An Ecological-Economic Approach to Assess Impacts of the Expansion of Eucalyptus Plantations in Agroforest Landscapes of Northern Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Model Building
- Mi = the number of prescriptions for analysis area i.
- T = 9, the number of planning years.
- Xij = number of hectares of analysis area i assigned to prescription j.
- ai = total area of the analysis area i.
- wijt = wood harvested in period t that results from assigning prescription j to analysis area i. This was estimated using a local growth model, with a yield table for seedling and coppice stands in four productivity site classes [34].
- carbonijt = yearly carbon stock at the end of period t that results from assigning prescription j to analysis area i [34].
- waterijt = total annual water use in period t that results from assigning prescription j to analysis area i [34].
- cropijt = annual crop production in period t that results from assigning prescription j to analysis area i.
- levij = land expectation value associated with prescription j in analysis area i. Estimated based on information provided by landowners, key informants and merchants (e.g., labor, input, harvesting and transportation costs, as well as product prices). As the major Eucalyptus product that farmers produce and sell in the case study area is poles, this product was considered as the target product in the study.
- Veiij = Volume of the Eucalyptus inventory at the end of the planning horizon associated with prescription j in analysis area i.
3. Results
3.1. Result of Single Objective Optimization
3.2. Trade-Offs between Management Planning Criteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ministry of Environment Forest and Climate Change. Ethiopia Forest Sector Review, Focus on Commercial Forestry and Industrialization. Technical Report. 2017. Available online: www.ethiopia.gov.et (accessed on 12 January 2022).
- Bekele, M. Forest Plantations and Woodlots in Ethiopia; Working Paper Series; African Forest Forum: Nairobi, Kenya, 2011; Volume 1. [Google Scholar]
- Pohjonen, V.; Pukkala, T. Eucalyptus globulus in Ethiopian forestry. For. Ecol. Manag. 1990, 36, 19–31. [Google Scholar] [CrossRef]
- Mekonnen, Z.; Kassa, H.; Lemenh, M.; Campbell, B. The role and management of Eucalyptus in lode hetosa district, central Ethiopia. For. Trees Livelihoods 2007, 17, 309–323. [Google Scholar] [CrossRef]
- Achalu, N. Farm Forestry Decision—Making Strategies of the Guraghae Households, Southern-Central Highlands of Ethiopia. Ph.D. Dissertation, Technische University Dresden, Agriculture Natural Resource Extension, Dresden, Germany, 2004. [Google Scholar]
- Duguma, L.A.; Hager, H. Farmers’ assessment of the social and ecological values of land uses in central highland Ethiopia. Environ. Manag. 2011, 47, 969–982. [Google Scholar] [CrossRef] [PubMed]
- Lemenih, M. Growing ucalypt by smallholder farmers in Ethiopia. In Proceedings of the Congress on Eucalyptus Species Management, History, Status and Trends in Ethiopia, Addis Ababa, Ethiopia, 15–17 September 2010; Gil, L., Tadesse, W., Tolosana, E., López, R., Eds.; Ethiopian Institute of Agricultural Research: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Jenbere, D.; Lemenih, M.; Kassa, H. Expansion of Eucalyptus farm forestry and its determinants in Arsi Negelle District, South Central Ethiopia. Small Scale For. 2012, 11, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Tefera, B.; Kassa, H. Trends and driving forces of Eucalyptus plantation by smallholders in the Lake Tana Watershed of Ethiopia. In Social and Ecological System Dynamics; AESS Interdisciplinary Environmental Studies and Sciences Series; Stave, K., Goshu, G., Aynalem, S., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ahimbisibwe, V.; Auch, E.; Groeneveld, J.; Tumwebaze, S.B.; Berger, U. Drivers of household decision-making on land-use transformation: An example of woodlot establishment in Masindi District, Uganda. Forests 2019, 10, 619. [Google Scholar] [CrossRef] [Green Version]
- Mesfin, A.; Wubalem, T. Eucalyptus in Ethiopia: Risk or Opportunity? Ethiopian Institute of Agricultural Research: Addis Ababa, Ethiopia, 2014; ISBN 9789994453914. [Google Scholar]
- Dessie, G.; Erkossa, T. Eucalyptus in East Africa: Socio-Economic and Environmental Issues; Working Paper FP46/E; FAO: Rome, Italy, 2011. [Google Scholar]
- Alemneh, T.; Benjamin, Z.; Simane, B.; Ambelu, A. Changing Patterns of Tree Cover in a Tropical Highland Region and Implications for Food, Energy, and Water Resources. Front. Environ. Sci. 2019, 7, 1. [Google Scholar] [CrossRef]
- Tadesse, S.A.; Tafere, S.M. Local people’s knowledge on the adverse impacts and their attitudes towards growing Eucalyptus woodlot in Gudo Beret Kebele, Basona Worena district, Ethiopia. Ecol. Process. 2017, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Chanie, T.; Collick, A.S.; Adgo, E.; Lehmann, C.J.; Steenhuis, T.S. Eco-hydrological impacts of Eucalyptus in the semi humid Ethiopian Highlands: The Lake Tana Plain. J. Hydrol. Hydromech. 2013, 61, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Yitaferu, B.; Abewa, A.; Amare, T. Expansion of Eucalyptus woodlots in the fertile soils of the highlands of Ethiopia: Could it be a treat on future cropland use? J. Agric. Sci. 2013, 5, 97–103. [Google Scholar] [CrossRef]
- Jaleta, D.; Mbilinyi, B.P.; Mahoo, H.F.; Lemenih, M. Effect of Eucalyptus expansion on surface runoff in the central highlands of Ethiopia. Ecol. Process. 2017, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, Z.; Limaei, S.M.; Shahraji, T.R. Linear programming approach for optimal forest plantation. J. For. Res. 2017, 28, 299–307. [Google Scholar] [CrossRef]
- Kaya, A.; Bettinger, P.; Boston, K.; Akbulut, R.; Ucar, Z.; Siry, J.; Merry, K.; Cieszewski, C. Optimisation in Forest Management. Curr. For. Rep. 2016, 2, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Belavenutti, P.; Romero, C.; Diaz-Balteiro, L. A critical survey of optimization methods in industrial forest plantations management. Sci. Agric. 2018, 75, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Kaim, A.; Anna, F.C.; Volk, M. A review of multi-criteria optimization techniques for agricultural land use allocation. Environ. Model. Softw. 2018, 105, 79–93. [Google Scholar] [CrossRef]
- Sacchelli, S.; Bernetti, I. Integrated management of forest ecosystem services: An optimization model based on multi-objective analysis and metaheuristic approach. Nat. Resour. Res. 2019, 28, 5–14. [Google Scholar] [CrossRef]
- Baskent, E.Z.; Jordan, G.A. Forest landscape management modeling using simulated annealing. For. Ecol. Manag. 2002, 165, 29–45. [Google Scholar] [CrossRef]
- Baskent, E.Z.; Keles, S.; Kadiogullari, A.I. Challenges in developing and implementing a decision support systems (ETcAP) in forest management planning: A case study in Honaz and Ibradi, Turkey. Scand. J. For. Res. 2014, 29, 121–131. [Google Scholar] [CrossRef]
- Borges, J.G.; Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.E.; Marques, S.; Oliveira, M.M. Addressing multicriteria forest management with Pareto Frontier methods: An application in Portugal. For. Sci. 2014, 60, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.E.; Borges, J.G. A decision support system for assessing trade-offs between ecosystem management goals: An application in Portugal. Forests 2015, 6, 65–87. [Google Scholar] [CrossRef] [Green Version]
- Borges, J.G.; Marques, S.; Garcia-Gonzalo, J.; Rahman, A.U.; Bushenkov, V.; Sottomayor, M.; Carvalho, P.O.; Nordstrom, E.M. A multiple criteria approach for negotiating ecosystem services supply targets and forest owners’ programs. For. Sci. 2017, 63, 49–61. [Google Scholar] [CrossRef]
- Marques, S.; Marto, M.; Bushenkov, V.; McDill, M.; Borges, J.G. Addressing wildfire risk in forest management planning with multiple criteria decision-making methods. Sustainability 2017, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Marto, M.; Reynolds, K.M.; Borges, J.G.; Bushenkov, V.A.; Marques, S.; Marques, M.; Barreiro, S.; Botequim, B.; Tomé, M. Web-based forest resources management decision support system. Forests 2019, 10, 1079. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.B.; Lu, W.; Li, Z.G. Developing alternative forest spatial management plans when carbon and timber values are considered: A real case from northeastern China. Ecol. Model. 2018, 385, 45–57. [Google Scholar] [CrossRef]
- Lafond, V.; Cordonnier, T.; Mao, Z.; Courbaud, B. Trade-offs and synergies between ecosystem services in uneven-aged mountain forests: Evidences using Pareto fronts. Eur. J. For. Res. 2017, 136, 997–1012. [Google Scholar] [CrossRef]
- Derbe, T.; Sisay, Y.; Genanew, A. Factors influencing smallholder farmers adoption of Eucalyptus woodlot in Wogera District, North Gondar Zone, Amhara Regional State of Ethiopia. IJSRM Int. J. Sci. Res. Manag. 2018, 6, 566–574. [Google Scholar] [CrossRef]
- Johnson, K.N.; Scheurman, H.L. Techniques for prescribing optimal timber harvest and investment under different objectives–Discussion and synthesis. For. Sci. 1977, 23 (Suppl. S1), a0001–z0001. [Google Scholar]
- Abate, D.F. An ecological-economic approach to assess impacts of Eucalyptus woodlot expansion in agroforest landscapes of Northern Ethiopia. Master’s Thesis, School of Agriculture, University of Lisbon, Lisbon, Portugal, 2020. [Google Scholar]
- Worku, I.H.; Dereje, M.; Minten, B.; Hirvonen, K. Diet transformation in Africa: The case of Ethiopia. Agric. Econ. 2017, 48, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Enku, T.; Melesse, A.M.; Ayana, E.K.; Tilahun, S.A.; Abate, M.; Steenhuis, T.S. Groundwater use of a small Eucalyptus patch during the dry monsoon phase. Biologia 2020, 75, 853–864. [Google Scholar] [CrossRef]
- Keleş, S.; Başkent, E.Z. Modelling and analyzing timber production and carbon sequestration values of forest ecosystems: A case study. Pol. J. Environ. Stud. 2007, 16, 473–479. [Google Scholar]
- Raymer, A.K.; Gobakken, T.; Solberg, B.; Hoen, H.F.; Bergseng, E. A forest optimisation model including carbon flows: Application to a forest in Norway. For. Ecol. Manag. 2009, 258, 579–589. [Google Scholar] [CrossRef]
- Zengin, H.; Asan, Ü.; Destan, S.; Engin Ünal, M.; Yeşil, A.; Bettinger, P.; Değermenci, A.S. Modeling harvest scheduling in multifunctional planning of forests for longterm water yield optimization. Nat. Resour. Model. 2015, 28, 59–85. [Google Scholar] [CrossRef]
- Cademus, R.; Escobedo, F.J.; McLaughlin, D.; Abd-Elrahman, A. Analyzing trade-offs, synergies, and drivers among timber production, carbon sequestration, and water yield in Pinus elliotii forests in Southeastern USA. Forests 2014, 5, 1409–1431. [Google Scholar] [CrossRef] [Green Version]
- Zaitchik, B.F.; Simane, B.; Habib, S.; Anderson, M.C.; Ozdogan, M.; Foltz, J.D. Building climate resilience in the Blue Nile/Abay Highlands: A role for earth system sciences. Int. J. Environ. Res. Public Health 2012, 9, 435–461. [Google Scholar] [CrossRef] [Green Version]
Crop Production Scenarios | Decision Scenarios (LP Models) | Objective Function | Constraint | Equations |
---|---|---|---|---|
Low | MOD 1 | MAX LEV | NA | Equations (1)–(14) |
MOD 2 | MAX LEV | Minimum annual grain food consumption needs | Equations (1)–(15) | |
MOD 3 | MAX LEV | Maximum annual water use | Equations (1)–(14) and (16) | |
MOD 4 | MAX VEI | NA | Equations (1)–(14) | |
Moderately Normal | MOD 5 | MAX LEV | NA | Equations (1)–(14) |
MOD 6 | MAX LEV | Minimum annual grain food consumption needs | Equations (1)–(15) | |
MOD 7 | MAX LEV | Maximum annual water use | Equations (1)–(14) and (16) | |
MOD 8 | MAX VEI | NA | Equations (1)–(14) | |
Normal | MOD 9 | MAX LEV | NA | Equtaions (1)–(14) |
MOD 10 | MAX LEV | Minimum annual grain food consumption needs | Equations (1)–(15) | |
MOD 11 | MAX LEV | Maximum annual water use | Equations (1)–(14) and (16) | |
MOD 12 | MAX VEI | NA | Equations (1)–(14) |
Decision Scenarios | LEV (109 ETB *) | TOTWOOD (105 m3) | CARBAver (107 kg) | VolEI (104 m3) | WUTOT (108 m3) | WUAnnual (107 m3) | CROPTOT (106 kg) | CROPAnnual (106 kg) |
---|---|---|---|---|---|---|---|---|
MOD 1 | 8.46 | 8.3 | 1.65 | 6.19 | 3.39 | 3.76 | 0 | 0 |
MOD 2 | 7.55 | 7.48 | 1.5 | 6.19 | 3.07 | 3.41 | 3.67 | 0.41 |
MOD 3 | 4.36 | 4.34 | 1.147 | 8.81 | 1.87 | 2.08 | 10.35 | 1.15 |
MOD 4 | 7.75 | 4.14 | 2.76 | 50.62 | 3.48 | 3.87 | 0 | 0 |
MOD 5 | 8.46 | 8.3 | 1.65 | 6.19 | 3.39 | 3.76 | 0 | 0 |
MOD 6 | 7.9 | 7.74 | 1.54 | 6.19 | 3.18 | 3.53 | 3.67 | 0.41 |
MOD 7 | 4.42 | 4.19 | 1.153 | 9.41 | 1.89 | 2.11 | 19.39 | 2.15 |
MOD 8 | 7.75 | 4.14 | 2.76 | 50.62 | 3.48 | 3.87 | 0 | 0 |
MOD 9 | 8.46 | 8.3 | 1.65 | 6.19 | 3.39 | 3.76 | 0 | 0 |
MOD 10 | 8.06 | 7.88 | 1.57 | 6.19 | 3.24 | 3.6 | 3.67 | 0.41 |
MOD 11 | 4.46 | 4.1 | 1.16 | 9.33 | 1.92 | 2.13 | 26.2 | 2.91 |
MOD 12 | 7.75 | 4.14 | 2.76 | 50.62 | 3.48 | 3.87 | 0 | 0 |
Decision Scenario/Model | Total Land Allocated (In ha) | |
---|---|---|
Plantation | Crop | |
MOD 1 | 1987 | 0 |
MOD 2 | 1772 | 215 |
MOD 3 | 921 | 1066 |
MOD 4 | 1987 | 0 |
MOD 5 | 1987 | 0 |
MOD 6 | 1817 | 170 |
MOD 7 | 870 | 1117 |
MOD 8 | 1987 | 0 |
MOD 9 | 1987 | 0 |
MOD 10 | 1860 | 127 |
MOD 11 | 857 | 1130 |
MOD 12 | 1987 | 0 |
Site Class | Prescriptions * | MOD 3 | MOD 7 | MOD 11 |
---|---|---|---|---|
Site I | P1 | 68.488 | 54.07 | 39.69 |
P2 | 9.112 | 23.53 | 0 | |
P3 | 0 | 0 | 0 | |
P4 | 259.8 | 259.8 | 297.71 | |
Total | 337.4 | |||
Site II ** | P4/Total | 482 | ||
Site III | P1 | 0 | 0 | 0 |
P2 | 53.54 | 30.132 | 53.54 | |
P3 | 0 | 0 | 0 | |
P4 | 179.25 | 202.658 | 179.25 | |
Total | 232.79 | |||
Site IV | P1 | 0 | 0 | 0 |
P2 | 15.43 | 0 | 0 | |
P3 | 114.43 | 102.76 | 103.93 | |
P4 | 145.14 | 172.24 | 171.07 | |
Total | 275 |
Criteria | Point A | Point B | Point C | Change from Point A to B | Change from Point A to C |
---|---|---|---|---|---|
LEV (109 ETB) | 4.193 | 4.019 | 3.701 | 0.174 | 0.492 |
TOTWOOD (105 m3) | 4.51 | 4.274 | 4.118 | 0.236 | 0.392 |
CARBAvge(107 Kg) | 1.237 | 1.308 | 1.368 | −0.071 | −0.131 |
VolEI (105 m3) | 0.602 | 0.681 | 0.567 | −0.079 | 0.035 |
WUTOT (108 m3) | 1.824 | 1.755 | 1.642 | 0.069 | 0.182 |
WUAnnual (107 m3) | 2.027 | 1.95 | 1.824 | 0.077 | 0.203 |
CROPTOT (106 Kg) | 11.347 | 11.564 | 11.839 | −0.217 | −0.492 |
CROPAnnual (105 Kg) | 12.608 | 12.849 | 13.155 | −0.241 | −0.547 |
LandUnderEuc (ha) | 835 | 765 | 696 | 70 | 139 |
LandUnderCrop (ha) | 1152 | 1222 | 1291 | −70 | −139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abate, D.; Borges, J.G.; Marques, S.; Bushenkov, V. An Ecological-Economic Approach to Assess Impacts of the Expansion of Eucalyptus Plantations in Agroforest Landscapes of Northern Ethiopia. Forests 2022, 13, 686. https://doi.org/10.3390/f13050686
Abate D, Borges JG, Marques S, Bushenkov V. An Ecological-Economic Approach to Assess Impacts of the Expansion of Eucalyptus Plantations in Agroforest Landscapes of Northern Ethiopia. Forests. 2022; 13(5):686. https://doi.org/10.3390/f13050686
Chicago/Turabian StyleAbate, Dagm, José G. Borges, Susete Marques, and Vladimir Bushenkov. 2022. "An Ecological-Economic Approach to Assess Impacts of the Expansion of Eucalyptus Plantations in Agroforest Landscapes of Northern Ethiopia" Forests 13, no. 5: 686. https://doi.org/10.3390/f13050686
APA StyleAbate, D., Borges, J. G., Marques, S., & Bushenkov, V. (2022). An Ecological-Economic Approach to Assess Impacts of the Expansion of Eucalyptus Plantations in Agroforest Landscapes of Northern Ethiopia. Forests, 13(5), 686. https://doi.org/10.3390/f13050686