montaño, R.A.N.R.; Pelissari, A.L. Tunning Machine Learning Algorithms for Forestry Modeling: A Case Study in the Height-Diameter Relationship. Ciênc. Florest. 2019, 29, 1501–1515. [Google Scholar] [CrossRef] [Green Version]
- Ercanli, İ. Artificial Intelligence with Deep Learning Algorithms to Model Relationships between Total Tree Height and Diameter at Breast Height. For. Syst 2020, 29, e013. [Google Scholar] [CrossRef]
- Ercanlı, İ. Innovative Deep Learning Artificial Intelligence Applications for Predicting Relationships between Individual Tree Height and Diameter at Breast Height. For. Ecosyst. 2020, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Casas, G.G.; Fardin, L.P.; Silva, S.; de Oliveira Neto, R.R.; Breda Binoti, D.H.; Leite, R.V.; Ramos Domiciano, C.A.; de Sousa Lopes, L.S.; da Cruz, J.P.; dos Reis, T.L.; et al. Improving Yield Projections from Early Ages in Eucalypt Plantations with the Clutter Model and Artificial Neural Networks. JST 2022, 30, 1257–1272. [Google Scholar] [CrossRef]
- Vendruscolo, D.G.S.; Chaves, A.G.S.; Medeiros, R.A.; da Silva, R.S.; Souza, H.S.; Drescher, R.; Leite, H.G. Height Estimative of Tectona Grandis, L. f. Trees Using Regression and Artificial Neural Networks. Nativ. Pesqui. Agrár. Ambient. 2017, 5, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Binoti, D.H.B.; Duarte, P.J.; Silva, M.L.M.d.; Silva, G.F.d.; Leite, H.G.; Mendonça, A.R.d.; Andrade, V.C.L.D.; Vega, A.E.D. Estimation of Height of Eucalyptus Trees with Neuroevolution of Augmenting Topologies (Neat). Rev. Árvore 2018, 41, e410314. [Google Scholar] [CrossRef]
- Gobernador Regional de Huánuco. GRH-Gobierno Regional de Huánuco Zonificación Ecológica Económica Base Para El Ordenamiento Territorial de La Región Huánuco; Gobernador Regional de Huánuco: Huánuco, Peru, 2016; p. 260. [Google Scholar]
- Holdridge, L.R. Tropical Science Center: San jose, Costa Rica. In Life Zone Ecology; Tropical Science Center: San Jose, Costa Rica, 1967. [Google Scholar]
- LeDell, E.; Gill, N.; Aiello, S.; Fu, A.; Candel, A.; Click, C.; Kraljevic, T.; Nykodym, T.; Aboyoun, P.; Kurka, M.; et al. H2O: R Interface for the “H2O” Scalable Machine Learning Platform; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Zeiler, M.D. Adadelta: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701. [Google Scholar]
- Islam, M.; Kurttila, M.; Mehtätalo, L.; Haara, A. Analyzing the Effects of Inventory Errors on Holding-Level Forest Plans: The Case of Measurement Error in the Basal Area of the Dominated Tree Species. Silva Fenn. 2009, 43, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.J.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout Networks. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 28, p. 9. [Google Scholar]
- Yao, Y.; Rosasco, L.; Caponnetto, A. On Early Stopping in Gradient Descent Learning. Constr. Approx. 2007, 26, 289–315. [Google Scholar] [CrossRef]
- Naik, D.L.; Sajid, H.U.; Kiran, R.; Chen, G. Detection of Corrosion-Indicating Oxidation Product Colors in Steel Bridges under Varying Illuminations, Shadows, and Wetting Conditions. Metals 2020, 10, 1439. [Google Scholar] [CrossRef]
- Binoti, D.H.B.; Binoti, M.L.M.S.; Leite, H.G. Configuração de Redes Neurais Artificiais Para Estimação Do Volume de Árvores. Rev. Ciênc. Madeira-RCM 2014, 5, 58–67. [Google Scholar] [CrossRef]
- Jakobsson, E. Applying the Maxout Model to Increase the Performance of the Multilayer Perceptron in Shallow Networks. Bachelor’s Thesis, Lund University, Lund, Sweden, 2016. [Google Scholar]
- Martins, E.R.; Binoti, M.L.M.S.; Leite, H.G.; Binoti, D.H.B.; Dutra, G.C. Configuration of Artificial Neural Networks for Estimation of Total Height of Eucalyptus Trees. Agraria 2016, 11, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Dantas, D.; Rodrigues Pinto, L.O.; de Castro Nunes Santos Terra, M.; Calegario, N.; Romarco de Oliveira, M.L. Reduction of Sampling Intensity in Forest Inventories to Estimate the Total Height of Eucalyptus Trees. Bosque Vald. 2020, 41, 353–364. [Google Scholar] [CrossRef]
- Silva, S.; de Oliveira Neto, S.N.; Leite, H.G.; de Alcântara, A.E.M.; de Oliveira Neto, R.R.; de Souza, G.S.A. Productivity Estimate Using Regression and Artificial Neural Networks in Small Familiar Areas with Agrosilvopastoral Systems. Agrofor. Syst. 2020, 94, 2081–2097. [Google Scholar] [CrossRef]
- Vidaurre, A.; Héctor, E. Silvicultura y Manejo de Guazuma crinita Mart.; Instituto Nacional de Investigación Agraria y Agroindustrial-INIAA: Ucayali, Peru, 1992. [Google Scholar]
- Gonzales Ego-Aguirre, L.A. Evaluación Técnico-Económica de Plantaciones de Bolaina Blanca (Guazuma crinita Mart.) En Zonas Inundables Del Río de Aguaytía. Ph.D. Thesis, Universidad Nacional Agraria La Molina, Lima, Peru, 2003. [Google Scholar]
- Weber, J.C.; Sotelo Montes, C. Geographic Variation in Tree Growth and Wood Density of Guazuma crinita Mart. in the Peruvian Amazon. New For. 2008, 36, 29–52. [Google Scholar] [CrossRef]
- Guerra, W.; Soudre-Zambrano, M.; Chota, M. Tabla de Volumen Comercial de Bolaina Blanca (Guazuma crinita Mart.) de Las Plantaciones Experimentales de Alexander Von Humboldt, Ucayali, Perú. Folia Amaz. 2008, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Elera Gonzáles, D.G. Modeling of Growth and Spatialization of the Productive Capacity of Bolaina (Guazuma crinita Mart.) Plantations on Peruvian Central Amazon. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2018. [Google Scholar]
- Scolforo, J.R.S.; Maestri, R.; Ferraz Filho, A.C.; de Mello, J.M.; de Oliveira, A.D.; de Assis, A.L. Dominant Height Model for Site Classification of Eucalyptus Grandis Incorporating Climatic Variables. Int. J. For. Res. 2013, 2013, 139236. [Google Scholar] [CrossRef] [Green Version]
- Alcantra, A.E.M.d.; Santos, A.C.d.A.; Silva, M.L.M.d.; Binoti, D.H.B.; Soares, C.P.B.; Gleriani, J.M.; Leite, H.G. Use of Artificial Neural Networks to Assess Yield Projection and Average Production of Eucalyptus Stands. Afr. J. Agric. Res. 2018, 13, 2285–2297. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, R.A.; Paiva, H.N.d.; Soares, Á.A.V.; Marcatti, G.E.; Takizawa, F.H.; Domiciano, C.A.R.; Leite, H.G. Productive Potential of Tectona Grandis in Midwest Brazil. Adv. For. Sci. 2019, 6, 803. [Google Scholar] [CrossRef]
- Freitas, E.C.S.d.; Paiva, H.N.d.; Neves, J.C.L.; Marcatti, G.E.; Leite, H.G. Modeling of Eucalyptus Productivity with Artificial Neural Networks. Ind. Crop. Prod. 2020, 146, 112149. [Google Scholar] [CrossRef]
- De Oliveira Neto, R.R.; Leite, H.G.; Gleriani, J.M.; Strimbu, B.M. Estimation of Eucalyptus Productivity Using Efficient Artificial Neural Network. Eur. J. For. Res. 2022, 141, 129–151. [Google Scholar] [CrossRef]
Descriptive Statistics | ||||||
---|---|---|---|---|---|---|
Dendrometric | Mean | Minimum | Maximum | Variance | Std.Dev. | Coef.Var. |
Age (years) | 2.56 | 0.40 | 7.30 | 1.63 | 1.28 | 49.92 |
DBH (cm) | 10.70 | 0.50 | 29.60 | 20.22 | 4.50 | 42.01 |
HT (m) | 11.05 | 3.00 | 25.82 | 22.63 | 4.76 | 43.03 |
Agroclimatic | ||||||
Surface Pressure (kPa) | 97.52 | 97.47 | 97.56 | 0.00 | 0.03 | 0.03 |
Temperature at 2 Meters (°C) | 26.98 | 26.40 | 28.47 | 0.45 | 0.67 | 2.49 |
Specific Humidity at 2 Meters (g/kg) | 16.08 | 15.01 | 17.15 | 0.47 | 0.68 | 4.25 |
Relative Humidity at 2 Meters (%) | 73.07 | 63.00 | 78.31 | 23.92 | 4.89 | 6.69 |
Wind Speed at 2 Meters (m/s) | 0.06 | 0.05 | 0.09 | 0.00 | 0.02 | 29.51 |
Surface Soil Wetness | 0.61 | 0.50 | 0.70 | 0.00 | 0.06 | 9.73 |
Temperature at 2 Meters Maximum (°C) | 39.10 | 38.09 | 39.73 | 0.45 | 0.67 | 1.71 |
Temperature at 2 Meters Minimum (°C) | 18.29 | 17.33 | 19.24 | 0.40 | 0.63 | 3.45 |
Profile Soil Moisture | 0.66 | 0.62 | 0.72 | 0.00 | 0.03 | 4.39 |
Root Zone Soil Wetness | 0.65 | 0.62 | 0.72 | 0.00 | 0.03 | 4.67 |
Wind Speed at 2 Meters Maximum (m/s) | 0.66 | 0.55 | 0.73 | 0.00 | 0.07 | 9.89 |
Wind Speed at 10 Meters Maximum (m/s) | 2.18 | 2.04 | 2.30 | 0.01 | 0.11 | 5.14 |
Wind Speed at 10 Meters Minimum (m/s) | 0.02 | 0.01 | 0.03 | 0.00 | 0.01 | 37.80 |
Precipitation Corrected (mm/day) | 3.01 | 1.75 | 4.37 | 0.57 | 0.76 | 25.12 |
Wind Speed at 10 Meters Range (m/s) | 2.16 | 2.01 | 2.27 | 0.01 | 0.11 | 5.02 |
All Sky Surface UVA Irradiance (W/m2) | 11.71 | 11.40 | 12.03 | 0.05 | 0.22 | 1.89 |
All Sky Surface UVB Irradiance (W/m2) | 0.35 | 0.34 | 0.36 | 0.00 | 0.01 | 2.65 |
All Sky Surface Shortwave DownwardIrradiance (MJ/m2/day) | 16.19 | 15.63 | 16.56 | 0.12 | 0.35 | 2.16 |
Clear Sky Surface Shortwave DownwardIrradiance (MJ/m2/day) | 24.07 | 23.81 | 24.23 | 0.03 | 0.18 | 0.73 |
All Sky Surface PAR Total (W/m2) | 87.58 | 84.65 | 89.74 | 3.28 | 1.81 | 2.07 |
Clear Sky Surface PAR Total (W/m2) | 128.36 | 126.02 | 129.62 | 1.48 | 1.22 | 0.95 |
Model | Hidden Layer | Epochs/Training Samples/Weights and Biases | Total Layers | |||
---|---|---|---|---|---|---|
Activation Functions | Layers/Units | HT = f(DBH) | HT = f(DBH, Age) | HT = f(DBH, Age, Agroclimatology) | ||
Model 1 | Tanh | 2(10:10) | 34.9/3,300,864/151 | 35/3,307,955/161 | 17.4/1,647,234/371 | 4 |
Model 2 | Rectifier | 2(10:10) | 89.9/8,496,703/151 | 60.3/5,700,023/161 | 30/2,835,773/371 | 4 |
Model 3 | Maxout | 2(10:10) | 65/6,145,912/291 | 41/3,872,041/311 | 25.1/2,369,990/731 | 4 |
Model 4 | Tanh | 2(10:5) | 64.5/6,100,250/91 | 48.7/4,599,721/101 | 17.1/1,614,741/311 | 4 |
Model 5 | Rectifier | 2(10:5) | 195.7/18,497,950/91 | 159.8/15,100,404/101 | 30.4/2,869,197/311 | 4 |
Model 6 | Maxout | 2(10:5) | 51.7/4,882,319/176 | 62.4/5,897,233/196 | 25/2,358,105/616 | 4 |
Model 7 | Tanh | 3(10:5:2) | 70.9/6,698,582/100 | 73/6,901,805/110 | 32.9/3,108,612/320 | 5 |
Model 8 | Rectifier | 3(10:5:2) | 92.1/8,702,945/100 | 148.1/14,000,065/110 | 30.6/2,892,184/320 | 5 |
Model 9 | Maxout | 3(10:5:2) | 85.7/8,097,387/197 | 77/7281,256/217 | 21.7/2,051,691/637 | 5 |
Model 10 | Tanh | 2(50:50) | 5.4/509,363/2751 | 6.7/637,904/2801 | 7.9/744,223/3851 | 4 |
Model 11 | Rectifier | 2(50:50) | 44.5/4,207,558/2751 | 27.7/2,615,333/2801 | 11.6/1,093,767/3851 | 4 |
Model 12 | Maxout | 2(50:50) | 10.7/1,007,812/5451 | 10.7/1,008,106/5551 | 10.8/1,023,225/7651 | 4 |
Model 13 | Tanh | 2(50:25) | 9.7/917,479/1451 | 13.2/1,251,731/1501 | 5.7/542,308/2551 | 4 |
Model 14 | Rectifier | 2(50:25) | 37.5/3,547,655/1451 | 23.9/2,260,683/1501 | 12/1,132,858/2551 | 4 |
Model 15 | Maxout | 2(50:25) | 13/1,230,927/2876 | 9.4/885,209/2976 | 11/1,035,577/5076 | 4 |
Model 16 | Tanh | 3(50:25:5) | 7.9/748,206/1561 | 8.9/843,398/1611 | 8.3/783,786/2661 | 5 |
Model 17 | Rectifier | 3(50:25:5) | 41.7/3,939,088/1561 | 23.6/2,226,682/1611 | 20/1,893,917/2661 | 5 |
Model 18 | Maxout | 3(50:25:5) | 23.4/2,215,252/3116 | 9.6/907,092/3216 | 9.1/857,062/5316 | 5 |
Model 19 | Tanh | 5(10:5:2:5:10) | 54/5,103,702/183 | 53/5,009,328/193 | 44.4/4,197,664/403 | 7 |
Model 20 | Rectifier | 5(10:5:2:5:10) | 160.8/15,202,054/183 | 65.6/6,200,261/193 | 39.6/3,738,971/403 | 7 |
Model 21 | Maxout | 5(10:5:2:5:10) | 42.3/4,001,607/355 | 35.2/3,328,508/375 | 23.7/2,240,775/795 | 7 |
Model 22 | Tanh | 5(50:25:5:25:50) | 10.1/955,656/3056 | 8/760,293/3106 | 6.3/598,638/4156 | 7 |
Model 23 | Rectifier | 5(50:25:5:25:50) | 29.3/2,766,703/3056 | 35.7/3,369,835/3106 | 12.3/1,160,523/4156 | 7 |
Model 24 | Maxout | 5(50:25:5:25:50) | 11.3/1,072,656/6061 | 13.9/1,309,262/6161 | 10.5/996,059/8261 | 7 |
HT = f(DBH) | HT = f(DBH, Age) | HT = f(DBH, Age, Agroclimatology) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Train | Validation | Train | Validation | Train | Validation | |||||||||||||
Model | RMSE | MAE | RMSE | MAE | Bias% | VAR | RMSE | MAE | RMSE | MAE | Bias% | VAR | RMSE | MAE | RMSE | MAE | Bias% | VAR |
Model 1 | 1.42 | 1.19 | 1.43 | 1.2 | 6.04 | 1.61 | 0.78 | 0.57 | 0.77 | 0.57 | −0.63 | 0.6 | 0.76 | 0.52 | 0.76 | 0.52 | 1.67 | 0.54 |
Model 2 | 1.46 | 1.23 | 1.47 | 1.24 | 6.32 | 1.67 | 0.76 | 0.53 | 0.75 | 0.52 | 0.84 | 0.55 | 0.76 | 0.52 | 0.76 | 0.52 | 1.11 | 0.56 |
Model 3 | 1.38 | 1.13 | 1.4 | 1.14 | 4.65 | 1.68 | 0.75 | 0.52 | 0.74 | 0.51 | 1.18 | 0.53 | 0.76 | 0.53 | 0.76 | 0.53 | 2.23 | 0.51 |
Model 4 | 1.42 | 1.17 | 1.44 | 1.19 | 4.5 | 1.82 | 0.74 | 0.51 | 0.73 | 0.51 | 0.24 | 0.54 | 0.75 | 0.52 | 0.76 | 0.52 | 1.52 | 0.55 |
Model 5 | 1.39 | 1.14 | 1.41 | 1.16 | 5.74 | 1.58 | 0.78 | 0.54 | 0.77 | 0.53 | 2.02 | 0.55 | 0.77 | 0.53 | 0.76 | 0.53 | 0.85 | 0.57 |
Model 6 | 1.4 | 1.15 | 1.42 | 1.17 | 5.38 | 1.66 | 0.77 | 0.54 | 0.76 | 0.53 | 2.32 | 0.52 | 0.77 | 0.54 | 0.76 | 0.54 | 1.99 | 0.54 |
Model 7 | 1.32 | 1.05 | 1.32 | 1.06 | 2.78 | 1.66 | 0.75 | 0.51 | 0.75 | 0.51 | 1.49 | 0.54 | 0.73 | 0.51 | 0.74 | 0.51 | 1.3 | 0.52 |
Model 8 | 1.38 | 1.12 | 1.39 | 1.13 | 4.81 | 1.64 | 0.72 | 0.5 | 0.71 | 0.5 | 1.02 | 0.5 | 0.78 | 0.54 | 0.77 | 0.54 | 1.44 | 0.56 |
Model 9 | 1.4 | 1.15 | 1.43 | 1.17 | 5.43 | 1.67 | 0.75 | 0.53 | 0.75 | 0.52 | 1.85 | 0.52 | 0.73 | 0.51 | 0.74 | 0.51 | 1.02 | 0.53 |
Model 10 | 1.29 | 1.04 | 1.29 | 1.04 | 3.38 | 1.54 | 0.73 | 0.53 | 0.73 | 0.53 | 1.52 | 0.5 | 0.74 | 0.52 | 0.74 | 0.52 | 1.52 | 0.52 |
Model 11 | 1.43 | 1.19 | 1.44 | 1.19 | 5.43 | 1.71 | 0.73 | 0.5 | 0.74 | 0.51 | 1.21 | 0.52 | 0.75 | 0.54 | 0.75 | 0.53 | 2.06 | 0.51 |
Model 12 | 1.32 | 1.1 | 1.33 | 1.11 | 5.08 | 1.46 | 0.72 | 0.52 | 0.71 | 0.51 | 0.58 | 0.5 | 0.73 | 0.53 | 0.73 | 0.53 | 1.05 | 0.52 |
Model 13 | 1.31 | 1.04 | 1.33 | 1.05 | 2.96 | 1.66 | 0.72 | 0.51 | 0.72 | 0.51 | 1.07 | 0.51 | 0.79 | 0.54 | 0.77 | 0.54 | 2.27 | 0.54 |
Model 14 | 1.34 | 1.09 | 1.36 | 1.1 | 4.45 | 1.61 | 0.74 | 0.52 | 0.75 | 0.53 | 0.46 | 0.55 | 0.78 | 0.54 | 0.79 | 0.54 | 2.03 | 0.57 |
Model 15 | 1.39 | 1.14 | 1.39 | 1.13 | 5.43 | 1.56 | 0.72 | 0.51 | 0.72 | 0.51 | 1.67 | 0.49 | 0.7 | 0.5 | 0.7 | 0.5 | −0.09 | 0.49 |
Model 16 | 1.28 | 1.04 | 1.29 | 1.04 | 2.63 | 1.58 | 0.72 | 0.52 | 0.72 | 0.51 | 0.7 | 0.51 | 0.72 | 0.5 | 0.73 | 0.5 | 1.05 | 0.52 |
Model 17 | 1.41 | 1.15 | 1.42 | 1.15 | 5.24 | 1.68 | 0.77 | 0.52 | 0.78 | 0.53 | 1.87 | 0.56 | 0.78 | 0.54 | 0.79 | 0.55 | 2.05 | 0.57 |
Model 18 | 1.31 | 1.08 | 1.34 | 1.1 | 5.32 | 1.44 | 0.73 | 0.55 | 0.74 | 0.55 | 1.06 | 0.53 | 0.75 | 0.52 | 0.75 | 0.52 | 1.04 | 0.54 |
Model 19 | 2.07 | 1.79 | 2.06 | 1.78 | 10.95 | 2.78 | 0.75 | 0.53 | 0.75 | 0.53 | 0.52 | 0.56 | 0.74 | 0.52 | 0.73 | 0.51 | 0.31 | 0.53 |
Model 20 | 1.31 | 1.04 | 1.33 | 1.04 | 3.2 | 1.63 | 0.74 | 0.53 | 0.74 | 0.52 | 0.61 | 0.54 | 0.75 | 0.52 | 0.73 | 0.51 | 0.83 | 0.53 |
Model 21 | 1.44 | 1.21 | 1.43 | 1.2 | 5.63 | 1.67 | 0.77 | 0.57 | 0.77 | 0.57 | −1.24 | 0.57 | 0.73 | 0.52 | 0.72 | 0.52 | 1.18 | 0.51 |
Model 22 | 1.28 | 0.96 | 1.28 | 0.95 | −0.04 | 1.63 | 0.7 | 0.5 | 0.71 | 0.5 | 0.61 | 0.5 | 0.74 | 0.52 | 0.74 | 0.51 | 0.78 | 0.54 |
Model 23 | 1.41 | 1.13 | 1.4 | 1.12 | 4.9 | 1.67 | 0.72 | 0.49 | 0.72 | 0.49 | 1.25 | 0.5 | 0.73 | 0.52 | 0.72 | 0.52 | −0.23 | 0.52 |
Model 24 | 1.26 | 0.93 | 1.26 | 0.93 | −1.84 | 1.55 | 0.76 | 0.52 | 0.74 | 0.52 | 2.03 | 0.5 | 0.72 | 0.5 | 0.72 | 0.5 | 1.73 | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas, G.G.; Gonzáles, D.G.E.; Villanueva, J.R.B.; Fardin, L.P.; Leite, H.G. Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon. Forests 2022, 13, 697. https://doi.org/10.3390/f13050697
Casas GG, Gonzáles DGE, Villanueva JRB, Fardin LP, Leite HG. Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon. Forests. 2022; 13(5):697. https://doi.org/10.3390/f13050697
Chicago/Turabian StyleCasas, Gianmarco Goycochea, Duberlí Geomar Elera Gonzáles, Juan Rodrigo Baselly Villanueva, Leonardo Pereira Fardin, and Hélio Garcia Leite. 2022. "Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon" Forests 13, no. 5: 697. https://doi.org/10.3390/f13050697
APA StyleCasas, G. G., Gonzáles, D. G. E., Villanueva, J. R. B., Fardin, L. P., & Leite, H. G. (2022). Configuration of the Deep Neural Network Hyperparameters for the Hypsometric Modeling of the Guazuma crinita Mart. in the Peruvian Amazon. Forests, 13(5), 697. https://doi.org/10.3390/f13050697