The Influence of Age on the Wood Properties of Paulownia tomentosa (Thunb.) Steud.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Material Preparation
2.1.1. Ash Content
2.1.2. Extractive Content
2.1.3. Lignin Content
2.1.4. Holocellulose Content
2.1.5. α-Cellulose Content
2.1.6. Hemicellulose Content
2.1.7. Chlorine Determination, Heating Value, Elemental Analysis (CHNO), and Thermogravimetric Analysis (TGA)
- ○
- ISO 17225-1: 2014—Solid biofuels—Fuel specifications and classes—Part 1: General requirements;
- ○
- ISO 16948: 2015—Solid biofuels—Determination of total content of C, H, and N;
- ○
- ISO 16967: 2015—Solid biofuels—Determination of major elements—Al, Ca, Fe, Mg, P, K, Si, Na, and Ti;
- ○
- ISO 16968: 2015—Solid biofuels—Determination of minor elements—Ar, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn;
- ○
- ISO 16994: 2016—Solid biofuels—Determination of total content of S and Cl;
- ○
- ISO 18125: 2017—Solid biofuels—Determination of heating value.
2.1.8. Physical and Mechanical Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, T.; Vaidya, B.N.; Perry, Z.D.; Parajuli, P.; Joshee, N. Paulownia as a medicinal tree: Traditional uses and current advances. Eur. J. Med. Plants 2016, 14, 1–15. [Google Scholar] [CrossRef]
- Innes, R. Paulownia tomentosa. In Fire Effects Information System; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer): Washington, DC, USA, 2009. [Google Scholar]
- Icka, P.; Damo, R.; Icka, E. Paulownia tomentosa, a fast growing timber. Ann. Valahia Univ. Targoviste-Agric. 2016, 10, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Akyildiz, M.H.; Kol Sahin, H. Some technological properties and uses of paulownia (Paulownia tomentosa Steud.) wood. J. Environ. Biol. 2010, 31, 351–355. [Google Scholar] [PubMed]
- Yadav, N.K.; Vaidya, B.N.; Henderson, K.; Lee, J.F.; Stewart, W.M.; Dhekney, S.A.; Joshee, N. A review of Paulownia biotechnology: A short rotation, fast growing multipurpose bioenergy tree. Am. J. Plant Sci. 2013, 4, 2070. [Google Scholar] [CrossRef] [Green Version]
- El-Showk, S.; El-Showk, N. The Paulownia Tree an Alternative for Sustainable Forestry; Scientific Research Publishing Inc.: Wuhan, China, 2003. [Google Scholar]
- Rao, A.N.; Zhongguo Lin Ye Ke Xue Yan Jiu Yuan. Paulownia in China: Cultivation and Utilization; Asian Network for Biological Science, International Development Research Center: Singapore, 1986; ISBN 978-9971-84-546-9. [Google Scholar]
- Barton, I.; Nicholas, I.; Ecroyd, C. Paulownia Handbook. For. Res. Bull. 2007, 231, 1–71. [Google Scholar]
- Nunes, L.J.R.; Pimentel, C.; Garrido Azevedo, S.; Matias, J.C.O. (Eds.) New Trends for Biomass Energy Development: From Wood to Circular Economy; Energy science, engineering and technology; Nova Science Publishers, Inc.: New York, NY, USA, 2020; ISBN 978-1-5361-7190-7. [Google Scholar]
- García, E.M.; Borja, M.E.L.; Abellán, M.A.; Serrano, F.R.L.; Morote, F.A.G.; del Cerro Barja, A. Aprovechamiento energético de” Paulownia” spp. en el ámbito mediterráneo. Rev. Montes 2010, 102, 5–11. [Google Scholar]
- Zuazo, V.H.D.; Bocanegra, J.A.J.; Torres, F.P.; Pleguezuelo, C.R.R.; Martínez, J.R.F. Biomass yield potential of paulownia trees in a semi-arid Mediterranean environment (S Spain). Int. J. Renew. Energy Res. 2013, 3, 789–793. [Google Scholar]
- TAPPI T 222 om-02; Acid-Insoluble Lignin in Wood and Pulp. TAPPI: Atlanta, GA, USA, 2002.
- Esteves, B.; Ferreira, H.; Viana, H.; Ferreira, J.; Domingos, I.; Cruz-Lopes, L.; Jones, D.; Nunes, L. Termite Resistance, Chemical and Mechanical Characterization of Paulownia tomentosa Wood before and after Heat Treatment. Forests 2021, 12, 1114. [Google Scholar] [CrossRef]
- NP 619 Static Bending Test; Inspecção Geral dos Produtos Agrícolas e Industriais (IGPAI): Lisbon, Portugal, 1973. (In Portuguese)
- Domingos, I.; Lopes, L.C.; Ferreira, J.; Pereira, H.; Esteves, B. Variação da composição química de Eucalyptus globulus com a idade. In Proceedings of the 7° Congresso Florestal Nacional, Vila Real/Bragança, Portugal, 5–8 June 2013; p. 54. [Google Scholar]
- Miranda, I.; Pereira, H. The Variation of Chemical Composition and Pulping Yield With Age and Growth Factors in Young Eucalyptus Globulus. Wood Fiber Sci. 2002, 34, 140–145. [Google Scholar]
- Welter, C.A. Bioprodutos Obtidos da Madeira de Paulownia Tomentosa Steud. Ph.D. Thesis, Universidade Federal de Santa Maria, Santa Maria, Brazil, 2021. [Google Scholar]
- Szadkowska, D. Chromatographic analysis of extracts isolated from different poplar species as potential inhibitors of enzymatic hydrolysis Analiza chromatograficzna substancji ekstrakcyjnych pozyskanych z różnych odmian topoli jako potencjalnych inhibitorów hydrolizy enzymatycznej. Chem. Rev. 2016, 1, 49–52. [Google Scholar] [CrossRef]
- Szadkowska, D.; Zawadzki, J.; Kozakiewicz, P.; Radomski, A. Identification of Extractives from Various Poplar Species. Forests 2021, 12, 647. [Google Scholar] [CrossRef]
- Silva, J.D.C.; Matos, J.L.M.D.; Oliveira, J.T.D.S.; Evangelista, W.V. Influence of age and position along the trunk on the chemical composition of Eucalyptus grandis Hill ex. Maiden wood. Rev. Árvore 2005, 29, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Pandey, K.K.; Chandrashekar, N.; Mohan, S. Effect of tree-age on calorific value and other fuel properties of Eucalyptus hybrid. J. For. Res. 2010, 21, 514–516. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Raposo, M.A.M.; Meireles, C.I.R.; Gomes, C.J.P.; Ribeiro, N.M.C.A. Energy Recovery of Shrub Species as a Path to Reduce the Risk of Occurrence of Rural Fires: A Case Study in Serra da Estrela Natural Park (Portugal). Fire 2021, 4, 33. [Google Scholar] [CrossRef]
- Li, P.; Oda, J. Flame retardancy of paulownia wood and its mechanism. J. Mater. Sci. 2007, 42, 8544–8550. [Google Scholar] [CrossRef] [Green Version]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Hidayat, W.; Qi, Y.; Jang, J.-H.; Febrianto, F.; Kim, N.H. Effect of Mechanical Restraint on the Properties of Heat-treated Pinus koraiensis and Paulownia tomentosa Woods. BioResources 2017, 12, 7539–7551. [Google Scholar]
- Kim, Y.K.; Kwon, G.J.; Kim, A.R.; Lee, H.S.; Purusatama, B.; Lee, S.H.; Kang, C.W.; Kim, N.H. Effects of heat treatment on the characteristics of royal paulownia (Paulownia tomentosa (Thunb.) Steud.) wood grown in Korea. J. Korean Wood Sci. Technol. 2018, 46, 511–526. [Google Scholar] [CrossRef]
- Lachowicz, H.; Sajdak, M.; Paschalis-Jakubowicz, P.; Cichy, W.; Wojtan, R.; Witczak, M. The influence of location, tree age and forest habitat type on basic fuel properties of the wood of the silver birch (Betula pendula Roth.) in Poland. BioEnergy Res. 2018, 11, 638–651. [Google Scholar] [CrossRef] [Green Version]
- Krutul, D.; Szadkowski, J.; Antczak, A.; Drożdżek, M.; Radomski, A.; Karpiński, S. The concentration of selected heavy metals in poplar wood biomass and liquid fraction obtained after high temperature pretreatment. Wood Res. 2021, 66, 39–48. [Google Scholar] [CrossRef]
- Szadkowski, J.; Balicka, A. Analysis of adsorption of heavy metals from water solutions by wood of selected domestic species using X-Ray Fluorescence (XRF). Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2020, 111, 73–82. [Google Scholar]
- Esteves, B.; Nunes, L.; Domingos, I.; Pereira, H. Comparison between heat treated sapwood and heartwood from Pinus pinaster. Eur. J. Wood Wood Prod. 2014, 72, 53–60. [Google Scholar] [CrossRef] [Green Version]
Sample | TGA | CHN | S (%) | Cl (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Moisture (%) | Volatile (%) | Ash (%) | Fixed Carbon (%) | C (%) | H (%) | N (%) | ||||
Paulownia (1 year) | 1 | 9.01 | 81.66 | 1.03 | 17.31 | 48.06 | 5.74 | 0.187 | 0.0062 | n.d. |
2 | 8.94 | 80.57 | 0.97 | 18.46 | 48.21 | 5.79 | 0.268 | 0.0064 | n.d. | |
3 | 8.89 | 81.82 | 1.00 | 17.18 | 48.38 | 5.82 | 0.251 | 0.0064 | n.d. | |
Average | 8.94 | 81.35 | 1.00 | 17.65 | 48.22 | 5.78 | 0.235 | 0.0063 | - | |
Std. Dev. | 0.06 | 0.68 | 0.03 | 0.70 | 0.16 | 0.04 | 0.042 | 0.0002 | - | |
Paulownia (3 years) | 1 | 8.79 | 81.21 | 0.87 | 17.92 | 48.16 | 5.80 | 0.179 | 0.0065 | n.d. |
2 | 8.88 | 81.20 | 0.90 | 17.90 | 48.18 | 5.85 | 0.208 | 0.0066 | n.d. | |
3 | 8.87 | 81.33 | 0.81 | 17.86 | 48.10 | 5.86 | 0.213 | 0.0063 | n.d. | |
Average | 8.85 | 81.25 | 0.86 | 17.89 | 48.14 | 5.83 | 0.200 | 0.0065 | - | |
Std. Dev. | 0.05 | 0.07 | 0.05 | 0.03 | 0.04 | 0.03 | 0.018 | 0.0002 | - | |
Paulownia (5 years) | 1 | 7.79 | 84.38 | 0.23 | 15.39 | 48.70 | 5.79 | 0.089 | 0.0035 | n.d. |
2 | 7.81 | 84.29 | 0.31 | 15.40 | 48.49 | 5.78 | 0.097 | 0.0036 | n.d. | |
3 | 7.77 | 84.54 | 0.28 | 15.18 | 48.47 | 5.82 | 0.077 | 0.0038 | n.d. | |
Average | 7.79 | 84.40 | 0.28 | 15.32 | 48.55 | 5.80 | 0.087 | 0.0036 | - | |
Std. Dev. | 0.02 | 0.13 | 0.04 | 0.12 | 0.12 | 0.02 | 0.010 | 0.0001 | - |
Sample | Density (g·cm−3) | HHV (MJ·kg−1) | LHV (MJ·kg−1) | |
---|---|---|---|---|
Paulownia (1 year) | Average | 0.26 | 19.677 | 18.415 |
Std. Dev. | 0.01 | 87.04 | 87.04 | |
Paulownia (3 years) | Average | 0.42 | 19.761 | 18.487 |
Std. Dev. | 0.04 | 104.09 | 104.09 | |
Paulownia (5 years) | Average | 0.46 | 19.947 | 18.680 |
Std. Dev. | 0.03 | 31.72 | 31.72 |
Major Elements (mg·kg−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Al | Ca | Fe | Mg | P | K | Si | Na | Ti | ||
Paulownia (1 year) | 1 | 10.31 | 1420.58 | 28.72 | 373.14 | 326.07 | 3226.05 | 24.26 | 112.65 | 0.00 |
2 | 12.26 | 1450.10 | 38.46 | 393.00 | 345.75 | 3465.60 | 14.85 | 122.49 | 2.19 | |
3 | 12.98 | 1421.55 | 38.79 | 384.80 | 334.45 | 3333.03 | 0.00 | 113.54 | 0.60 | |
Average | 11.85 | 1430.74 | 35.32 | 383.64 | 335.42 | 3341.56 | 13.04 | 116.23 | 1.40 | |
Std. Dev. | 1.38 | 16.77 | 5.72 | 9.98 | 9.88 | 120.00 | 12.23 | 5.44 | 1.12 | |
Paulownia (3 years) | 1 | 15.27 | 1366.13 | 70.13 | 482.06 | 338.59 | 2865.36 | 2.96 | 66.00 | 1.62 |
2 | 18.99 | 1588.87 | 119.93 | 498.54 | 323.36 | 2841.04 | 0.00 | 69.62 | 3.89 | |
3 | 19.79 | 1600.37 | 85.00 | 506.25 | 317.37 | 2902.64 | 0.00 | 71.01 | 1.87 | |
Average | 18.02 | 1518.46 | 91.69 | 495.62 | 326.44 | 2869.68 | 2.96 | 68.88 | 2.46 | |
Std. Dev. | 2.41 | 132.05 | 25.56 | 12.35 | 10.94 | 31.02 | 0.00 | 2.59 | 1.24 | |
Paulownia (5 years) | 1 | 17.91 | 1120.99 | 45.40 | 142.93 | 21.22 | 124.98 | 48.44 | 85.88 | n.d. |
2 | 13.66 | 1027.71 | 54.67 | 126.56 | 23.40 | 104.06 | 45.46 | 76.71 | n.d. | |
3 | 17.38 | 1146.65 | 47.49 | 145.16 | 22.47 | 118.88 | 55.76 | 84.74 | n.d. | |
Average | 16.31 | 1098.45 | 49.19 | 138.21 | 22.37 | 115.97 | 49.89 | 82.44 | - | |
Std. Dev. | 2.32 | 62.59 | 4.86 | 10.16 | 1.09 | 10.76 | 5.30 | 4.99 | - |
Minor Elements | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Co | Cr | Cu | Mn | Ni | Pb | Zn | ||
Paulownia (1 year) | 1 | 0.86 | n.d. | 0.00 | n.d. | 20.80 | n.d. | 0.93 | 0.58 | 22.74 |
2 | 1.34 | n.d. | 0.13 | n.d. | 23.01 | n.d. | 0.64 | 0.45 | 26.86 | |
3 | 1.14 | n.d. | 0.20 | n.d. | 22.97 | n.d. | 0.45 | 0.00 | 25.06 | |
Average | 1.11 | - | 0.17 | - | 22.26 | - | 0.67 | 0.34 | 24.89 | |
Std. Dev. | 0.24 | - | 0.06 | - | 1.26 | - | 0.25 | 0.31 | 2.06 | |
Paulownia (3 years) | 1 | 1.77 | n.d. | 0.51 | n.d. | 8.48 | n.d. | 1.03 | 0.00 | 19.00 |
2 | 1.95 | n.d. | 0.19 | n.d. | 8.13 | n.d. | 0.43 | 0.00 | 17.85 | |
3 | 1.42 | n.d. | 0.28 | n.d. | 8.44 | n.d. | 0.52 | 0.00 | 21.04 | |
Average | 1.72 | - | 0.33 | - | 8.35 | - | 0.66 | 0.00 | 19.30 | |
Std. Dev. | 0.27 | - | 0.16 | - | 0.19 | - | 0.32 | 0.00 | 1.62 | |
Paulownia (5 years) | 1 | n.d. | 0.02 | 0.10 | n.d. | 16.16 | 1.72 | 0.50 | 0.04 | 9.52 |
2 | n.d. | n.d. | 0.07 | n.d. | 15.05 | n.d. | 0.72 | 0.00 | 8.33 | |
3 | n.d. | n.d. | 0.08 | n.d. | 16.87 | n.d. | 0.70 | 0.49 | 9.09 | |
Average | - | 0.01 | 0.08 | - | 16.03 | 0.57 | 0.64 | 0.18 | 8.98 | |
Std. Dev. | - | 0.00 | 0.01 | - | 0.92 | 0.00 | 0.12 | 0.32 | 0.60 |
Sample | MOE (MPa) | Bending Strength (MPa) | ||
---|---|---|---|---|
Average | Std. Dev. | Average | Std. Dev. | |
Paulownia (3 years) | 6461 | 1098 | 61.7 | 9.8 |
Paulownia (5 years) | 6990 | 843 | 53.5 | 6.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, B.; Cruz-Lopes, L.; Viana, H.; Ferreira, J.; Domingos, I.; Nunes, L.J.R. The Influence of Age on the Wood Properties of Paulownia tomentosa (Thunb.) Steud. Forests 2022, 13, 700. https://doi.org/10.3390/f13050700
Esteves B, Cruz-Lopes L, Viana H, Ferreira J, Domingos I, Nunes LJR. The Influence of Age on the Wood Properties of Paulownia tomentosa (Thunb.) Steud. Forests. 2022; 13(5):700. https://doi.org/10.3390/f13050700
Chicago/Turabian StyleEsteves, Bruno, Luísa Cruz-Lopes, Hélder Viana, José Ferreira, Idalina Domingos, and Leonel J. R. Nunes. 2022. "The Influence of Age on the Wood Properties of Paulownia tomentosa (Thunb.) Steud." Forests 13, no. 5: 700. https://doi.org/10.3390/f13050700
APA StyleEsteves, B., Cruz-Lopes, L., Viana, H., Ferreira, J., Domingos, I., & Nunes, L. J. R. (2022). The Influence of Age on the Wood Properties of Paulownia tomentosa (Thunb.) Steud. Forests, 13(5), 700. https://doi.org/10.3390/f13050700