Reducing Nutrient Loss Caused by Thinning: Effects of Four Composts of Forest Thinning Shreds on Soil Nutrients and Tree Growth in Semimature Pinus tabuliformis Carr., Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Experimental and Fertilization
- T1: The compost materials C/N and C/P were adjusted, and 0.2% priming was added. The priming (Bioferment) was provided by Beijing Goldenway Bio-tech Co., Ltd. Beijing, China.
- T2: The compost materials C/N and C/P were adjusted, and 0.2% common compost was added. The common compost was made of Vitex negundo and cow dung using the traditional composting method.
- T3: Only the raw materials C/N and C/P, were adjusted, without any additives.
- T4: Raw material grinding of thinning shreds, without any adjustments and additives.
- T5: (CK, short for control check): control group, no fertilization.
Thinning Shreds | Moisture (%) | C/N | C/P | Total Nutrient (TN 2 + K2O + P2O5, %) |
---|---|---|---|---|
After adjustment 1 | 70 | 40:1 | 100:1 | 3.5 |
Composts 1 | Moisture Content (%) | pH | Organic Matter (%) | Total Nutrient (TN 2 + K2O + P2O5, %) | C/N | GI3 (%) |
---|---|---|---|---|---|---|
T1 | 6 ± 0.78 | 7.5 ± 0.07 | 52 ± 0.98 | 5.8 ± 0.27 | 23 ± 0.16 | 69 ± 1.93 |
T2 | 8 ± 0.24 | 7.4 ± 0.06 | 44 ± 0.13 | 5.4 ± 0.08 | 25 ± 0.21 | 81 ± 2.33 |
T3 | 7 ± 0.49 | 6.7 ± 0.06 | 40 ± 0.98 | 4.7 ± 0.16 | 22 ± 0.68 | 65 ± 6.82 |
T4 | 5 ± 0.15 | 5.9 ± 0.25 | 30 ± 0.55 | 3.1 ± 0.22 | 37 ± 1.82 | 77 ± 7.93 |
2.3. Data Collection
2.4. Measurements of Soil Nutrients
2.5. Measurements of Soil Microorganisms
2.6. Measurements of Tree Growth
2.7. Data Analysis
- The significant differences among the soil nutrient contents in the 0–20 cm soil layer in four periods under five fertilization types;
- The significant differences among the soil nutrient contents in the 20–40 cm soil layer in four periods under five fertilization types;
- The interaction of fertilization type and soil layer on soil nutrient content;
- The significant differences among soil microbial contents in the 0–20 cm soil layer in four periods under five fertilization types;
- The significant differences among soil microbial contents in the 20–40 cm soil layer in four periods under five fertilization types;
- The interaction between fertilization type and soil layer in soil microbial content;
- The significant differences in tree growth and volume in four periods under five fertilization types.
3. Results
3.1. Differences in Soil Nutrient Contents
3.1.1. Soil pH, AP, and AK
3.1.2. Soil TN and SOM
3.1.3. Interaction of Fertilization Type and Soil Layer on Soil Nutrient Content
3.2. Differences in Soil Microbial Activity and Contents
3.2.1. Soil Microbial Biomass Carbon and Nitrogen
3.2.2. Soil Urease and Invertase Activities
3.2.3. Soil Phosphatase Activities
3.2.4. Quantity of Soil Microorganisms
3.2.5. Interaction between Fertilization Type and Soil Layer on Soil Microbial Content
3.3. Differences in Growth of Pinus tabuliformis
3.3.1. High Growth of Trees
3.3.2. Volume of Pinus tabuliformis
3.3.3. Regeneration of Pinus tabuliformis
4. Discussion
4.1. Effects of Four Composts of Forest Thinning Shreds on Soil Nutrients
4.2. Effects of Four Composts of Forest Thinning Shreds on Soil Microbial Biomass Accumulation
4.3. Effects of Four Composts of Forest Thinning Shreds in the Growth of Pinus tabuliformis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.A. Utilization and development of forest tending shreds. J. Green Sci. Technol. 2013, 6, 33–34. [Google Scholar]
- Wang, L.P. Effect of nitrogen application level on the growth of new seedlings of Pinus tabuliformis. Anhui Agric. Sci. Bull. 2020, 26, 64–158. [Google Scholar] [CrossRef]
- Yang, Y.L. Effects of Different thinning Methods on the Ecological Benefits of Pinus tabuliformis Plantation. J. Prot. Forest Sci. Technol. 2021, 2, 20–22, 28. [Google Scholar] [CrossRef]
- Zhao, Q.H.; Liang, C.W.; Li, X.H. Monitoring and comparative analysis of thinning effect of middle-aged Pinus tabuliformis Plantation. J. China Hi-Tech 2021, 3, 125–140. [Google Scholar]
- Qiu, C.; Qin, Q.Q.; Zheng, D.T.; Liu, Y.H. Litter Decomposition and Hydrological Effects of Pinus tabuliformis Plantation After Severe Burning. J. Soil Water Conserv. 2022, 36, 196–204. [Google Scholar] [CrossRef]
- Wu, X.S.; Li, Z.X.; Huang, Y.L.; Ma, J.; Han, X.B.; Zhang, F. Screening, Identification and Its Composting Application of High-temperature Strain for Degrading Lignocellulose. Anhui Agric. Sci. 2021, 49, 68–71. [Google Scholar]
- Feng, H.Y.; Du, M.Y.; Xin, X.B.; Gao, X.; Zhang, L.J.; Kong, Q.Y.; Fa, L.; Wu, D. Seasonal variation in C, N, and P stoichiometry of Platycladus orientalis plantation in the rocky mountainous areas of North China. Acta Ecol. Sin. 2019, 39, 1572–1582. [Google Scholar]
- Hao, L.F.; Li, X.Y.; Wu, X.Q.; Liu, T.Y.; Wang, X.F. Responses of the Root System Architecture of One-Year-Old Pinus tabuliformis Seedlings to Fertilization and Ectomycorrhizal Fungus Inoculation. J. Northwest For. Univ. 2021, 36, 168–174. [Google Scholar]
- Zhao, Y. Short-term Effects of Nitrogen Fertilizer Simulated Nitrogen Deposition on Undergrowth Soil Properties in Natural Secondary Forest of Pinus tabuliformis. J. Prot. Forest Sci. Technol. 2020, 12, 18–20. [Google Scholar] [CrossRef]
- Zhang, X.W. Effects of Different Nitrogen Fertilization Rates on Growth and Biomass of Pinus tabuliformis Seedlings. J. Hubei For. Sci. Technol. 2020, 49, 32–33, 41. [Google Scholar]
- Fisher, R.F.; Garbett, W.S. Response of Semimature Slash and Loblolly Pine Plantations to Fertilization with Nitrogen and Phosphorus 1. Soil Sci. Soc. Am. J. 1980, 44, 850–854. [Google Scholar] [CrossRef]
- Shen, Z.; Sun, S.X. A review of nursery fertilization research. J. World For. Res. 1992, 3, 22–29. [Google Scholar] [CrossRef]
- Zuo, Y.Z. Study on fertilization effect of Pinus tabuliformis seedlings. J. For. Sci. Technol. Commun. 1985, 6, 8–13. [Google Scholar] [CrossRef]
- Shi, W.H.; Grossnickle, S.C.; Li, G.L.; Su, S.C.; Liu, Y. Fertilization and irrigation regimes influence on seedling attributes and field performance of Pinus tabuliformis. J. For. Int. J. For. Res. 2019, 92, 97–107. [Google Scholar] [CrossRef]
- Wei, N. How to See Quality and Field Performance of Pinus tabuliformis, Quercus Mongolia Respond to Fertilizer Treatments. Master’s Thesis, Beijing Forestry University, Beijing, China, 2020. [Google Scholar] [CrossRef]
- Hu, W.Z.; Gu, X.X.; Si, J.H.; Gong, X.Q. Effects of Different Fertilization Methods on Growth of Pinus tabuliformis Plantation in Xining City. Modern Agric. Sci. Technol. 2019, 24, 103–105, 107. [Google Scholar]
- Lirikum, L.N.K.; Thyug, L.; Mozhui, L. Vermicomposting: An eco-friendly approach for waste management and nutrient enhancement. J. Trop. Ecol. 2022, in press. [Google Scholar] [CrossRef]
- Luo, Y.J.; Van, V.H.; Pieter, J.; Chen, S.Y.; Sechi, V.; Ter, H.A.; Veeken, A.; Buisman, C.J.N.; Bezemer, T.M. Effects of sterilization and maturity of compost on soil bacterial and fungal communities and wheat growth. J. Geoderma 2022, 409, 115598. [Google Scholar] [CrossRef]
- Han, H.G.; Du, K.; Ding, J.Y.; Cai, L.F. Research Progress on Compost Application and Technologies of Garden Waste. J. Shanxi Agric. Sci. 2018, 46, 2111–2114. [Google Scholar]
- Zou, W.X.; Luo, H.; Zhao, J.Q.; Yue, Z.H.; Liu, S.Y.; Liang, A.Z.; Wang, X.J.; Shu, C.L.; Han, L.L.; Shen, J.P. Effects of swine manure and its vermicompost on the wheat seedling growth and soil bacterial community. J. Agric. Resour. Environ. 2022, 1–11. [Google Scholar] [CrossRef]
- Wang, W. Advances in garden waste compost used as herbaceous flowers substrate. J. Hubei Agric. Sci. 2021, 60, 11–15. [Google Scholar] [CrossRef]
- Imran, A.; Sardar, F.; Khaliq, Z.; Nawaz, M.S.; Shehzad, A.; Ahmad, M.; Yasmin, S.; Hakim, S.; Mirza, B.S.; Mubeen, F.; et al. Tailored Bioactive Compost from Agri-Waste Improves the Growth and Yield of Chili Pepper and Tomato. Front. Bioeng. Biotechnol. 2022, 9, 787764. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.W.; Liu, Y.; Wang, Y.; Lou, J.S.; Li, G.L. Effects of Mushroom Residue Compost on Growth and Nutrient Uptake of Pinus tabuliformis Container Seedlings. Sci. Silvae Sin. 2017, 53, 129–137. [Google Scholar]
- Wang, L.F. Effects of garden waste composting on container seedling growth of Pinus tabuliformis. J. Shanxi For. 2016, 4, 43–44. [Google Scholar] [CrossRef]
- Zhu, J.L.; Li, X.; Bo, H.J.; Nie, L.S.; Li, J.H.; Hu, J.; Wang, S.Q.; Li, Z. Research on Seasonal Dynamic Changes of Pine Needles and Characters of Carbon- nitrogen-phosphorus by Fertilization. C. Part II. In Proceedings of the 13th Academic Conference of the Chinese Society of Cross-Strait Fertilization and Fertilizer Science, Xi’an, China, 19 September 2016; pp. 191–201. [Google Scholar]
- Jin, X. Effect of Thinning Residue Compost on Seedings of Platyladus Orientalis and Pinus tabuliformis. Master’s Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Bao, S.D. Soil Agro-Chemistrical Analysis; China Agriculture Press: Beijing, China, 2007. [Google Scholar]
- Lu, R.K. Soil Agrochemical Analysis Method; Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Bertozzi, J.; Andrade, D.S.; Oliveira, C.C.; Bala, A.; Caviglione, J.H. Microwave-assisted biocidal extraction is an alternative method to measure microbial biomass of carbon from cultivated and non-cultivated soils. Braz. J. Microbiol. 2020, 51, 255–263. [Google Scholar] [CrossRef]
- Guan, S.J. Study on the application effect of soil urease inhibitor. J. Soil Bull. 1985, 5, 232–234. [Google Scholar] [CrossRef]
- Zhu, L.X.; Cao, M.M.; Sang, C.C.; Chen, R.B.; Xu, S.W.; Li, L.L.; Liu, T.X. Effects of Bio-Fertilizer Partially Substituting Chemical Fertilizer on Soil Fertility and Enzyme Activity in Maize Field. J. Sichuan Agric. Univ. 2022, 1–12. Available online: http://kns.cnki.net/kcms/detail/51.1281.S.20220114.1841.002.html (accessed on 1 February 2022).
- Zhang, J.E.; Liu, W.G.; Hu, G. The relationship between quantity index of soil microorganisms and soil fertility of different land-use systems. J. Soil Environ. Sci. 2002, 2, 140–143. [Google Scholar]
- Sun, Q.Y.; Tan, H.Y.; Chi, M.F.; Wu, D.N.; Zhang, X.W.; Jia, X.; Zhang, L.Y.; Jia, Z.K. Effects of natural regeneration on soil fertility and soil enzyme activities in Pinus tabuliformis plantations after clearcutting. J. Beijing For. Univ. 2019, 41, 24–34. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, B.; Yang, L.; Zhao, X.H.; Zhang, C.Y.; Yan, Z.C. Effects of earthworm and litter application on soil nutrients and soil microbial biomass and activities in Pinus tabuliformis plantation. J. Beijing For. Univ. 2018, 40, 63–71. [Google Scholar] [CrossRef]
- Tian, H.Q.; Chen, G.S.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and variation of C: N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Wang, H.Y.; Xie, Y.L.; Li, X.; Qin, Q.Q.; Yang, D.D. Effect of tree species on soil fertility quality in plain afforestation area, Beijing. J. Sci. Soil Water Conserv. 2018, 16, 89–98. [Google Scholar] [CrossRef]
- Wang, K.; Qi, Y.T.; Liu, J.H.; Jiao, X.L.; Liu, H.B. Carbon, nitrogen and phosphorus stoichiometric characteristics of plants, leaf litter and soils in Pinus tabuliformis and Ulmus pumila plantations. Chin. J. Ecol. 2022, 1–9. [Google Scholar] [CrossRef]
- Chen, G.S.; Zeng, D.H.; Chen, F.S. Concentrations of foliar and surface soil in nutrients Pinus spp. plantations in relation to species and stand age in Zhanggutai sandy land, northeast China. J. For. Res. 2004, 15, 11–18. [Google Scholar]
- Wang, K.; Zhang, R.S.; Song, L.N.; Yan, T.; Na, E. Comparison of C:N:P stoichiometry in the plant-litter-oil system between poplar and elm plantations in the Horqin Sandy Land, China. Front. Plant Sci. 2021, 12, 655517. [Google Scholar] [CrossRef]
- Taylor, L.A.; Arthur, M.A.; Yanai, R.D. Forest floor microbial biomass across a northern hardwood successional sequence. Soil Biol. Biochem. 1998, 31, 431–439. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Li, Y.; Li, Q.D. Microbe, Enzymatic Activity and Nutrient Contents in Different Stand Ages of Pinus tabuliformis. J. Soil Water Conserv. Res. 2019, 26, 58–64. [Google Scholar] [CrossRef]
- Le, T.H. Impact of Chinese Pine Plantation on Soil Enzyme Activities and Microorganism in the Loess Plateau. Master’s Thesis, Northwest University of Agriculture and Forestry Science and Technology, Shaanxi, China, 2017. [Google Scholar]
- Bueis, T.; Turrión, M.B.; Bravo, F.; Pando, V.; Muscolo, A. Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: A basis for establishing sustainable forest management strategies. Ann. For. Sci. 2018, 75, 34. [Google Scholar] [CrossRef] [Green Version]
- Wieser, G.; Grams, T.E.E.; Matyssek, R.; Oberhuber, W.; Gruber, A. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps. Tree Physiol. 2015, 35, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.M.; Xiao, W.F.; Wang, X.R.; Feng, X.H.; Wang, R.L. Soil nutrient characteristics in different vegetation successional stages of Three Gorges Reservoir area. Sci. Silvae Sin. 2010, 46, 1–6. [Google Scholar]
- Geng, Y.Q.; Yu, X.X.; Yue, Y.J.; Niu, L.L. Variation of forest soil nutrient content in mountainous areas, Beijing. Sci. Silvae Sin. 2010, 46, 169–175. [Google Scholar]
- Sheng, S.W.; Zhang, D.D.; Wang, M.G.; Wang, X.D. Effects of combined application of wood vinegar acidified biochar and nitrogen on active nitrogen and ammonia volatilization in saline Soil. J. Environ. Sci. 2022, 43, 5. [Google Scholar] [CrossRef]
- Yuan, F.; Li, K.Y.; Yang, H.; Deng, C.J.; Liang, H.; Song, L.H. Effects of Biochar Application on Yellow Soil Nutrients and Enzyme Activities. J. Environ. Sci. 2022, 1–11. [Google Scholar] [CrossRef]
- Wang, M.Q.; Liu, Y.S.; Huang, Y.L.; Zhao, Y.Y.; Li, Z.X.; Han, Y.H. Research progress on effects of straw incorporation on soil micro-ecological environment. J. Microbiol. China 2022, 1–10. [Google Scholar] [CrossRef]
- Wang, F.J.; Qin, S.L.; Zhang, H.Y.; Liu, N. Characteristics of Soil Enzyme Activity and Microbial Quantity of Different Forest Types. Shaanxi J. Agric. Sci. 2021, 67, 75–80, 111. [Google Scholar]
- Sun, X.S.; Feng, H.S.; Wan, S.B.; Zuo, X.Q. Changes of Main Microbial Strains and Enzymes Activities in Peanut Continuous Cropping Soil and Their Interactions. Acta Agron. Sin. 2001, 5, 617–621. [Google Scholar]
- Yin, Y.N.; Yang, C.; Tang, J.G.; Gu, J.; Li, H.C.; Duan, M.L.; Wang, X.C.; Chen, R. Bamboo charcoal enhances cellulase and urease activities during chicken manure composting: Roles of the bacterial community and metabolic functions. J. Environ. Sci. 2021, 108, 84–95. [Google Scholar] [CrossRef]
- Li, H.L.; Zhou, C.L. Comprehensive evaluation of ecological benefits of six typical stand types along with the Dam Area. J. Hebei For. Sci. Technol. 2021, 2, 13–17. [Google Scholar] [CrossRef]
- Cheng, J.W. Short Term Effects of Different Management Models on Forest Stand Growth. Master’s Thesis, Inner Mongolia Agricultural University, Inner Mongolia, China, 2021. [Google Scholar] [CrossRef]
Treatment × Layer | 0.5-Year | 1-Year | 1.5-Year |
---|---|---|---|
pH | 0.057 | 0.138 | 0.001 ** |
TN | 0.571 | 0.445 | 0.550 |
AP | 0.000 ** | 0.000 ** | 0.000 ** |
AK | 0.120 | 0.035 * | 0.194 |
SOM | 0.000 ** | 0.102 | 0.017 * |
Treatment × Layer | 0.5-Year | 1-Year | 1.5-Year |
---|---|---|---|
MBC | 0.000 ** | 0.000 ** | 0.001 ** |
MBN | 0.000 ** | 0.000 ** | 0.190 |
Urease | 0.000 ** | 0.000 ** | 0.002 ** |
Invertase | 0.000 ** | 0.000 ** | 0.000 ** |
AKPase | 0.000 ** | 0.494 | 0.195 |
APase | 0.000 ** | 0.000 ** | 0.000 ** |
Fungi | 0.114 | 0.000 ** | 0.000 ** |
Bacteria | 0.000 ** | 0.000 ** | 0.000 ** |
Actinomycetes | 0.000 ** | 0.000 ** | 0.158 |
Time | Fertilizer Type 1 | Mean H (m) | Mean DBH (cm) | Mean CW (m) | |
---|---|---|---|---|---|
SN | EW | ||||
Beginning | T1 | 9.3 ± 0.4 a 2 | 16.6 ± 3.5 a | 3.8 ± 1.7 a | 3.5 ± 1.8 a |
T2 | 9.3 ± 0.9 a | 15.2 ± 4.4 a | 3.4 ± 1.3 a | 3.4 ± 1.1 a | |
T3 | 9.1 ± 1.0 a | 15.8 ± 4.3 a | 3.2 ± 1.3 a | 3.0 ± 1.2 a | |
T4 | 9.1 ± 1.3 a | 15.5 ± 2.1 a | 3.0 ± 0.8 a | 3.0 ± 0.9 a | |
T5 | 9.0 ± 0.9 a | 14.0 ± 3.1 a | 2.9 ± 1.1 a | 2.5 ± 0.8 a | |
0.5 year | T1 | 9.8 ± 2.6 a | 17.2 ± 3.2 a | 4.4 ± 1.2 a | 4.4 ± 0.6 a |
T2 | 9.6 ± 0.4 a | 16.0 ± 4.0 a | 4.7 ± 1.1 ab | 4.7 ± 1.5 ab | |
T3 | 9.2 ± 0.6 a | 16.1 ± 4.5 a | 3.9 ± 1.5 ab | 3.9 ± 0.9 abc | |
T4 | 9.2 ± 1.3 a | 15.7 ± 2.5 a | 3.2 ± 0.8 bc | 3.5 ± 0.8 bc | |
T5 | 9.2 ± 0.8 a | 14.0 ± 3.5 a | 2.9 ± 1.3 c | 3.3 ± 1.4 c | |
1 year | T1 | 10.3 ± 1.3 a | 17.6 ± 3.2 a | 4.4 ± 1.2 a | 4.4 ± 0.6 a |
T2 | 9.9 ± 1.1 a | 17.0 ± 4.2 a | 4.7 ± 1.1 ab | 5.0 ± 1.0 ab | |
T3 | 9.3 ± 1.3 a | 16.4 ± 3.2 a | 3.9 ± 1.5 ab | 4.2 ± 1.6 ab | |
T4 | 9.4 ± 1.2 a | 16.2 ± 2.7 a | 3.2 ± 0.8 b | 3.5 ± 0.8 b | |
T5 | 9.3 ± 0.9 a | 14.2 ± 3.5 b | 3.6 ± 1.0 b | 3.5 ± 1.3 b | |
1.5 year | T1 | 10.5 ± 0.3 a | 18.3 ± 2.9 a | 4.7 ± 0.9 a | 4.3 ± 1.2 a |
T2 | 10.3 ± 1.2 b | 17.7 ± 3.4 a | 4.8 ± 1.3 ab | 5.0 ± 1.0 a | |
T3 | 9.7 ± 0.6 b | 16.8 ± 3.6 ab | 4.3 ± 1.1 ab | 4.2 ± 1.6 a | |
T4 | 9.5 ± 0.9 b | 17.0 ± 3.2 ab | 4.4 ± 0.8 ab | 4.0 ± 0.6 a | |
T5 | 9.4 ± 0.8 c | 15.5 ± 2.6 b | 3.7 ± 1.3 b | 4.1 ± 1.4 a |
Time | Fertilizer Type * | Plants | Number | Mean H (m) | Mean BD (cm) | Coverage (%) |
---|---|---|---|---|---|---|
1 year after fertilization | T1 | Quercus mongolica | 1 | 0.20 | 0.492 | 0.125 |
T2 | none | - | - | - | - | |
T3 | Quercus variabilis | 1 | 0.15 | 0.688 | 0.150 | |
T4 | Quercus variabilis | 2 | 0.63 | 0.600 | 0.750 | |
T5 | Ailanthus altissima | 1 | 1.00 | 1.253 | 3.738 | |
Quercus mongolica | 1 | 0.25 | 0.428 | 0.203 | ||
1.5 years after fertilization | T1 | Vitex negundo | 7 | 1.03 | 1.554 | 1.050 |
T2 | Ziziphus jujuba | 1 | 1.14 | 1.030 | 1.050 | |
Vitex negundo | 20 | 0.82 | 0.593 | 0.236 | ||
T3 | Vitex negundo | 28 | 1.22 | 0.931 | 0.729 | |
T4 | Quercus mongolica | 1 | 0.56 | 0.328 | 0.352 | |
Ziziphus jujuba | 3 | 0.72 | 0.887 | 0.360 | ||
Vitex negundo | 14 | 0.86 | 0.683 | 0.352 | ||
T5 | Quercus variabilis | 1 | 0.84 | 0.374 | 0.613 | |
Quercus variabilis | 2 | 0.18 | 0.424 | 0.076 | ||
Vitex negundo | 33 | 1.10 | 0.949 | 0.871 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Bo, H.; Zhu, J.; Zhang, J.; Hu, J.; Mu, F.; Nie, L. Reducing Nutrient Loss Caused by Thinning: Effects of Four Composts of Forest Thinning Shreds on Soil Nutrients and Tree Growth in Semimature Pinus tabuliformis Carr., Beijing, China. Forests 2022, 13, 702. https://doi.org/10.3390/f13050702
Li X, Bo H, Zhu J, Zhang J, Hu J, Mu F, Nie L. Reducing Nutrient Loss Caused by Thinning: Effects of Four Composts of Forest Thinning Shreds on Soil Nutrients and Tree Growth in Semimature Pinus tabuliformis Carr., Beijing, China. Forests. 2022; 13(5):702. https://doi.org/10.3390/f13050702
Chicago/Turabian StyleLi, Xuan, Huijuan Bo, Jialei Zhu, Jiwei Zhang, Jun Hu, Fuyong Mu, and Lishui Nie. 2022. "Reducing Nutrient Loss Caused by Thinning: Effects of Four Composts of Forest Thinning Shreds on Soil Nutrients and Tree Growth in Semimature Pinus tabuliformis Carr., Beijing, China" Forests 13, no. 5: 702. https://doi.org/10.3390/f13050702
APA StyleLi, X., Bo, H., Zhu, J., Zhang, J., Hu, J., Mu, F., & Nie, L. (2022). Reducing Nutrient Loss Caused by Thinning: Effects of Four Composts of Forest Thinning Shreds on Soil Nutrients and Tree Growth in Semimature Pinus tabuliformis Carr., Beijing, China. Forests, 13(5), 702. https://doi.org/10.3390/f13050702